Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science **38** (2005), pp. 17–30

OSCILLATION AND NONOSCILLATION THEOREMS FOR SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH *p*-LAPLACIAN

NAOTO YAMAOKA

Communicated by Jitsuro Sugie

(Received: March 1, 2005)

ABSTRACT. In this paper, we are concerned with the oscillation problem for the nonlinear differential equation $(\phi_p(a(t)x'))' + b(t)g(x) = 0$, where $\phi_p(y)$ is the one-dimensional *p*-Laplacian operator, and g(x) satisfies xg(x) > 0 if $x \neq 0$.

1. INTRODUCTION

The purpose of this paper is to improve oscillation and nonoscillation theorems for the nonlinear differential equation

(1.1)
$$(\phi_p(a(t)x'))' + b(t)g(x) = 0,$$

where $\phi_p(y)$ is a real-valued function defined by $\phi_p(y) = |y|^{p-2}y$ with p > 1 a fixed real number, and a(t) and b(t) are positive and continuous on some half-line (α, ∞) , and g(x) is a continuous function on \mathbb{R} satisfying the signum condition

$$(1.2) xg(x) > 0 if x \neq 0.$$

We assume throughout this paper that

(1.3)
$$\int_{\alpha}^{\infty} \frac{1}{a(t)} dt < \infty.$$

A nontrivial solution x(t) of (1.1) is said to be *oscillatory* if there exists a sequence $\{t_n\}$ tending to ∞ such that $x(t_n) = 0$. Otherwise, it is said to be *nonoscillatory*.

When p = 2, equation (1.1) becomes the nonlinear self-adjoint differential equation

(1.4)
$$(a(t)x')' + b(t)g(x) = 0,$$

which has been devoted to the study of the oscillation problem by many authors (for example, see [3, 6, 7, 8, 9, 10]). Especially, using phase plain analysis of the Liénard system, Sugie et al. [8] discussed the oscillation problem for equation (1.4)

²⁰⁰⁰ Mathematics Subject Classification. 34C10, 34C15.

Key words and phrases. Oscillation, One-dimensional p-Laplacian, Riccati technique.

whether the integral of the function 1/a(t) is divergent or convergent. In case (1.3), they gave the following pair of an oscillation theorem and a nonoscillation theorem.

Theorem A ([8, Theorem 3.1]). Let (1.2) and (1.3) hold. Suppose that a(t) and b(t) satisfy

$$a(t)b(t)\left(\int_t^\infty \frac{1}{a(\tau)}d\tau\right)^2 \ge 1$$

for t sufficiently large, and that there exists a λ with $\lambda > 1/16$ such that

$$\frac{g(x)}{x} \ge \frac{1}{4} + \frac{\lambda}{(\log|x|)^2}$$

for |x| sufficiently small. Then all nontrivial solutions of (1.4) are oscillatory.

Theorem B ([8, Theorem 3.2]). Let (1.2) and (1.3) hold. Suppose that a(t) and b(t) satisfy

$$a(t)b(t)\left(\int_{t}^{\infty}\frac{1}{a(\tau)}d\tau\right)^{2} \leq 1$$

for t sufficiently large, and that g(x) satisfies

$$G(x) \stackrel{\text{def}}{=} \int_0^x g(\chi) d\chi \le \frac{1}{2} x^2 \quad \text{for } x \in \mathbb{R}$$

and

$$\frac{g(x)}{x} \le \frac{1}{4} + \frac{1}{16(\log|x|)^2}$$

for x > 0 or x < 0, |x| sufficiently small. Then all nontrivial solutions of (1.4) are nonoscillatory.

Equation (1.1) also includes a half-linear differential equation. In the study of half-linear differential equations, its associated Riccati inequality plays an important role in the oscillation of solutions (see [1, 2, 4, 5]). Using Riccati technique, we can extend Theorems A and B to Theorems 1.1 and 1.2 below, respectively.

Theorem 1.1. Let (1.2) and (1.3) hold. Suppose that a(t) and b(t) satisfy

(1.5)
$$a(t)b(t)\left(\int_{t}^{\infty}\frac{1}{a(\tau)}d\tau\right)^{p} \ge 1$$

for t sufficiently large, and that there exists a λ with

(1.6)
$$\lambda > \frac{1}{2} \left(\frac{p-1}{p}\right)^{p+1}$$

such that

(1.7)
$$\frac{g(x)}{\phi_p(x)} \ge \left(\frac{p-1}{p}\right)^p + \frac{\lambda}{(\log|x|)^2}$$

for |x| sufficiently small. Then all nontrivial solutions of (1.1) are oscillatory.

Theorem 1.2. Let (1.2) and (1.3) hold. Suppose that a(t) and b(t) satisfy

(1.8)
$$a(t)b(t)\left(\int_{t}^{\infty}\frac{1}{a(\tau)}d\tau\right)^{p} \leq 1$$

for t sufficiently large, and that g(x) satisfies

(1.9)
$$G(x) \le \frac{p-1}{p} |x|^p \quad for \ x \in \mathbb{R}$$

and there exists a λ with

(1.10)
$$0 < \lambda < \frac{1}{2} \left(\frac{p-1}{p}\right)^{p+1}$$

such that

(1.11)
$$\frac{g(x)}{\phi_p(x)} \le \left(\frac{p-1}{p}\right)^p + \frac{\lambda}{(\log|x|)^2}$$

for x > 0 or x < 0, |x| sufficiently small. Then all nontrivial solutions of (1.1) are nonoscillatory.

Remark. Since Theorem 1.1 coincides with Theorem A when p = 2, Theorem 1.1 is a complete generalization of Theorem A. Also Theorem 1.2 includes Theorem B if $\lambda \neq ((p-1)/p)^{p+1}/2$. From Theorem B, we see that all nontrivial solutions of (1.1) are nonoscillatory in the case $\lambda = ((p-1)/p)^{p+1}/2$ with p = 2. For this reason, we may conjecture that even if $\lambda = ((p-1)/p)^{p+1}/2$ with $p \neq 2$, then all nontrivial solutions of (1.1) are nonoscillatory.

2. TRANSFORMATION INTO A SPECIAL CASE

In this section, we will find the canonical form of (1.1). For this purpose, we define

$$s = s(t) = \left(\int_t^\infty \frac{1}{a(\tau)} d\tau\right)^{-1}, \qquad u(s) = x(t(s)),$$

where t(s) is the inverse function of s(t). Then we have

$$\begin{aligned} x'(t) &= \frac{ds}{dt} \dot{u}(s) = \frac{s^2}{a(t)} \dot{u}(s), \\ (\phi_p(a(t)x'(t)))' &= \frac{ds}{dt} (\phi_p(s^2 \dot{u}(s))) = \frac{s^2}{a(t)} (s^{2(p-1)} \phi_p(\dot{u}(s))) \\ &= \frac{s^{2p}}{a(t)} \left((\phi_p(\dot{u}(s))) + \frac{2(p-1)}{s} \phi_p(\dot{u}(s)) \right), \end{aligned}$$

where $\dot{} = d/ds$, and therefore, equation (1.1) becomes the equation

(2.1)
$$(\phi_p(\dot{u})) + \frac{2(p-1)}{s} \phi_p(\dot{u}) + \frac{a(t(s))b(t(s))}{s^{2p}} g(u) = 0.$$

Since a(t) is positive for $t \ge \alpha$ and satisfies (1.3), the functions s(t) and t(s) are increasing and $s(t) \to \infty$ as $t \to \infty$. Hence, all nontrivial solutions of (1.1) are

oscillatory (resp., nonoscillatory) if and only if all nontrivial solutions of (2.1) are oscillatory (resp., nonoscillatory).

Let $c(s) = a(t(s)) b(t(s))/s^{2p}$. Then conditions (1.5) and (1.8) coincide with $s^{p}c(s) \geq 1$ and $s^{p}c(s) \leq 1$, respectively. Thus, Theorems 1.1 and 1.2 are rewritten as an oscillation theorem and a nonoscillation theorem for equation

(2.2)
$$(\phi_p(x'))' + \frac{2(p-1)}{t}\phi_p(x') + c(t)g(x) = 0,$$

respectively.

Proposition 2.1. Assume (1.2) and suppose that c(t) satisfies

$$(2.3) t^p c(t) \ge 1$$

for t sufficiently large, and that there exists a λ with (1.6) satisfying (1.7) for |x| sufficiently small. Then all nontrivial solutions of (2.2) are oscillatory.

Proposition 2.2. Let (1.2) and (1.9) hold. Suppose that c(t) satisfies

$$(2.4) t^p c(t) \le 1$$

for t sufficiently large, and that there exists a λ with (1.10) satisfying (1.11) for x > 0 or x < 0, |x| sufficiently small. Then all nontrivial solutions of (2.2) are nonoscillatory.

3. Proof of Proposition 2.1

To prove Proposition 2.1, we prepare some lemmas. We first consider the following lemma concerning properties of nonoscillatory solutions of (2.2).

Lemma 3.1. Assume (1.2) and suppose that c(t) satisfies (2.3) for t sufficiently large, and that equation (2.2) has a nonoscillatory solution. Then the solution tends to zero as $t \to \infty$. Furthermore, if the solution is eventually positive, then its derivative is eventually negative.

Proof. Let x(t) be a nonoscillatory solution of (2.2). Then, without loss of generality, we may assume that there exists a T > 0 such that x(t) > 0 for $t \ge T$.

To begin with, we will show that there exists a $t_1 \ge T$ such that $x'(t_1) < 0$. By way of contradiction, we suppose that $x'(t) \ge 0$ for $t \ge T$. Then $x(t) \ge x(T) > 0$ for $t \ge T$. Hence, by (1.2) and (2.3), we have

$$(t^{2(p-1)}\phi_p(x'(t)))' = -t^{2(p-1)}c(t)g(x(t)) \le -t^{p-2}g(x(t)) < 0 \quad \text{for } t \ge T$$

Integrating both sides of this inequality from T to t, we get

 $t^{2(p-1)}\phi_p(x'(t)) \le T^{2(p-1)}\phi_p(x'(T))$ for $t \ge T$,

and therefore, $x'(t) \leq T^2 x'(T)/t^2$ for $t \geq T$. Integrate this inequality to obtain

$$x(t) \le T^2 x'(T) \left(\frac{1}{T} - \frac{1}{t}\right) + x(T) \le T x'(T) + x(T) \text{ for } t \ge T.$$

Define $m_1 = \min\{g(x) \mid x(T) \le x \le Tx'(T) + x(T)\}$. Then we have

 $(t^{2(p-1)}\phi_p(x'(t)))' \le -t^{p-2}g(x(t)) \le -t^{p-2}m_1 \text{ for } t \ge T.$

Integrating both sides of this inequality from T to t, we get

$$t^{2(p-1)}\phi_p(x'(t)) \le -\frac{m_1}{p-1}(t^{p-1} - T^{p-1}) + T^{2(p-1)}\phi_p(x'(T)) \quad \text{for } t \ge T$$

Hence, x'(t) is negative for t sufficiently large. This is a contradiction to the assumption that $x'(t) \ge 0$ for $t \ge T$. Thus, $x'(t_1) < 0$ for some $t_1 > T$.

Next, we will show that x'(t) < 0 for $t \ge t_1$. Suppose that there exists a $t_2 > t_1$ such that

(3.1)
$$x'(t) < 0 \text{ for } t_1 \le t < t_2 \text{ and } x'(t_2) = 0.$$

Since x(t) is a solution of (2.2), we have

$$x''(t) = -\frac{2}{t}x'(t) - \frac{c(t)g(x(t))}{(p-1)|x'(t)|^{p-2}} = -x'(t)\left(\frac{2}{t} + \frac{c(t)g(x(t))}{(p-1)\phi_p(x'(t))}\right)$$

for $t_1 \leq t < t_2$. From (3.1) we see that

$$\frac{2}{t} + \frac{c(t)g(x(t))}{(p-1)\phi_p(x'(t))} \to -\infty \quad \text{as} \ t \to t_2 - 0.$$

Hence, there exists a $\tau > 0$ such that x''(t) < 0 for $t_2 - \tau \le t < t_2$, and therefore, x'(t) is decreasing for $t_2 - \tau \le t \le t_2$. Thus, we obtain $x'(t) > x'(t_2)$ for $t_2 - \tau \le t < t_2$, which is a contradiction to (3.1). We therefore conclude that x(t) is decreasing for $t \ge t_1$.

Finally, we will show that x(t) tends to zero as $t \to \infty$. Suppose that x(t) does not tend to zero as $t \to \infty$. Since x(t) is positive and decreasing for $t \ge t_1$, there exists a $\mu > 0$ such that $x(t) \to \mu$ as $t \to \infty$. Let $m_2 = \min\{g(x) \mid \mu \le x \le x(t_1)\}$. Then we have

$$(t^{2(p-1)}\phi_p(x'(t)))' \le -t^{p-2}g(x(t)) \le -t^{p-2}m_2 \text{ for } t \ge t_1.$$

Hence, integrating both sides of this inequality from t_1 to t, we get

$$t^{2(p-1)}\phi_p(x'(t)) \le -\frac{m_2}{p-1}(t^{p-1}-t_1^{p-1})+t_1^{2(p-1)}\phi_p(x'(t_1))$$
 for $t \ge t_1$.

Let L be a positive number satisfying $L^{p-1} < m_2/(p-1)$. Then there exists a $t_3 > t_1$ such that

$$t^{2(p-1)}\phi_p(x'(t)) \le -L^{p-1}t^{p-1}$$
 for $t \ge t_3$,

and therefore, $x'(t) \leq -L/t$ for $t \geq t_3$. Thus, we see that

$$x(t) \le -L \log \frac{t}{t_3} + x(t_3) \text{ for } t \ge t_3.$$

This is a contradiction to the assumption that x(t) is positive for $t \ge T$, thereby completing the proof.

We next consider some differential inequalities of the first order. For simplicity, we denote

$$H(\xi) = (p-1)\left((-\xi)^{p/(p-1)} + \xi + \frac{(p-1)^{p-1}}{p^p}\right)$$

for $\xi < 0$ and

$$\gamma_p = \left(\frac{p-1}{p}\right)^{p-1}$$

with p > 1 a fixed real number.

Lemma 3.2. Suppose that the differential inequality

$$(3.2)\qquad \qquad \dot{\xi} + H(\xi) \le 0$$

has a negative solution on $[s_0, \infty)$ with $s_0 > 0$. Then the solution tends to $-\gamma_p$ as $s \to \infty$.

Proof. Since

$$H(-\gamma_p) = (p-1)\left\{\left(\frac{p-1}{p}\right)^p - \left(\frac{p-1}{p}\right)^{p-1} + \frac{(p-1)^{p-1}}{p^p}\right\} = 0$$

and

$$\frac{d}{d\xi}H(\xi) = -p(-\xi)^{1/(p-1)} + p - 1,$$

we see that $H(\xi) > 0$ if $\xi \neq -\gamma_p$. Let $\xi(s)$ be a negative solution of (3.2) on $[s_0, \infty)$. Then $\xi(s)$ satisfies

(3.3)
$$\dot{\xi}(s) = -H(\xi(s)) \le 0 \quad \text{for } s \ge s_0.$$

Let u(s) be the positive function defined by

$$u(s) = \exp\left(-\int_{s_0}^s (-\xi(\sigma))^{1/(p-1)} d\sigma\right)$$

for $s \ge s_0$. Differentiate u(s) to obtain

$$\dot{u}(s) = -u(s)(-\xi(s))^{1/(p-1)} < 0 \text{ for } s \ge s_0.$$

Hence, we get

(3.4)
$$\xi(s) = \frac{\phi_p(\dot{u}(s))}{\phi_p(u(s))} \quad \text{for } s \ge s_0.$$

Differentiating both sides, we have

$$\dot{\xi}(s) = \frac{(\phi_p(\dot{u}(s)))}{\phi_p(u(s))} - (p-1) \left| \frac{\dot{u}(s)}{u(s)} \right|^p \quad \text{for } s \ge s_0.$$

Hence, by (3.3) and (3.4), u(s) satisfies

(3.5)
$$(\phi_p(\dot{u}(s)))' + (p-1)\phi_p(\dot{u}(s)) + \left(\frac{p-1}{p}\right)^p \phi_p(u(s)) \le 0 \text{ for } s \ge s_0.$$

Put $v(s) = \dot{u}(s) + u(s)$. Then, by (3.5) we have

$$\dot{v}(s) = \ddot{u}(s) + \dot{u}(s) \le -\frac{(p-1)^{p-1}\phi_p(u(s))}{p^p|\dot{u}(s)|^{p-2}} < 0 \text{ for } s \ge s_0.$$

Suppose that there exists an $s_1 > s_0$ such that $v(s_1) < 0$. Then we get $v(s) \le v(s_1)$ for $s \ge s_1$. Since u(s) > 0 for $s \ge s_1$, we obtain

$$\dot{u}(s) = v(s) - u(s) < v(s_1) \text{ for } s \ge s_1.$$

Therefore, we have

$$u(s) = v(s_1)(s - s_1) + u(s_1) \rightarrow -\infty$$
 as $s \rightarrow \infty$.

This is a contradiction. Hence, we see that $\dot{u}(s) + u(s) = v(s) \ge 0$ for $s \ge s_0$. Thus, we get

(3.6)
$$\xi(s) = \frac{\phi_p(\dot{u}(s))}{\phi_p(u(s))} \ge -1 \quad \text{for } s \ge s_0.$$

Using (3.3) and (3.6), we can find a μ such that $-1 \leq \mu < 0$ and $\xi(s) \to \mu$ as $s \to \infty$. If $\mu \neq -\gamma_p$, there exists an $s_2 \geq s_0$ such that

$$\xi(s) \le -H(\xi(s)) \le -H((\mu - \gamma_p)/2) < 0$$

for $s \ge s_2$. Then we obtain $\xi(s) \to -\infty$ as $s \to \infty$ which is a contradiction to (3.6). The proof is complete.

Lemma 3.3. Suppose that the differential inequality

(3.7)
$$\dot{\eta} + \left(\eta + \frac{1}{2}\right)^2 + \frac{\delta}{s^2} \le 0$$

has a solution on $[s_0,\infty)$ with $s_0 > 0$ where δ is a positive parameter. Then $\delta \leq 1/4$.

Proof. Let $\eta(s)$ be a solution of (3.7) and define

(3.8)
$$h(s) = -\dot{\eta}(s) - \left(\eta(s) + \frac{1}{2}\right)^2 \text{ for } s \ge s_0.$$

Then we have

(3.9)
$$h(s) \ge \frac{\delta}{s^2} \quad \text{for } s \ge s_0.$$

Changing variable $t = e^s$ and let u(s) be the positive function defined by

$$x(t) = \exp\left(\int_{s_0}^{\log t} \eta(\sigma) d\sigma\right) \text{ for } t \ge e^{s_0}.$$

Then, by (3.8) x(t) is a nonoscillatory solution of the linear differential equation

$$x'' + \frac{2}{t}x' + \frac{1}{t^2}\left(\frac{1}{4} + h(\log t)\right)x = 0$$

It follows from (3.9) and Sturm's comparison theorem that all nontrivial solutions of

(3.10)
$$x'' + \frac{2}{t}x' + \frac{1}{t^2}\left(\frac{1}{4} + \frac{\delta}{(\log t)^2}\right)x = 0$$

are nonoscillatory. It is known that all nontrivial solutions of (3.10) are nonoscillatory if and only if $\delta \leq 1/4$ (for details, see [8]). The proof is now complete. \Box

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Let t_0 be a large number satisfying (2.3) for $t \ge t_0$ and let ε_0 be a small number satisfying (1.7) for $0 < |x| < \varepsilon_0$. Since ε_0 is sufficiently small, by (1.6) we see that

(3.11)
$$\frac{\gamma_p}{2}(1+\varepsilon_0)\left(\frac{p-1}{p}+\varepsilon_0\right)^2 < \lambda.$$

The proof is by contradiction. Suppose that equation (2.2) has a nonoscillatory solution x(t). Then, without loss of generality, we may assume that x(t) is eventually positive. By Lemma 3.1 there exists a $t_1 > t_0$ such that $0 < x(t) < \varepsilon_0$ and x'(t) < 0 for $t \ge t_1$.

Making the change of variable $t = e^s$, we can transform equation (2.2) into the equation

(3.12)
$$(\phi_p(\dot{u})) + (p-1)\phi_p(\dot{u}) + e^{ps}c(e^s)g(u) = 0$$

Let u(s) be the solution of (3.12) corresponding to x(t). Then we have $0 < u(s) < \varepsilon_0$ and $\dot{u}(s) = tx'(t) < 0$ for $s \ge \log t_1$. Define

$$\xi(s) = \frac{\phi_p(\dot{u}(s))}{\phi_p(u(s))}$$

which is negative for $s \ge \log t_1$. Differentiating $\xi(s)$ and using (1.2), (1.7), (2.3) and (3.12), we have

$$\begin{aligned} \dot{\xi}(s) &= \frac{(\phi_p(\dot{u}(s)))}{\phi_p(u(s))} - (p-1) \left| \frac{\dot{u}(s)}{u(s)} \right|^p \\ &= \frac{-(p-1)\phi_p(\dot{u}(s)) - e^{ps}c(e^s)g(u(s))}{\phi_p(u(s))} - (p-1) \left| \xi(s) \right|^{p/(p-1)} \\ &\leq -(p-1)\xi(s) - \left(\frac{p-1}{p}\right)^p - \frac{\lambda}{(\log u(s))^2} - (p-1) \left| \xi(s) \right|^{p/(p-1)} \\ &= -H(\xi(s)) - \frac{\lambda}{(\log u(s))^2} \quad \text{for } s \ge \log t_1. \end{aligned}$$

Hence, by Lemma 3.2 we see that

(3.14)
$$\xi(s) \searrow -\gamma_p \quad \text{as} \ s \to \infty,$$

and therefore, we have

(3.13)

$$\frac{\dot{u}(s)}{u(s)} \ge -\frac{p-1}{p} \quad \text{for } s \ge \log t_1.$$

Integrating both sides of this inequality from $\log t_1$ to s, we obtain

$$u(s) \ge u(\log t_1) \exp\left\{-\frac{p-1}{p}(s-\log t_1)\right\} \quad \text{for } s \ge \log t_1.$$

Hence, there exists an $s_1 > \log t_1$ such that

$$u(s) \ge \exp\left\{-\left(\frac{p-1}{p}+\varepsilon_0\right)s\right\} \text{ for } s\ge s_1.$$

Thus, together with (3.13), we get

(3.15)
$$\dot{\xi}(s) \le -H(\xi(s)) - \frac{\lambda}{((p-1)/p + \varepsilon_0)^2 s^2} \quad \text{for } s \ge s_1.$$

From Taylor's expansion theorem, there exists a $0 < K(\xi) < (p-1)/p$ such that

(3.16)
$$H(\xi) = \frac{1}{2\gamma_p} (\xi + \gamma_p)^2 + \frac{p(p-2)}{6(p-1)^2} K(\xi)^{3-2p} (\xi + \gamma_p)^3 \quad \text{for} \quad -\gamma_p \le \xi < 0.$$

Therefore, we can find an $\varepsilon_1 > 0$ such that

(3.17)
$$H(\xi) \ge \frac{1}{2\gamma_p(1+\varepsilon_0)}(\xi+\gamma_p)^2 \quad \text{for} \quad -\gamma_p \le \xi \le -\gamma_p + \varepsilon_1.$$

By (3.14) there exists an $s_2 \ge s_1$ such that $-\gamma_p \le \xi(s) \le -\gamma_p + \varepsilon_1$ for $s \ge s_1$. Let

$$\eta(s) = \frac{\xi(s) - \varepsilon_0 \gamma_p}{2\gamma_p (1 + \varepsilon_0)}.$$

Then, from (3.17) we have

$$H(\xi(s)) \ge \frac{1}{2\gamma_p(1+\varepsilon_0)} (\xi(s)+\gamma_p)^2 = \frac{1}{2\gamma_p(1+\varepsilon_0)} \{2\gamma_p(1+\varepsilon_0)\eta(s)+\gamma_p(1+\varepsilon_0)\}^2$$
$$= 2\gamma_p(1+\varepsilon_0) \left(\eta(s)+\frac{1}{2}\right)^2 \quad \text{for } s \ge s_2.$$

Hence, by (3.15) we obtain

$$\dot{\eta}(s) = \frac{\dot{\xi}(s)}{2\gamma_p(1+\varepsilon_0)} \le \frac{1}{2\gamma_p(1+\varepsilon_0)} \left\{ -H(\xi(s)) - \frac{\lambda}{((p-1)/p+\varepsilon_0)^2 s^2} \right\}$$
$$\le -\left(\eta(s) + \frac{1}{2}\right)^2 - \frac{\lambda}{2\gamma_p(1+\varepsilon_0)((p-1)/p+\varepsilon_0)^2 s^2} \quad \text{for } s \ge s_2.$$

Thus, from Lemma 3.3 we have

$$\frac{\lambda}{2\gamma_p(1+\varepsilon_0)((p-1)/p+\varepsilon_0)^2} \le \frac{1}{4},$$

which is a contradiction to (3.11). This completes the proof of Proposition 2.1. \Box

4. Proof of Proposition 2.2

Before proving Proposition 2.2, we will show that oscillatory solutions of (2.2) tend to zero.

Lemma 4.1. Let (1.2) and (1.9) hold. Suppose that c(t) satisfies (2.4) for t sufficiently large, and that equation (2.2) has a nontrivial oscillatory solution. Then the solution tends to zero as $t \to \infty$.

Proof. Let x(t) be a nontrivial oscillatory solution of (2.2). Changing variable $t = e^s$, we can transform equation (2.2) into the system

(4.1)
$$\begin{aligned} \dot{u} &= \phi_q(v), \\ \dot{v} &= -(p-1)v - e^{ps}c(e^s)g(u), \end{aligned}$$

where q = p/(p-1). Let (u(s), v(s)) be the solution of (4.1) corresponding to x(t). Then there exists a sequence $\{s_n\}$ such that $u(s_n) = 0$. Consider the function

$$U(u,v) = \begin{cases} \frac{1}{q} |v|^{q} + G(u) & \text{if } uv \le 0, \\ G(u + \phi_{q}(v)) & \text{if } uv > 0. \end{cases}$$

Using (1.2) and (2.4), we have

$$\begin{split} \dot{U}_{(4.1)}(u,v) &= -\phi_q(v)((p-1)v + e^{ps}c(e^s)g(u)) + g(u)\phi_q(v) \\ &= -(p-1)|v|^q + (1-e^{ps}c(e^s))g(u)\phi_q(v) \\ &\leq -(p-1)|v|^q \leq 0 \quad \text{for } vu \leq 0, \\ \dot{U}_{(4.1)}(u,v) &= g(u+\phi_q(v))\{\phi_q(v) - (q-1)|v|^{q-2}((p-1)v - e^{ps}c(e^s)g(u))\} \\ &= g(u+\phi_q(v))\{(1-(p-1)(q-1))\phi_q(v) - (q-1)e^{ps}c(e^s)|v|^{q-2}g(u)\} \\ &= -(q-1)e^{ps}c(e^s)|v|^{q-2}g(u)g(u+\phi_q(v)) < 0 \quad \text{for } vu > 0. \end{split}$$

Hence, by (1.9) we obtain

$$\lim_{s \to s_n + 0} U(u(s), v(s)) = G(\phi_q(v(s_n)))$$

$$\leq \frac{p - 1}{p} |v(s_n)|^{p(q - 1)} = \frac{1}{q} |v(s_n)|^q = \lim_{s \to s_n - 0} U(u(s), v(s)).$$

Put

$$V(s) = \begin{cases} U(u(s), v(s)) & \text{if } s \neq s_n, \\ \lim_{s \to s_n = 0} U(u(s), v(s)) & \text{if } s = s_n, \end{cases}$$

Then we conclude that the function V(s) is piecewise continuous and decreasing for $s \ge s_1$. Hence, v(s) is bounded, namely, there exists a B > 0 such that |v(s)| < B for $s \ge s_1$.

To complete the proof, it suffices to show that V(s) tends to zero as $s \to \infty$. Suppose that there exists a $V_0 > 0$ such that

$$V(s) \searrow V_0$$
 as $s \to \infty$.

Let $S_{V_0} = \{(u, v) \mid U(u, v) < V_0\}$. Then the solution (u(s), v(s)) does not enter S_{V_0} for $s \ge s_1$. The region S_{V_0} consists of two bounded and disjointed parts and encircles the origin.

We can find an ε_0 so small that

$$\{(u,v) \mid |u| < \varepsilon_0 \text{ and } |v| < \varepsilon_0\} \subset S_{V_0}$$

Since the positive orbit of (4.1) corresponding to (u(s), v(s)) rotates around the region S_{V_0} in a clockwise direction, there exists a sequence $\{\sigma_n\}$ such that $\sigma_n < s_n$, $|u(\sigma_n)| = \varepsilon_0$ and $|v(s)| > \varepsilon_0$ for $\sigma_n < s < s_n$. Hence, we have

$$\varepsilon_0 = |u(s_n) - u(\sigma_n)| = \left| \int_{\sigma_n}^{s_n} \dot{u}(s) ds \right| = \left| \int_{\sigma_n}^{s_n} \phi_q(v(s)) ds \right| \le \phi_q(B)(s_n - \sigma_n),$$

and therefore,

$$V_0 - V(s_1) \leq \lim_{s \to \infty} (U(u(s), v(s)) - U(u(\tau_1), v(\tau_1))) = \int_{s_1}^{\infty} \frac{d}{ds} U(u(s), v(s)) ds$$
$$\leq -(p-1) \sum_{n=1}^{\infty} \int_{\sigma_n}^{s_n} |v(s)|^q ds \leq -(p-1) \varepsilon_0^q \sum_{n=1}^{\infty} (s_n - \sigma_n) ds$$
$$< -(p-1) \varepsilon_0^q \sum_{n=1}^{\infty} \frac{\varepsilon_0}{\phi_q(B)} = -\infty,$$

which is a contradiction. The lemma is proved.

We are now able to prove Proposition 2.2

Proof of Proposition 2.2. We prove only the case that condition (1.11) is satisfied for x > 0 sufficiently small, because the other case is carried out in the same manner.

By (1.10) and (3.16), there exist an $\varepsilon_0 > 0$ and an $\varepsilon_1 > 0$ such that

(4.2)
$$H(\xi) \le \frac{1+\varepsilon_0}{2\gamma_p} (\xi+\gamma_p)^2 \quad \text{for} \quad -\gamma_p \le \xi \le -\left(\frac{p-1}{p}-\varepsilon_1\right)^{p-1}$$

and

$$(1+\varepsilon_0)\lambda < \frac{1}{2}\gamma_p \left(\frac{p-1}{p}-\varepsilon_1\right)^2.$$

Note that ε_1 depends on ε_0 . Let

(4.3)
$$\delta = \frac{(1+\varepsilon_0)\lambda}{2\gamma_p \left((p-1)/p - \varepsilon_1\right)^2}$$

Then $0 < \delta < 1/4$. Define $\eta(s) = -1/2 + z/s$, where $z = (1 + \sqrt{1 - 4\delta})/2 > 0$. Then we see that $\eta(s)$ satisfies equation

(4.4)
$$\dot{\eta} = -\left(\eta + \frac{1}{2}\right)^2 - \frac{\delta}{s^2}.$$

We also see that there exists a $\tau>0$ such that

(4.5)
$$\eta(\tau) = -\frac{1}{2} + \frac{(1+\varepsilon_0)}{2\gamma_p} \left(-\left(\frac{p-1}{p} - \varepsilon_1\right)^{p-1} + \gamma_p \right)$$

and

(4.6)
$$\eta(s) > -\frac{1}{2} \quad \text{for } s \ge \tau.$$

Let ε_2 be a positive number satisfying

(4.7)
$$\log \varepsilon_2 < -\left(\frac{p-1}{p} - \varepsilon_1\right)\tau$$

and (1.11) for $0 < x < \varepsilon_2$.

The proof is by contradiction. Suppose that (2.2) has an oscillatory solution x(t). Then, from Lemma 4.1 we see that x(t) tends to zero as $t \to \infty$. Let u(s)

be the solution of (3.12) corresponding to x(t). Since u(s) is also oscillatory and tends to zero as $s \to \infty$, there exist an s_1 and an s_2 such that

(4.8)
$$u(s_1) = u(s_2) = 0, \quad \dot{u}(s_1) > 0, \quad \dot{u}(s_2) < 0$$

and

$$(4.9) 0 < u(s) < \varepsilon_2 \text{for } s_1 < s < s_2.$$

Note that we may assume that

(4.10)
$$e^{ps}c(e^s) \le 1 \text{ for } s_1 < s < s_2$$

by (2.4). Let

$$\xi(s) = \frac{\phi_p(\dot{u}(s))}{\phi_p(u(s))}$$
 for $s_1 < s < s_2$.

Then, by (4.8) we have

$$\lim_{s \to s_1 + 0} \xi(s) = \infty \quad \text{and} \quad \lim_{s \to s_2 - 0} \xi(s) = -\infty.$$

Since $\xi(s)$ is continuous on the bounded open interval (s_1, s_2) , there exist an s_* and an s^* such that $s_1 < s_* < s^* < s_2$,

(4.11)
$$\xi(s_*) = -\left(\frac{p-1}{p} - \varepsilon_1\right)^{p-1}, \quad \xi(s^*) = -\gamma_p$$

and

(4.12)
$$-\gamma_p \le \xi(s) \le -\left(\frac{p-1}{p} - \varepsilon_1\right)^{p-1} \quad \text{for } s_* \le s \le s^*.$$

Hence, we have

$$\frac{\dot{u}(s)}{u(s)} = \xi(s)^{1/(p-1)} \le -\left(\frac{p-1}{p} - \varepsilon_1\right) \quad \text{for } s_* \le s \le s^*.$$

Integrating both sides of this inequality from s_* to $s \leq s^*$, and using (4.7) and (4.9), we obtain

$$\log u(s) \leq -\left(\frac{p-1}{p} - \varepsilon_1\right)(s - s_*) + \log u(s_*)$$
$$< -\left(\frac{p-1}{p} - \varepsilon_1\right)(s - s_*) + \log \varepsilon_2$$
$$< -\left(\frac{p-1}{p} - \varepsilon_1\right)(s - s_*) - \left(\frac{p-1}{p} - \varepsilon_1\right)\tau$$
$$= -\left(\frac{p-1}{p} - \varepsilon_1\right)(s - s_* + \tau) \quad \text{for } s_* \leq s \leq s^*$$

.

Hence, together with (1.11), (3.12), (4.2), (4.10) and (4.12), we have

$$\begin{split} \dot{\xi}(s) &= \frac{(\phi_p(\dot{u}(s)))}{\phi_p(u(s))} - (p-1) \left| \frac{\dot{u}(s)}{u(s)} \right|^p \\ &= \frac{-(p-1)\phi_p(\dot{u}(s)) - e^{ps}c(e^s)g(u(s))}{\phi_p(u(s))} - (p-1) \left| \frac{\dot{u}(s)}{u(s)} \right|^p \\ &\ge -(p-1) \left\{ |\xi(s)|^{p/(p-1)} + \xi(s) + \frac{(p-1)^{p-1}}{p^p} \right\} - \frac{\lambda}{(\log u(s))^2} \\ &= -H(\xi(s)) - \frac{\lambda}{(\log u(s))^2} \\ &> -\frac{1+\varepsilon_0}{2\gamma_p} (\xi(s) + \gamma_p)^2 - \frac{\lambda}{((p-1)/p - \varepsilon_1)^2 (s - s_* + \tau)^2} \quad \text{for } s_* \le s \le s^*. \end{split}$$

Put

(4.13)
$$\zeta(s) = -\frac{1}{2} + \frac{1 + \varepsilon_0}{2\gamma_p} (\xi(s + s_* - \tau) + \gamma_p) \quad \text{for } \tau \le s \le s^* - s_* + \tau.$$

Then, from (4.3) we have

$$\dot{\zeta}(s) = \frac{1+\varepsilon_0}{2\gamma_p} \dot{\xi}(s+s_*-\tau)$$

$$> -\left(\frac{1+\varepsilon_0}{2\gamma_p}\right)^2 (\xi(s+s_*-\tau)+\gamma_p)^2 - \frac{1+\varepsilon_0}{2\gamma_p} \frac{\lambda}{((p-1)/p-\varepsilon_1)^2 s^2}$$

$$(4.14) \qquad = -\left(\zeta(s) + \frac{1}{2}\right)^2 - \frac{\delta}{s^2} \quad \text{for } \tau \le s \le s^* - s_* + \tau.$$

By (4.5) and (4.11), we have

$$\eta(\tau) = -\frac{1}{2} + \frac{1+\varepsilon_0}{2\gamma_p}(\xi(s_*) + \gamma_p) = \zeta(\tau).$$

Comparing equation (4.4) and inequality (4.14), we see that

(4.15)
$$\eta(s) \le \zeta(s) \quad \text{for } \tau \le s \le s^* - s_* + \tau$$

However, by (4.6), (4.11) and (4.13), we have

$$\eta(s^* - s_* + \tau) > -\frac{1}{2}$$
 and $\zeta(s^* - s_* + \tau) = -\frac{1}{2}$.

This is a contradiction to (4.15) with $s = s^* - s_* + \tau$. The proof is now complete. \Box

References

- O. Došlý, Oscillation criteria for half-linear second order differential equations, Hiroshima Math. J. 28 (1998) 507–521.
- [2] Á. Elbert and A. Schneider, Perturbations of the half-linear Euler differential equation, Results Math. 37 (2000) 56–83.
- [3] E. Hille, Non-oscillation theorems, Tran. Amer. Math. Soc. 64 (1948) 234–252.
- [4] T. Kusano and Y. Naito, Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Math. Hungar. 76 (1997) 81–99.

N. YAMAOKA

- [5] H.J. Li and C.C. Yeh, Sturmian comparison theorem for half-linear second-order differential equations, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1193–1204.
- [6] J. Sugie and T. Hara, Nonlinear oscillations of second order differential equations of Euler type, Proc. Amer. Math. Soc. 124 (1996) 3173–3181.
- [7] J. Sugie and K. Kita, Oscillation criteria for second order nonlinear differential equations of Euler type, J. Math. Anal. Appl. 253 (2001) 414–439.
- [8] J. Sugie, K. Kita and N. Yamaoka, Oscillation constant of second-order non-linear self-adjoint differential equations, Ann. Mat. Pura Appl. (4) 181 (2002) 309–337.
- [9] C.A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York-London, 1968.
- [10] J.S.W. Wong, Oscillation theorems for second-order nonlinear differential equations of Euler type, Methods Appl. Anal. 3 (1996) 476–485.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, SHIMANE UNIVERSITY, MATSUE 690-8504, JAPAN

E-mail address: yamaoka@math.shimane-u.ac.jp