Matrices of Clifford Semigroups, and a Generalization of Rees's Theorem1)

Miyuki YAMADA
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 6, 1986)

Let \(S \) be a completely regular semigroup, and \(E(S) \) the partial subgroupoid of idempotents of \(S \). Let \(\gamma \) be a relation on \(E(S) \). If \(\gamma \) is a congruence on \(E(S) \), that is, if \(\gamma \) is an equivalence relation on \(E(S) \) and if \(x\gamma y \) and \(u\gamma v \) satisfy \(xu\gamma yv \) (if both \(xu \) and \(yv \) are defined in \(E(S) \)), then \(S \) is called a CS-matrix. Firstly, several characterizations of a CS-matrix are given. Secondly, split CS-matrices are investigated. In particular, matrix representations of these semigroups are discussed.

\section*{§ 1. Preliminary}

Let \(P \) be a partial groupoid, and \(\gamma \) a relation on \(P \) as follows:

\begin{enumerate}
\item \(x\gamma y \) if and only if both \(xy \) and \(yx \) are defined in \(P \), and \(xy = yx \).
\end{enumerate}

If \(\gamma \) is a congruence on \(P \), that is,

\begin{enumerate}
\item \(x\gamma x \) for all \(x \in P \),
\item \(x\gamma y \) implies \(y\gamma x \),
\item \(x\gamma y, y\gamma z \) imply \(x\gamma z \),
\item if \(x\gamma y, u\gamma v \) and if both \(xu \) and \(yv \) are defined in \(P \), then \(xu\gamma yv \),
\end{enumerate}

then \(P \) is called \(\gamma \)-\textit{compatible}. In a completely simple semigroup \(C \), it is obvious that the partial groupoid \(E(C) \) of idempotents of \(C \) (with respect to the multiplication in \(C \)) is \(\gamma \)-\textit{compatible}. If the partial groupoid \(E(S) \) of idempotents of a regular semigroup \(S \) is \(\gamma \)-\textit{compatible}, then \(S \) is called \(\gamma \)-\textit{compatible}. If a semigroup \(A \) is a rectangular band \(\Delta \) of subsemigroups \(\{ A_\delta : \delta \in \Delta \} \) of type \(\mathcal{F} \), then we shall say that \(A \) is a \textit{matrix} \(\Delta \) of semigroups \(\{ A_\delta : \delta \in \Delta \} \) of type \(\mathcal{F} \). If \(A \) is a matrix of semigroups of type \(\mathcal{F} \), then \(A \) is said to be a \(\mathcal{F} \)-\textit{semigroup matrix}. For example, if \(A \) is a rectangular band of subgroups then \(A \) is called a \textit{group matrix}. If \(A \) is a rectangular band of Clifford subsemigroups (that is, semilattices of groups), then \(A \) is called a \textit{Clifford semigroup matrix} (abbrev.,

1) An abstract of this paper was announced in the Proceedings of 9th Symposium on Semigroups and Related Topics, Naruto University of Teacher Education, 1985.
a CS-matrix). Let B be a γ-compatible band, and ρ the least semilattice congruence on B. It is well-known that each ρ-class is a rectangular subband of B (therefore, B is a semilattice of rectangular bands). Now, it is also easy to see that $\rho \cap \gamma = \zeta_S$ (the identity congruence on B). Hence, B is isomorphic to a subdirect product of B/ρ and B/γ. Let $e, f \in B$. Since $efe = efe, efe \gamma e$. Hence, B/γ is a rectangular band. Since B/ρ is a semilattice, B is isomorphic to a subdirect product of a semilattice and a rectangular band.

Further, it is easy to see that the converse also holds; that is, a band B is γ-compatible if and only if it is isomorphic to a subdirect product of a semilattice and a rectangular band. Accordingly, in this case B is a rectangular band of semilattices, that is, a semilattice matrix (abbrev., an SL-matrix). Of course, an SL-matrix is a normal band. In this paper, we shall investigate the structure of CS-matrices and that of split CS-matrices. If S is a completely regular semigroup, it is well-known that S is uniquely decomposed into a semilattice A of completely simple semigroups $\{S_\lambda : \lambda \in A\}$ (see [1]). This decomposition is called the structure decomposition of S, and denoted by $S = \Sigma \{S_\lambda : \lambda \in A\}$.

Hereafter the terminology "a completely regular semigroup $S = \Sigma \{S_\lambda : \lambda \in A\}$" means "$S$ is a completely regular semigroup and has $S = \Sigma \{S_\lambda : \lambda \in A\}$ as its structure decomposition". Further, it is also well-known that the least semilattice congruence ρ on a completely regular semigroup S induces the structure decomposition of S. Throughout the whole paper, if S is a completely regular semigroup, ρ_S and γ_S denote the least semilattice congruence on S and the γ-congruence on $E(S)$ respectively. Every terminology and notation should be referred to [1], unless otherwise stated.

§ 2. CS-matrices

Let S be a γ-compatible completely regular semigroup, and $E(S)$ the set of all idempotents of S. Since γ is an equivalence relation on $E(S)$, $E(S)$ is decomposed into γ-equivalence classes $\{E_\lambda : \lambda \in A\}$ (where each E_λ is a γ-class). Now, put $S_\lambda = \{x \in S : xx^* , x^*x \in E_\lambda$ for some $x^* \in V(x)\}$, where $V(x)$ is the set of inverses of x.

LEMMA 2.1. (1) Each S_λ is a maximal Clifford subsemigroup of S.

(2) $\mathcal{F} = \{S_\lambda : \lambda \in A\}$ is the set of all maximal Clifford subsemigroups, and $S = \Sigma \{S_\lambda : \lambda \in A\}$ (where Σ denotes disjoint sum).

PROOF. It is obvious that each E_λ is a subsemilattice of S. Let $x \in S_\lambda$. Then, $xx^* , x^*x \in E_\lambda$ for some $x^* \in V(x)$. For any $e \in E_\lambda$, xx^* is an idempotent and $xx^*xe^* = xe^* = xe^*xx^*$. Hence, $xx^*\gamma xe^*$, and accordingly $xe^* \in E_\lambda$. Therefore, $xE_\lambda x^* < $
Matrices of Clifford Semigroups, and a Generalization of Rees's Theorem

As matrices of Clifford Semigroups, and a Generalization of Rees's Theorem 3

Similarly, we have \(x^*E_\lambda x \subseteq E_\lambda \). Hence, \(S_\lambda = \{ x \in S : x^*x, x^*x \in E_\lambda, x^*E_\lambda x \subseteq E_\lambda \} \) for some \(x^* \in V(\lambda) \). Therefore, \(S_\lambda \) is a maximal regular subsemigroup having \(E_\lambda \) as the set of idempotents. Since \(E_\lambda \) is a semilattice, \(S_\lambda \) is an inverse semigroup. Now, let \(x \in S_\lambda \). Then, \(xx^*, x^*x \in E_\lambda \) for some \(x^* \in V(\lambda) \). Since \(S \) is completely regular, there exists the group inverse \(x^{-1} \) of \(x \). Now, \(xx^* \gamma x^*x \) implies \(xx^*xx^{-1} \gamma x^*xxx^{-1} = x^*xx^{-1}x \), and accordingly \(xx^{-1} \gamma x^*x \). Therefore, \(xx^{-1} \in E_\lambda \). Thus, \(x^{-1} \in S_\lambda \). That is, \(x \) has the group inverse \(x^{-1} \) in \(S_\lambda \). Consequently, \(S_\lambda \) is a union of groups, and accordingly \(S_\lambda \) is a Clifford semigroup.

(2) Let \(T \) be a maximal Clifford subsemigroup of \(S \). For any \(e, f \in E(T) \) (the set of idempotents of \(T \)), \(ef = fe \). Hence, \(e \gamma f \), and accordingly \(e, f \in E_\lambda \) for some \(\lambda \in \Lambda \). Therefore, \(E(T) \subseteq E_\lambda \), and \(T \subseteq S_\lambda \). Since \(T \) is a maximal Clifford subsemigroup, \(T = S_\lambda \). Thus, \(\mathcal{S} \) is the set of all maximal Clifford subsemigroups of \(S \). It is obvious that \(S = \cup \{ S_\lambda : \lambda \in \Lambda \} \). Assume that \(x \in S_\lambda \cap S_\delta \). Then, there exist \(x^*, x^* \in V(\lambda) \) such that \(xx^*, x^*x \in E_\lambda \) and \(xx^*, x^*x \in E_\delta \). Since \(xx^* \gamma x^*x \) and \(xx^* \gamma x^*x \), we have \(xx^* = xx^*xx^* \gamma x^*xx^*x = xx^*x \). Hence, \(xx^*x \in E_\lambda \cap E_\delta \), and \(\lambda = \delta \). Therefore, \(S_\lambda \cap S_\delta = \emptyset \) for \(\lambda \neq \delta \).

As characterizations of a CS-matrix, we have the following:

Theorem 2.2. For a completely regular semigroup \(S \), the following conditions (1)-(6) are equivalent:

1. \(S \) is the disjoint sum of maximal Clifford subsemigroups of \(S \).
2. \(S \) is \(\gamma \)-compatible.
3. \(S \) is a matrix of Clifford semigroups, that is, \(S \) is a CS-matrix.
4. For the least matrix congruence (that is, the least rectangular band congruence) \(\sigma_S \) on \(S \), each \(\sigma_S \)-class is a Clifford subsemigroup.
5. \(S \) is an SL-matrix cryptogroup (that is, an SL-matrix of groups).
6. The relation \(\tau \) on \(S \) defined by

\[
xy \text{ if and only if } [x][y] = [y][x]
\]

is a matrix congruence, and \([x][y] = [y][x]\) if and only if \([xy][yx] = [yx][xy]\), where \([u]\) denotes the identity of the maximal subgroup \(H_u \) containing \(u \).

Proof. (2)\(\Rightarrow\)(1) follows from Lemma 2.1, and (1)\(\Rightarrow\)(3) has been shown in Pastijn [2]. Further, it is easy to see that (3)\(\Rightarrow\)(2). (3)\(\Rightarrow\)(4): Since \(S \) is a CS-matrix, there exists a matrix congruence \(\eta_S \) on \(S \) such that each \(\eta_S \)-class is a Clifford subsemigroup. Let \(e, f \) be idempotents of a \(\eta_S \)-class. Then, \(ef = fe \). Hence, \(e \sigma_S e = e \sigma_S f \). Therefore, \(e \sigma_S f \). Let \(x \sigma_S \) be the \(\eta_S \)-class containing \(x \in S \). For any \(y \in x \sigma_S \), there exists a unique inverse \(y' \) of \(y \) in \(x \sigma_S \). For \(a \in S \), let \(\bar{a} \) be the \(\eta_S \)-class containing \(a \). Now, \(xx' \sigma_S x'x \) implies \(xx' = \bar{x}'x \), and hence \(\bar{x} = x' \), that is, \(x \sigma_S x' \). Hence, \(xx' \sigma_S x \).

3) Several other characterizations of a CS-matrix have been also given by [3].
Let \(y \in x_{\mathcal{G}} \). Then, \(x_{\mathcal{G}} = y_{\mathcal{G}} \), and \(y_{\mathcal{G}} \sigma_{\mathcal{G}} y \). Since \(y_{\mathcal{G}} \eta_{\mathcal{G}} x_{\mathcal{G}} \), we have \(y_{\mathcal{G}} \sigma_{\mathcal{G}} x_{\mathcal{G}} \), and \(x \sigma_{\mathcal{G}} y \). Therefore, \(y \in x \sigma_{\mathcal{G}} \). Thus, \(x_{\mathcal{G}} \sigma_{\mathcal{G}} x_{\mathcal{G}} \). Since \(\sigma_{\mathcal{G}} \) is the least matrix congruence, \(\eta_{\mathcal{G}} = \sigma_{\mathcal{G}} \). (4)\(\Rightarrow \) (3): Obvious. (4)\(\Rightarrow \) (5): It is easy to see that \(\sigma_{\mathcal{G}} \cap \rho_{\mathcal{G}} = \mathcal{G} \), where \(\mathcal{G} \) is the Rees H-relation on \(S \). Put \(S / \mathcal{G} = A \) and \(S / \mathcal{G} = Y \). Then, \(S \) is \(H \)-compatible, and \(S / \mathcal{G} \) is isomorphic to a direct product \(A \times Y \) of \(A \) and \(Y \) (where \(\times \) denotes a direct product). Since \(A \times Y \) is an \(SL \)-structure and since each \(\mathcal{G} \)-class is a subgroup of \(S \), \(S \) is an \(SL \)-structure cryptogroup. (5)\(\Rightarrow \) (3): Obvious. (6)\(\Rightarrow \) (4): It is obvious that each \(\sigma_{\mathcal{G}} \)-class is a union of groups. Let \(e \sigma_{\mathcal{G}} f \) for \(e, f \in E(S) \). Hence, \(e \sigma_{\mathcal{G}} f \). Since \(\sigma_{\mathcal{G}} \) is the least matrix congruence, \(ef \). Therefore, \([ef][fe] = [fe][ef] \) and \([e][f] = [f][e] \), that is, \(ef = fe \). Thus, every \(\sigma_{\mathcal{G}} \)-class is an inverse semigroup, and hence it is a Clifford subsemigroup. (5)\(\Rightarrow \) (6): Let \(S \) be an \(SL \)-structure \(A \times Y \) of groups \(\{ H_{\xi} : (\alpha, \eta) \in A \times Y \} \), where \(A \), \(Y \) are a rectangular band and a semilattice respectively, and \(A \times Y \) is a direct product of \(A \) and \(Y \). It is obvious that \(H_{\xi} \) is an \(H \)-class of \(S \). Suppose that \([x][y] = [y][x] \) for \(x, y \in S \). Then, \([x][y] = [y][x] \). where \(\mathcal{G} \) is the Rees H-relation on \(S \). Hence, \([xy][yx] = [yx][xy] \). Conversely, suppose that \([xy][yx] = [yx][xy] \). There exist \(H_{\xi} \) such that \(x \in H_{\xi} \) and \(y \in H_{\xi} \). Then, \(x H_{\xi} y \) and \(y H_{\xi} x \). Hence, \([x][y] = [y][x] \). where \(\delta \) is a Clifford subsemigroup of \(S \). Since \(x \in H_{\xi} \) and \(y \in H_{\xi} \) and since \(S_{\xi} \) is a Clifford subsemigroup, \([x][y] = [y][x] \). Next, suppose that \(x \tau y \). Then, \([x][y] = [y][x] \), and hence \(x, y \in S_{\xi} \). for some \(\lambda \in A \). Let \(\tau \) be the congruence on \(S \) which gives the decomposition of \(S \) into the Clifford subsemigroups \(\{ S_{\xi} : \xi \in A \} \). Then, \(\tau \) is a matrix congruence and satisfies \(\tau \subset \tau \). Conversely, it is obvious that \(\tau \subset \tau \). Accordingly, \(\tau = \tau \). Thus, \(\tau \) is a matrix congruence.

From the theorem above, it is easy to see that a matrix decomposition (that is, a rectangular band decomposition) of a \(CS \)-structure \(S \) into Clifford subsemigroups \(\{ C_{\xi} : \alpha \in \Gamma \} \) is unique, and it is given by the least matrix congruence \(\sigma_{\mathcal{G}} \) on \(S \). In this case, each \(C_{\xi} \) is a maximal Clifford subsemigroup of \(S \). Further, it is also obvious that \(\sigma_{\mathcal{G}} \) is a matrix decomposition (that is, a rectangular band decomposition) of a \(CS \)-structure \(S \) into Clifford subsemigroups \(\{ C_{\xi} : \alpha \in \Gamma \} \) is unique, and it is given by the least matrix congruence \(\sigma_{\mathcal{G}} \) on \(S \). In this case, each \(C_{\xi} \) is a maximal Clifford subsemigroup of \(S \). Further, it is also obvious that \(\sigma_{\mathcal{G}} \) is a matrix congruence (the restriction of \(\sigma_{\mathcal{G}} \) to \(E(S) \)). In this case, each \(C_{\xi} \) is a maximal Clifford subsemigroup of \(S \). Further, it is also obvious that \(\sigma_{\mathcal{G}} \) is a matrix congruence (the restriction of \(\sigma_{\mathcal{G}} \) to \(E(S) \)).

Lemma 2.3. Let \(S \) be a \(CS \)-structure, and \(\{ E_{\xi} : \lambda \in A \} \) the \(\gamma \)-classes of \(E(S) \). Then, \(E_{\xi} SE_{\lambda} \) is a Clifford subsemigroup of \(S \), and \(S = \cup \{ E_{\xi} SE_{\lambda} : \lambda \in A \} \).

Proof. For each \(\lambda \in A \), let \(S_{\lambda} = \{ x \in S : xx^*x^*x \in E_{\lambda} \} \). As was shown above, \(S_{\lambda} \) is a maximal Clifford subsemigroup. Hence, it is a \(\sigma_{\mathcal{G}} \)-class. Therefore, we can consider \(A \) as a rectangular band and \(S \) as a matrix \(A \) of the maximal Clifford subsemigroups \(\{ S_{\lambda} : \lambda \in A \} \). Since \(A \) is a rectangular band, \(E_{\xi} SE_{\lambda} \subset S_{\lambda} \) for \(\lambda \in A \). Conversely, let \(x \in S_{\lambda} \). Then, there exists a group inverse \(x^{-1} \) of \(x \) in \(S_{\lambda} \). Hence, \(xx^{-1}x = xx^{-1}x \in E_{\xi} \), and hence \(x = xx^{-1}x x^{-1}x \in E_{\xi} SE_{\lambda} \). Hence, \(E_{\xi} SE_{\lambda} = S_{\lambda} \).

To consider a description of all possible \(CS \)-structures, we need only to construct all

4) A semigroup \(S \) is said to be \(H \)-compatible if Green's \(H \)-relation is a congruence on \(S \).
possible SL-matrices Ω of groups $\{N_\omega: \omega \in \Omega\}$ for a given SL-matrix Ω and given groups $\{H_\omega: \omega \in \Omega\}$. This can be obtained as a special case of Schein's theorem of [4] which has given a construction of bands of unipotent monoids (see also [5]). However, we omit to state it here again.

§ 3. Split CS-matrices

Let $M \equiv \Sigma\{M_\lambda: \lambda \in A\}$ be a CS-matrix, and ρ_M the congruence which gives the structure decomposition $M \sim \Sigma\{M_\lambda: \lambda \in A\}$. We can consider $M/\rho_M = A$ by identifying each ρ_M-class M_λ with $\lambda \in A$. Let f be the natural homomorphism of M onto $M/\rho_M = A$; that is, the homomorphism f such that $xf = \lambda$ if $x \in M_\lambda$. If there exists a homomorphism g of $A = M/\rho_M$ into M such that $gf = e_A$ (the identity mapping on A), then M is called split. Let $M \equiv \{M_\lambda: \lambda \in A\}$ be a CS-matrix. Then, there exists an SL-matrix $(L \times R) \bowtie A$, where L, R are a left zero semigroup, a right zero semigroup, $L \times R$ the direct product of L and R and $(L \times R) \bowtie A$ a subdirect product of $L \times R$ and A, such that M is an SL-matrix $(L \times R) \bowtie A$ of groups $\{H_\gamma(i,j): ((i, j), \alpha) \in (L \times R) \bowtie A\}$ (where each $H_\gamma(i,j)$ is an H-class of M). In this case, it is easy to see that $M_\lambda = \Sigma\{H_\gamma(i,j): (i, j) \in I_\lambda\}$, where $I_\lambda = \{(i, j): ((i, j), \lambda) \in (L \times R) \bowtie A\}$, for each $\lambda \in A$.

Lemma 3.1. M splits if and only if

(3.1) there exists $(i, j) \in L \times R$ such that $H_\gamma(i,j)$ exists in M for all $\alpha \in A$.

Proof. Suppose that M satisfies (3.1). There exists $(i, j) \in L \times R$ such that $H_\gamma(i,j)$ exists in M for all $\alpha \in A$. Let $C(i,j) = \cup \{H_\gamma(i,j): \alpha \in A\}$. Then, $C(i,j)$ is a Clifford subsemigroup. Let $e^\gamma(i,j)$ be the idempotent of $H_\gamma(i,j)$ for all $\alpha \in A$. Now, define $f: A \rightarrow M$ by $zf = e^\gamma(i,j)f$. Since $C(i,j)$ is a Clifford semigroup, f is a homomorphism. On the other hand, the mapping $h: M \rightarrow A$ defined by $M.h = \{\alpha\}$ is a homomorphism of M onto A. The congruence induced by h is ρ_M. Since $fh = e_A$ (the identity mapping on A), M splits. Conversely, suppose that M splits. Then, there exists a surjective homomorphism $f: M/\rho_M \rightarrow M$ such that $fh = e_M$ (the identity mapping on A), M splits. If we identify an element M_λ of M/ρ_M with λ, then we can consider h and f as a surjective homomorphism of M onto A and a homomorphism of A into M such that $fh = e_A$. For every $\alpha \in A$, let $\alpha f = e_s$. Then, $e_s \in M_s$. Hence, there exists $(u, v) \in L \times R$ such that $e_s = e^u$ and $((u, v), \alpha) \in (L \times R) \bowtie A$. For $\beta \in A$, similarly there exists $(s, k) \in L \times R$ such that $((s, k), \beta) \in (L \times R) \bowtie A$ and $e_k = e^s$. Now, $e_s e_k = (\alpha f)(\beta f) = (\alpha \beta f = (\beta \alpha f = (\beta f)(\alpha f)) = e_{\beta \alpha}$. Hence, $e_s^u e_k^k = e_s^s e_k^s$. Since $e_s^u e_k^k$, $e_s^s e_k^s$ are idempotents contained in $H^{\beta \alpha}(u, v)$, $H^{\alpha \beta}(s, k)$ respectively, $u = s$ and $k = v$. Thus, $(u, v) = (s, k)$. Consequently, $H^{\beta \alpha}(u, v)$ exists for every $\lambda \in A$.

Now, let $M \sim \Sigma\{M_\lambda: \lambda \in A\}$ be the above-mentioned split CS-matrix. Then, M is an SL-matrix $(L \times R) \bowtie A$ of H-classes $\{H^{\alpha}(i,j): ((i, j), \alpha) \in (L \times R) \bowtie A\}$.
Further, there exists \((i, j) \in L \times R\) such that \(H_{\alpha}^{i, j}\) exists for all \(\alpha \in A\). Denote \((i, j)\) by (1, 1), and put \(C_{(1, 1)} = \bigcup \{H_{\alpha}^{i, j} : (s, k) \in I_\alpha\}\). For every \(x \in H_{(s, k)}^{i, j}\), \(x\) is uniquely written in the form \(x = e_{s1}^{i}ue_{s1}^{j}\), \(u \in H_{(s, 1)}^{1}\), where \(e_{sk}\) is the identity of \(H_{(s, k)}^{n}\) for every \((s, k, \alpha) \in (L \times R) \times A\) (see [1]).

For \(x = e_{s1}^{i}ue_{s1}^{j} \in H_{(s, 1)}^{1, j}, \ y = e_{s1}^{n}ve_{s1}^{n} \in H_{(s, 1)}^{n, k}\), \(u \in H_{(1, 1)}^{n}\) and \(v \in H_{(1, 1)}^{n}\),

\[
(3.2) \quad xy = e_{s1}^{i}ue_{s1}^{j}e_{s1}^{n}ve_{s1}^{n} = e_{s1}^{i}ue_{s1}^{n}p_{s1}^{(s, n)}e_{s1}^{n}ve_{s1}^{n},
\]

where \(e_{s1}^{i}e_{s1}^{n} = p_{s1}^{(s, n)} \in H_{(s, 1)}^{n}\).

Now,

\[
(3.2) = e_{s1}^{i}e_{s1}^{n}ue_{s1}^{n}p_{s1}^{(s, n)}e_{s1}^{n}ve_{s1}^{n}.
\]

Next, \((e_{s1}^{i}e_{s1}^{n})^2 = e_{s1}^{i}e_{s1}^{n}e_{s1}^{n} = e_{s1}^{i}e_{s1}^{n}\). Hence, \(e_{s1}^{i}e_{s1}^{n}\) is an idempotent of \(H_{(s, 1)}^{n}\), and hence \(e_{s1}^{i}e_{s1}^{n} = e_{s1}^{i}\). Thus, \((3.2) = e_{s1}^{i}ue_{s1}^{n}p_{s1}^{(s, n)}e_{s1}^{n}ve_{s1}^{n}\). Put \(e_{s1}^{n} = p_{s1}^{(s, n)}\).

Then, \(q_{s1}^{(s, n)} \in H_{(1, 1)}^{1}\), and \(q_{s1}^{(s, n)} = e_{s1}^{i}\) for all \(\alpha, \beta \in A\). Further, \((3.2) = e_{s1}^{i}ue_{s1}^{n}p_{s1}^{(s, n)}ve_{s1}^{n}\).

It is easy to see that \(uq_{s1}^{(s, n)}v \in C_{(1, 1)}\) and the product of \(u, q_{s1}^{(s, n)}\) and \(v\) can be obtained in the semigroup \(C_{(1, 1)}\). Hence, if we rewrite \(x, y\) in the form \(x = [u]_{s1}, \ y = [v]_{s1}\), then

\[
xy = [u]_{s1}[v]_{s1} = [uq_{s1}^{(s, n)}v]_{s1}^{n},
\]

and \(M = \{[u]_{s1} : ((i, j), \delta) \in (L \times R) \times A, u \in H_{(1, 1)}^{n}\}\).

Since \([u]_{s1}[v]_{s1}\)[\(r\)\]_{mn} = \([u]_{s1}[v]_{s1}\)[\(r\)\]_{mn}, \(uq_{s1}^{(s, n)}vq_{s1}^{(s, n)}\) is an element of \(H_{(1, 1)}^{n}\). For \(\alpha, \eta, j, s\) such that \(((1, j), \delta), ((s, 1), \eta) (L \times R) \times A\), let \(q_{s1}^{(s, n)}\) be an element of \(H_{(1, 1)}^{n}\). Put \(Q = \{q_{s1}^{(s, n)} : ((1, j), \delta), ((s, 1), \eta) (L \times R) \times A\}\) and assume that \(Q\) satisfies (3.3) for \(((1, j), \delta), ((s, 1), \eta), ((1, k), \eta) (L \times R) \times A\) and the following (3.4):

\[
(3.4) \quad q_{s1}^{(s, n)} = e_{s1}^{i} \quad \text{for all } \alpha, \beta \in A, \text{where } e_{s1}^{i} \text{ is the identity of } H_{(1, 1)}^{n}.
\]

In this case, if multiplication is defined in \(M\) by

\[
[u]_{s1}[v]_{s1}^{n} = [uq_{s1}^{(s, n)}v]_{s1}^{n},
\]
then M becomes a split CS-matrix. The set Q above is called the sandwich matrix of M over the Clifford semigroup $C(A)$, and the split CS-matrix M above is denoted by $\mathcal{A}((L \times R) \rtimes A; C(A); Q)$.

Now, it follows from the results above that:

Theorem 3.2. $\mathcal{A}((L \times R) \rtimes A; C(A); Q)$ is a split CS-matrix. Conversely, every split CS-matrix can be obtained in this way.

Remark. In Theorem 3.2, consider the case where A consists of a single element α and $C(A)$ is a group $H_{(1,1)}^\alpha$. Then, $Q = \{q_{js}^{\alpha, \alpha} : (j, s) \in R \times L\}$. Denote $q_{js}^{\alpha, \alpha}$ simply by q_{js}, and $[u]_{ij}$ simply by $[u]_{ij}$. Then, $\mathcal{A}((L \times R) \rtimes \{\alpha\}; H_{(1,1)}^\alpha; Q) = \{[u]_{ij} : (i, j) \in L \times R\}$ and

$$[u]_{ij}[v]_{kl} = [uq_{jk}v]_{ls}.$$
That is, it is the regular Rees $L \times R$-matrix semigroup with sandwich matrix Q over the group $H_{(1,1)}^\alpha$. Hence, $\mathcal{A}((L \times R) \rtimes A; C(A); Q)$ in Theorem 3.2 is a generalization of the concept of a regular Rees matrix semigroup.

References