NOTES ON HAUSDORFF MEASURE AND CLASSICAL CAPACITY

HISAYASU KURATA
Communicated by Hiroaki Aikawa

(Received: Janruary 28, 2004)

1. Introduction

This is an exposition on the Matts Essén's part of the Lecture Notes in Mathematics [2]. We supplement missing conditions and details of proofs in some statements. Sections 2, 3, 4 and 5 in this article correspond to Sections 2, 4, 5 and 7 of that book, respectively. In Section 2 we study comparability, outer and inner relations of the Hausdorff measure and net measures. In Section 3 we discuss the maximum principle and the continuity principle for potentials of measures, and give more details than [2, Section 4]. In Section [4 we define a capacity and discuss the existence and the uniqueness of the equilibrium measure. We mention relationships among capacity, the Chebychev's constant and the generalized diameter in Section 5

2. Hausdorff measures

2.1. Definition. Let h be a measure function, i.e. an increasing function from $(0, \infty)$ to $(0, \infty)$ such that $\lim _{r \rightarrow 0} h(r)=0$. We denote $B(x, r)=\left\{y \in \mathbb{R}^{N} ; \mid x-\right.$ $y \mid<r\}$.
Definition 2.1 (Hausdorff measure). For $E \subset \mathbb{R}^{N}$ we define

$$
\Lambda_{h}^{\rho}(E):=\inf \left\{\sum_{j} h\left(r_{j}\right) ; E \subset \bigcup_{j} B\left(x_{j}, r_{j}\right), r_{j}<\rho\right\}
$$

when $0<\rho \leq \infty . \Lambda_{h}^{0}$ is defined as the limiting value as $\rho \rightarrow 0$.
It is easy to see that Λ_{h}^{ρ} decreases when ρ increases, and thus Λ_{h}^{0} is well-defined. Λ_{h}^{0} is called the Hausdorff measure.

Theorem 2.1. Λ_{h}^{ρ} is subadditive.

Proof. First we assume that $0<\rho \leq \infty$. Let $\left\{B\left(x_{j k}, r_{j k}\right)\right\}_{k}$ be a covering of a set E_{j} with $r_{j k}<\rho$. Since $\left\{B\left(x_{j k}, r_{j k}\right)\right\}_{j, k}$ is a covering of $\bigcup_{j} E_{j}$,

$$
\Lambda_{h}^{\rho}\left(\bigcup_{j} E_{j}\right) \leq \sum_{j} \sum_{k} h\left(r_{j k}\right)
$$

and thus

$$
\Lambda_{h}^{\rho}\left(\bigcup_{j} E_{j}\right) \leq \sum_{j} \Lambda_{h}^{\rho}\left(E_{j}\right)
$$

Letting $\rho \rightarrow 0$ we have the result in the case $\rho=0$.
For an integer p let G_{p} be the collection of cubes represented by a form $\left(n_{1} 2^{-p},\left(n_{1}+1\right) 2^{-p}\right] \times \cdots \times\left(n_{N} 2^{-p},\left(n_{N}+1\right) 2^{-p}\right] \quad$ for some integers n_{1}, \ldots, n_{N}.
Definition 2.2 (Net measures). For $E \subset \mathbb{R}^{N}$ we define

$$
M_{h}^{\rho}(E):=\inf \left\{\sum_{j} h\left(2^{-p_{j}}\right) ; E \subset \bigcup_{j} Q_{j}, Q_{j} \in G_{p_{j}}, 2^{-p_{j}}<\rho\right\}
$$

and

$$
m_{h}^{\rho}(E):=\inf \left\{\sum_{j} h\left(2^{-p_{j}}\right) ; E \subset\left(\bigcup_{j} Q_{j}\right)^{\circ}, Q_{j} \in G_{p_{j}}, 2^{-p_{j}}<\rho\right\}
$$

If $\rho=0$, then we define as the limiting value.
We can prove similarly that M_{h}^{ρ} and m_{h}^{ρ} are subadditive.

2.2. Comparability.

Theorem 2.2. $\Lambda_{h}^{\rho}, M_{h}^{\rho}$ and m_{h}^{ρ} are comparable for each ρ and h; comparison constants depend only on the dimension N.

Proof. We shall show that

$$
\Lambda_{h}^{\rho}(E) \leq c_{1} M_{h}^{\rho}(E) \leq c_{2} m_{h}^{\rho}(E) \leq c_{3} \Lambda_{h}^{\rho}(E) \quad \text { for any set } E,
$$

where c_{1}, c_{2} and c_{3} are constants depending only on N. We may assume that $\rho>0$. The second inequality is trivial.

For the first inequality we take cubes $\left\{Q_{j}\right\}_{j}$ such that $E \subset \bigcup_{j} Q_{j}$ and $\delta_{j}<\rho$, where δ_{j} is the side length of Q_{j}. Then we can find $\left\{x_{j k}\right\}_{k=1}^{c_{1}}$ such that $Q_{j} \subset$ $\bigcup_{k=1}^{c_{1}} B\left(x_{j k}, \delta_{j}\right)$ for each j. Since $\left\{B\left(x_{j k}, \delta_{j}\right)\right\}_{j, k}$ is a covering of E,

$$
\Lambda_{h}^{\rho}(E) \leq \sum_{j} \sum_{k=1}^{c_{1}} h\left(\delta_{j}\right)=c_{1} \sum_{j} h\left(\delta_{j}\right) .
$$

Therefore

$$
\Lambda_{h}^{\rho}(E) \leq c_{1} M_{h}^{\rho}(E)
$$

Next we shall prove the third inequality. Let $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ be a covering of E such that $r_{j}<\rho$. Let p_{j} be an integer such that $2^{-p_{j}} \leq r_{j}<2^{-p_{j}+1}$. Then we
can find cubes $\left\{Q_{j k}\right\}_{k=1}^{c_{4}}$ such that $B\left(x_{j}, r_{j}\right) \subset\left(\bigcup_{k=1}^{c_{4}} Q_{j k}\right)^{\circ}$ for each j and the side length of $Q_{j k}$ is $2^{-p_{j}}$, where c_{4} is a constant depending only on N. Therefore

$$
m_{h}^{\rho}(E) \leq \sum_{j} \sum_{k=1}^{c_{4}} h\left(2^{-p_{j}}\right) \leq c_{4} \sum_{j} h\left(r_{j}\right),
$$

and thus

$$
m_{h}^{\rho}(E) \leq c_{4} \Lambda_{h}^{\rho}(E)
$$

Hence we conclude the result.
Theorem 2.3. If $0<\rho_{1}<\rho_{2}<\infty$, then $\Lambda_{h}^{\rho_{1}}$ and $\Lambda_{h}^{\rho_{2}}$ are comparable; comparison constants depend on ρ_{2} / ρ_{1} and N.
Proof. Let $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ be a covering of E such that $r_{j}<\rho_{2}$. Then we can find $\left\{x_{j k}\right\}_{k=1}^{c}$ such that $B\left(x_{j}, r_{j}\right) \subset \bigcup_{k=1}^{c} B\left(x_{j k}, \rho_{1} r_{j} / \rho_{2}\right)$, where c is a constant depends on ρ_{2} / ρ_{1} and N. Since $\rho_{1} r_{j} / \rho_{2}<\rho_{1}$,

$$
\Lambda_{h}^{\rho_{1}}(E) \leq \sum_{j} \sum_{k=1}^{c} h\left(\rho_{1} r_{j} / \rho_{2}\right) \leq c \sum_{j} h\left(r_{j}\right),
$$

and thus

$$
\Lambda_{h}^{\rho_{1}}(E) \leq c \Lambda_{h}^{\rho_{2}}(E)
$$

The opposite is clear, and the theorem is proved.
Example 2.1. If $0<\rho<\infty$, then there is a measure function h such that
(i) Λ_{h}^{ρ} and Λ_{h}^{∞} are not comparable;
(ii) Λ_{h}^{ρ} and Λ_{h}^{0} are not comparable.

Proof. (ii) Take $c>\rho$ and let $h(r)=r$ if $0 \leq r \leq c$ and $h(r)=c$ if $r \geq c$. If E is a line segment of length l, then $\Lambda_{h}^{\infty}(E) \leq c$ and $\Lambda_{h}^{\rho}(E) \geq l / 2$. Since l is arbitrarily large, the result follows.
(iii) Let $h(r)=\sqrt{r}$ and let E be a line segment whose length is l with $l<\rho$. Then $\Lambda_{h}^{0}(E)=\infty$ and $\Lambda_{h}^{\rho}(E) \leq \sqrt{l}$.
Theorem 2.4. For $0 \leq \rho_{1} \leq \rho_{2} \leq \infty, \Lambda_{h}^{\rho_{1}}(E)=0$ if and only if $\Lambda_{h}^{\rho_{2}}(E)=0$.
Proof. If $0 \leq \rho_{1} \leq \rho_{2} \leq \infty$, then $\Lambda_{h}^{\infty}(E) \leq \Lambda_{h}^{\rho_{2}}(E) \leq \Lambda_{h}^{\rho_{1}}(E) \leq \Lambda_{h}^{0}(E)$. Therefore we have only to prove that $\Lambda_{h}^{\infty}(E)=0$ implies $\Lambda_{h}^{0}(E)=0$. For given $\varepsilon>0$ there is a covering $\left\{B_{j}\right\}_{j}$ of E such that $\sum_{j} h\left(r_{j}\right)<h(\varepsilon)$. Since $r_{j}<\varepsilon$,

$$
\Lambda_{h}^{\varepsilon}(E) \leq \sum_{j} h\left(r_{j}\right)<h(\varepsilon) .
$$

Letting ε to 0 , we have $\Lambda_{h}^{0}(E)=0$.
Theorem 2.5. Let h_{1} and h_{2} be measure functions such that

$$
\lim _{r \rightarrow 0} \frac{h_{2}(r)}{h_{1}(r)}=0
$$

If $\Lambda_{h_{1}}^{0}(E)<\infty$, then $\Lambda_{h_{2}}^{0}(E)=0$.

Proof. Let $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ be a covering of E such that $r_{j}<\rho$. Then

$$
\Lambda_{h_{2}}^{\rho}(E) \leq \sum_{j} h_{2}\left(r_{j}\right) \leq \sup _{0<r<\rho} \frac{h_{2}(r)}{h_{1}(r)} \sum_{j} h_{1}\left(r_{j}\right),
$$

therefore

$$
\Lambda_{h_{2}}^{\rho}(E) \leq \sup _{0<r<\rho} \frac{h_{2}(r)}{h_{1}(r)} \Lambda_{h_{1}}^{\rho}(E)
$$

The right hand side tends to 0 as $\rho \rightarrow 0$, and thus the result follows.
Theorem 2.2 implies that M_{h}^{ρ} or m_{h}^{ρ} satisfies similar relations.
2.3. Hausdorff dimension. When $h(r)=r^{s}$ with $s>0, \Lambda_{h}^{0}$ is called the outer s-dimensional Hausdorff measure. Theorem 2.5 implies that there exists an $s_{0} \geq 0$ such that

$$
\Lambda_{r^{s}}^{0}(E)= \begin{cases}\infty & \text { if } 0<s<s_{0} \\ 0 & \text { if } s_{0}<s\end{cases}
$$

The number s_{0} is called the Hausdorff dimension of E, denoted by $\operatorname{dim}(E)$.
Example 2.2. $\operatorname{dim}(E)=1$ if E is a line segment.
Proof. Let E be a line segment with length l. Take an integer n such that $l / n<\rho$, and cover E by n balls with radii l / n. If $s>1$, then

$$
\Lambda_{r^{s}}^{\rho}(E) \leq n(l / n)^{s} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Thus $\Lambda_{r^{s}}^{0}(E)=0$.
Let $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ be a covering of E with $r_{j}<\rho$. Since the length of $B\left(x_{j}, r_{j}\right) \cap E$ is less than $2 r_{j}$, we have $\sum_{j} 2 r_{j} \geq l$, and thus $2 \Lambda_{r}^{\rho}(E) \geq l$. Therefore $2 \Lambda_{r}^{0}(E) \geq l$. Hence $\operatorname{dim}(E)=1$.

Since Λ_{h}^{0} is subadditive, the conclusion follows immediately even when E is a line with infinite length.
We can similarly prove that $\operatorname{dim}(E)=2$ when E is a square, and $\operatorname{dim}(E)=3$ when E is a cube, and so on. But when E is not such a set, it is intricate.
Example 2.3. $\operatorname{dim}(E)=\log 2 / \log 3$ if E is the $1 / 3$-Cantor set.
Proof. Let $E_{0}=[0,1], E_{1}=[0,1 / 3] \cup[2 / 3,1], \ldots$. Then $E=\bigcap_{n} E_{n}$. Since E_{n} is covered by 2^{n} balls with radii 3^{-n},

$$
\Lambda_{r^{s}}^{\rho}(E) \leq \Lambda_{r^{s}}^{\rho}\left(E_{n}\right) \leq 2^{n}\left(3^{-n}\right)^{s}=\left(2 \cdot 3^{-s}\right)^{n}
$$

If $s>\log 2 / \log 3$, then the right hand side tends to 0 as $n \rightarrow \infty$, and thus $\Lambda_{r^{s}}^{0}(E)=0$, i.e.

$$
\operatorname{dim}(E) \leq \log 2 / \log 3
$$

Next we consider the opposite inequality. Let ω be a union of finite number of open intervals contained in $[0,1]$ and let $A_{n}(\omega)$ be the number of intervals of E_{n} which intersects ω. Then, since $A_{n+1}(\omega) \leq 2 A_{n}(\omega)$, we have that $A_{n}(\omega) 2^{-n}$ is decreases, and thus

$$
\Phi(\omega):=\lim _{n \rightarrow \infty} A_{n}(\omega) 2^{-n}
$$

exists. Since $A_{n}\left(\omega_{1} \cup \omega_{2}\right) \leq A_{n}\left(\omega_{1}\right)+A_{n}\left(\omega_{2}\right)$,

$$
\Phi\left(\omega_{1} \cup \omega_{2}\right) \leq \Phi\left(\omega_{1}\right)+\Phi\left(\omega_{2}\right)
$$

If $E \subset \omega$, then $A_{n}(\omega)=2^{n}$, and thus $\Phi(\omega)=1$. Let I be an interval with length d such that $3^{-(n+1)} \leq d<3^{-n}$. Then $A_{n}(I) \leq 1$. Therefore

$$
\Phi(I) \leq A_{n}(I) 2^{-n} \leq 2^{-n} \leq(3 d)^{\alpha}
$$

where $\alpha=\log 2 / \log 3$.
Let $\left\{I_{j}\right\}_{j=1}^{m}$ be a covering of E where I_{j} is an open interval with length d_{j}. Since E is compact, we may assume that $m<\infty$. Then

$$
\sum_{j=1}^{m} d_{j}^{\alpha} \geq 3^{-\alpha} \sum_{j=1}^{m} \Phi\left(I_{j}\right) \geq 3^{-\alpha} \Phi\left(\bigcup_{j=1}^{m} I_{j}\right)=3^{-\alpha}
$$

Hence

$$
\Lambda_{r^{\alpha}}^{0}(E) \geq 3^{-\alpha} .
$$

Therefore we have the result.

2.4. Outer relations.

Theorem 2.6. If $0<\rho \leq \infty$, then $\Lambda_{h}^{\rho}(E)=\inf \left\{\Lambda_{h}^{\rho}(O) ; O\right.$ is open, $\left.E \subset O\right\}$.
Proof. Let $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ be a covering of E such that $r_{j}<\rho$. Then, since $\bigcup_{j} B\left(x_{j}, r_{j}\right)$ is an open set containing E,

$$
\inf _{O} \Lambda_{h}^{\rho}(O) \leq \Lambda_{h}^{\rho}\left(\bigcup_{j} B_{j}\right) \leq \sum_{j} h\left(r_{j}\right)
$$

therefore

$$
\inf _{O} \Lambda_{h}^{\rho}(O) \leq \Lambda_{h}^{\rho}(E)
$$

The opposite inequality is clear, and thus the theorem is proved.
Similar discussion works for m_{h}^{ρ}.
Theorem 2.7. If $0<\rho \leq \infty$ and h satisfies

$$
\liminf _{r \rightarrow 0} r^{1-N} h(r)=0
$$

then $M_{h}^{\rho}(E)=\inf \left\{M_{h}^{\rho}(O) ; O\right.$ is open, $\left.E \subset O\right\}$.
Proof. First we shall show that $\Lambda_{h}^{\rho}(A)=0$ where A is a face of a cube. From the assumption we can take $\left\{r_{j}\right\}_{j}$ such that $r_{j} \searrow 0$ and

$$
\lim _{j \rightarrow \infty} r_{j}^{1-N} h\left(r_{j}\right)=0
$$

Take a covering $\left\{B\left(x_{j k}, r_{j}\right)\right\}_{k=1}^{n_{j}}$ of A, where $n_{j} \leq c r_{j}^{1-N}$ and c is a constant depending on the side length of A. Then

$$
\Lambda_{h}^{\rho}(A) \leq \sum_{k=1}^{n_{j}} h\left(r_{j}\right) \leq c r_{j}^{1-N} h\left(r_{j}\right) \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

By Theorem [2.6 we can take an open set O containing A such that $\Lambda_{h}^{\rho}(O)$ is arbitrarily small. Therefore Theorem 2.2 implies that $M_{h}^{\rho}(O)$ is arbitrarily small.

Let $\left\{Q_{j}\right\}_{j}$ be a covering of E with $Q_{j} \in G_{p_{j}}$. For given $\varepsilon>0$, we can find a covering $\left\{Q_{j k}\right\}_{k}$ of an open set containing the faces of Q_{j} such that

$$
\sum_{k} h\left(\delta_{j k}\right)<2^{-j} \varepsilon
$$

where $\delta_{j k}$ is the side length of $Q_{j k}$. Since $\left(\left(\bigcup_{j} Q_{j}\right) \cup\left(\bigcup_{j} \bigcup_{k} Q_{j k}\right)\right)^{\circ}$ is an open set containing E,

$$
\inf _{O} M_{h}^{\rho}(O) \leq \sum_{j} h\left(\delta_{j}\right)+\sum_{j} \sum_{k} h\left(\delta_{j k}\right) \leq \sum_{j} h\left(\delta_{j}\right)+\varepsilon .
$$

Therefore

$$
\inf _{O} M_{h}^{\rho}(O) \leq M_{h}^{\rho}(E)+\varepsilon .
$$

Since ε is arbitrary, we have the result.
Example 2.4. There is a measure function h and a set E such that

$$
\Lambda_{h}^{0}(E) \neq \inf \left\{\Lambda_{h}^{0}(O) ; O \text { is open, } E \subset O\right\}
$$

Proof. Let $h(r)=r^{N-1 / 2}$ and E a set of one point. Then $\Lambda_{h}^{0}(E)=0$ and $\Lambda_{h}^{0}(O)=$ ∞ for any non-empty open set O, and thus the result follows.

Example 2.5. If h satisfies

$$
\liminf _{r \rightarrow 0} r^{1-N} h(r)>0
$$

then $M_{h}^{\rho}(E) \neq \inf \left\{M_{h}^{\rho}(O) ; O\right.$ is open, $\left.E \subset O\right\}$ for some E.
See [3] for the proof.

2.5. Inner relations.

Lemma 2.1. When $0 \leq \rho<\infty$, if $E_{n} \nearrow E$, then $\lim _{n \rightarrow \infty} M_{h}^{\rho}\left(E_{n}\right)=M_{h}^{\rho}(E)$.
Proof. First assume that $0<\rho<\infty$. If $M_{h}^{\rho}\left(E_{n}\right)=\infty$ for some n, then the lemma is trivial. Thus we may assume that $M_{h}^{\rho}\left(E_{n}\right)<\infty$ for all n.

For given $\varepsilon>0$ let $\varepsilon_{n}=2^{-n} \varepsilon$. For every n there is a covering $\left\{Q_{n j}\right\}_{j}$ of E_{n} such that $\delta_{n j}<\rho$ and

$$
\sum_{j} h\left(\delta_{n j}\right) \leq M_{h}^{\rho}\left(E_{n}\right)+\varepsilon_{n}
$$

where $\delta_{n j}$ is the side length of $Q_{n j}$. For every cube $Q_{n_{0} j}$, since $\rho<\infty$, we can find the largest cube in $\left\{Q_{n j} ; Q_{n_{0} j_{0}} \subset Q_{n j}\right\}$. We denote all such cubes by $\left\{Q_{i}\right\}_{i}$. Fix n. Let $\left\{Q_{k}^{(1)}\right\}_{k}=\left\{Q_{i}\right\}_{i} \cap\left\{Q_{1 j}\right\}_{j}$ and $C_{1}=E_{n} \cap\left(\bigcup_{k} Q_{k}^{(1)}\right)$. Also let $\left\{Q_{n k}^{(1)}\right\}_{k}=$ $\left\{Q_{n j} ; Q_{n j} \subset \bigcup_{i} Q_{i}^{(1)}\right\}$. Take $x \in C_{1}$. Since $x \in E_{n}$, there is a j with $x \in Q_{n j}$. Also there is an i with $x \in Q_{i}^{(1)}$. Since Q_{i} 's are the largest, $Q_{n j} \subset Q_{i}^{(1)}$. Therefore
$Q_{n j} \in\left\{Q_{n k}^{(1)}\right\}_{k}$, and thus $x \in \bigcup_{k} Q_{n k}^{(1)}$, i.e. $C_{1} \subset \bigcup_{k} Q_{n k}^{(1)}$. Since $\left\{Q_{1 j}\right\}_{j} \backslash\left\{Q_{i}^{(1)}\right\}_{i}$ covers $E_{1} \backslash C_{1}$,

$$
\begin{array}{r}
\sum_{k} h\left(\delta_{n k}^{(1)}\right)+\varepsilon_{1}+M_{h}^{\rho}\left(E_{1} \backslash C_{1}\right) \geq M_{h}^{\rho}\left(E_{1} \cap C_{1}\right)+\varepsilon_{1}+M_{h}^{\rho}\left(E_{1} \backslash C_{1}\right) \\
\geq M_{h}^{\rho}\left(E_{1}\right)+\varepsilon_{1} \geq \sum_{j} h\left(\delta_{1 j}\right) \geq \sum_{i} h\left(\delta_{i}^{(1)}\right)+M_{h}^{\rho}\left(E_{1} \backslash C_{1}\right) .
\end{array}
$$

Hence

$$
\sum_{k} h\left(\delta_{n k}^{(1)}\right)+\varepsilon_{1} \geq \sum_{i} h\left(\delta_{i}^{(1)}\right) .
$$

Let $\left\{Q_{k}^{(2)}\right\}_{k}=\left\{Q_{i}\right\}_{i} \cap\left(\left\{Q_{2 j}\right\}_{j} \backslash\left\{Q_{1 j}\right\}_{j}\right)$ and let $\left\{Q_{n k}^{(2)}\right\}_{k}=\left\{Q_{n j} ; Q_{n j} \subset \bigcup_{i} Q_{i}^{(2)}\right\}$. Then

$$
\sum_{k} h\left(\delta_{n k}^{(2)}\right)+\varepsilon_{2} \geq \sum_{i} h\left(\delta_{i}^{(2)}\right)
$$

Repeat this argument. We have

$$
\begin{aligned}
\sum_{m=1}^{n} \sum_{i} h\left(\delta_{i}^{(m)}\right) & \leq \sum_{m=1}^{n} \sum_{k} h\left(\delta_{n k}^{(m)}\right)+\sum_{m=1}^{n} \varepsilon_{m} \leq \sum_{j} h\left(\delta_{n j}\right)+\sum_{m=1}^{n} \varepsilon_{m} \\
& \leq M_{h}^{\rho}\left(E_{n}\right)+\varepsilon_{n}+\sum_{m=1}^{n} \varepsilon_{m} .
\end{aligned}
$$

Therefore

$$
M_{h}^{\rho}(E) \leq \sum_{i} h\left(\delta_{i}\right) \leq \lim _{n \rightarrow \infty} M_{h}^{\rho}\left(E_{n}\right)+\varepsilon .
$$

Since ε is arbitrary,

$$
M_{h}^{\rho}(E) \leq \lim _{n \rightarrow \infty} M_{h}^{\rho}\left(E_{n}\right) .
$$

The opposite inequality is trivial, thus the lemma is proved in this case.
Next we consider the case $\rho=0$. For $\varepsilon>0$ there is a $\rho>0$ such that

$$
M_{h}^{0}(E) \leq M_{h}^{\rho}(E)+\varepsilon
$$

Therefore

$$
M_{h}^{0}(E) \leq \lim _{n \rightarrow \infty} M_{h}^{\rho}\left(E_{n}\right)+\varepsilon \leq \lim _{n \rightarrow \infty} M_{h}^{0}\left(E_{n}\right)+\varepsilon .
$$

Since ε is arbitrary, we have the lemma.
If $\rho=\infty$, then the same relation holds for a bounded set E. Also we can prove a similar relation for m_{h}^{ρ}.

Question 2.1. Does Λ_{h}^{ρ} satisfy a similar relation?

2.6. The Frostman lemma.

Theorem 2.8 (Frostman). (i) Let μ be a non-negative and subadditive set function such that $\mu(B(x, r)) \leq h(r)$ for any x, then $\mu(E) \leq \Lambda_{h}^{\infty}(E)$.
(ii) There is a constant c such that, for any compact set F, there exists a measure μ such that $\operatorname{supp} \mu \subset F, \mu(F) \geq c M_{h}^{\infty}(F)$, and $\mu(B(x, r)) \leq h(r)$ for any x.

Proof. (il) Take a covering $\left\{B\left(x_{j}, r_{j}\right)\right\}_{j}$ of E. Then

$$
\mu(E) \leq \sum_{j} \mu\left(B\left(x_{j}, r_{j}\right)\right) \leq \sum_{j} h\left(r_{j}\right),
$$

and thus we conclude the result.
(iii) Take an integer p sufficiently large such that $F \subset\left(-2^{p-1}, 2^{p-1}\right) \times \cdots \times$ $\left(-2^{p-1}, 2^{p-1}\right)$. For a fixed integer n we define measures $\left\{\mu_{j}^{n}\right\}_{j=-p}^{n}$ as follows. Take $Q_{n} \in G_{n}$. If $Q_{n} \cap F=\emptyset$ then $\mu_{j}^{n}\left(Q_{n}\right)=0$ for $j=n, n-1, \ldots,-p$. If $Q_{n} \cap F \neq \emptyset$, then take a sequence $\left\{Q_{j}\right\}_{j=-p}^{n}$ such that $Q_{j} \in G_{j}$ and $Q_{n} \subset Q_{n-1} \subset \cdots \subset Q_{-p}$, and let

$$
\begin{gathered}
\mu_{n}^{n}\left(Q_{n}\right)=h\left(2^{-n}\right), \\
\mu_{j}^{n}\left(Q_{n}\right)=\min \left(1, \frac{h\left(2^{-j}\right)}{\mu_{j+1}^{n}\left(Q_{j}\right)}\right) \mu_{j+1}^{n}\left(Q_{n}\right) \quad \text { for } j=n-1, n-2, \ldots,-p
\end{gathered}
$$

where μ_{j}^{n} distributes uniformly in each Q_{n}.
Now we assume that $Q_{n} \cap F \neq \emptyset$. First we have $\mu_{n}^{n}\left(Q_{n}\right)=h\left(2^{-n}\right)$. Next, if $\mu_{n}^{n}\left(Q_{n-1}\right) \leq h\left(2^{-n+1}\right)$ then

$$
\mu_{n-1}^{n}\left(Q_{n}\right)=\mu_{n}^{n}\left(Q_{n}\right)=h\left(2^{-n}\right) .
$$

If $\mu_{n}^{n}\left(Q_{n-1}\right) \geq h\left(2^{-n+1}\right)$, then every cube $Q_{n}^{\prime} \in G_{n}$ included in Q_{n-1} satisfies

$$
\mu_{n-1}^{n}\left(Q_{n}^{\prime}\right)=\frac{h\left(2^{-n+1}\right)}{\mu_{n}^{n}\left(Q_{n-1}\right)} \mu_{n}^{n}\left(Q_{n}^{\prime}\right),
$$

and thus

$$
\mu_{n-1}^{n}\left(Q_{n-1}\right)=\frac{h\left(2^{-n+1}\right)}{\mu_{n}^{n}\left(Q_{n-1}\right)} \mu_{n}^{n}\left(Q_{n-1}\right)=h\left(2^{-n+1}\right) .
$$

After several steps we have similarly that there is a j with $-p \leq j \leq n$ such that

$$
\begin{equation*}
\mu_{-p}^{n}\left(Q_{j}\right)=h\left(2^{-j}\right) . \tag{2.1}
\end{equation*}
$$

For every $x \in F$, we take $Q_{n} \in G_{n}$ including x and we take the smallest j satisfying (2.1). We denote $\left\{Q^{m}\right\}_{m}$ for all such cubes, i.e. $Q^{m} \in G_{j_{m}}$ and $\mu_{-p}^{n}\left(Q^{m}\right)=h\left(2^{-j_{m}}\right)$ for some j_{m}. Then $F \subset \bigcup_{m} Q^{m}$ and $Q^{m} \cap Q^{m^{\prime}}=\emptyset$ if $m \neq m^{\prime}$. Therefore

$$
\begin{equation*}
M_{h}^{\infty}(F) \leq \sum_{m} h\left(2^{-j_{m}}\right)=\sum_{m} \mu_{-p}^{n}\left(Q^{m}\right) \leq \mu_{-p}^{n}\left(\mathbb{R}^{N}\right) \tag{2.2}
\end{equation*}
$$

Let $-p \leq j \leq n$ and $Q_{j} \in G_{j}$. Then

$$
\mu_{-p}^{n}\left(Q_{j}\right) \leq \mu_{-p+1}^{n}\left(Q_{j}\right) \leq \cdots \leq \mu_{j}^{n}\left(Q_{j}\right)
$$

and

$$
\mu_{j}^{n}\left(Q_{j}\right) \leq \frac{h\left(2^{-j}\right)}{\mu_{j+1}^{n}\left(Q_{j}\right)} \mu_{j+1}^{n}\left(Q_{j}\right)=h\left(2^{-j}\right) .
$$

Therefore

$$
\begin{equation*}
\mu_{-p}^{n}\left(Q_{j}\right) \leq h\left(2^{-j}\right) . \tag{2.3}
\end{equation*}
$$

Since supp $\mu_{-p}^{n} \subset\left(-2^{p}, 2^{p}\right) \times \cdots \times\left(-2^{p}, 2^{p}\right)$ and the right hand side is included in 2^{N} cubes of G_{-p}, (2.3) gives

$$
\begin{equation*}
\mu_{-p}^{n}\left(\mathbb{R}^{N}\right) \leq 2^{N} h\left(2^{p}\right) . \tag{2.4}
\end{equation*}
$$

Therefore by taking a subsequence we may assume that $\left\{\mu_{-p}^{n}\right\}_{n}$ converges weakly to a measure μ.

Let E be a compact set with $E \cap F=\emptyset$. Since $\operatorname{supp} \mu_{-p}^{n}$ is disjoint from E for sufficiently large n, $\operatorname{supp} \mu$ is also disjoint from E, i.e. $\operatorname{supp} \mu \subset F$.

Also from (2.2)

$$
\mu(F)=\lim _{n \rightarrow \infty} \mu_{-p}^{n}\left(\mathbb{R}^{N}\right) \geq M_{h}^{\infty}(F)
$$

Finally, let $B=B(a, r)$. If $r \geq 2^{p}$, then we have by (2.4)

$$
\mu(B) \leq \mu\left(\mathbb{R}^{N}\right)=\lim _{n \rightarrow \infty} \mu_{-p}^{n}\left(\mathbb{R}^{N}\right) \leq 2^{N} h\left(2^{p}\right) \leq 2^{N} h(r)
$$

If $r<2^{p}$, then we take ρ and j such that $2^{-j} \leq r<\rho<2^{-j+1}$, and we let φ be a continuous function such that $0 \leq \varphi \leq 1$ and

$$
\varphi(x)= \begin{cases}1 & \text { if }|x-a|<r \\ 0 & \text { if }|x-a|>\rho\end{cases}
$$

Since $B(a, \rho)$ is covered by at most c cubes of G_{j} where c is a constant depending only on N, (2.3) gives
$\mu(B)=\int_{B} \varphi d \mu \leq \int \varphi d \mu=\lim _{n \rightarrow \infty} \int \varphi d \mu_{-p}^{n} \leq \lim _{n \rightarrow \infty} \mu_{-p}^{n}(B(a, \rho)) \leq \operatorname{ch}\left(2^{-j}\right) \leq \operatorname{ch}(r)$.
The measure $c^{-1} \mu$ satisfies the theorem.

3. Potential theory

Let $K(r)$ be a non-negative, decreasing and lower semi-continuous function such that $\lim _{r \rightarrow 0} K(r)=\infty, \lim _{r \rightarrow \infty} K(r)=0$ and

$$
\int_{0}^{a} K(r) r^{N-1} d r<\infty \quad \text { for sufficiently small } a>0 .
$$

For simplicity we denote $K(x)=K(|x|)$ for $x \in \mathbb{R}^{N}$. Thus the assumption above can be represented by

$$
\int_{|x|<a} K(x) d x<\infty .
$$

We denote all of Radon measures by \mathfrak{M}, and all of non-negative Radon measures by \mathfrak{M}^{+}.

Definition 3.1 (Potential and energy). For $\sigma, \tau \in \mathfrak{M}$ we define the potential as

$$
K \sigma(x):=\int K(x-y) d \sigma(y)
$$

and the mutual energy as

$$
I_{K}(\sigma, \tau):=\iint K(x-y) d \sigma(y) d \tau(x)=\int K \sigma(x) d \tau(x)
$$

when they can be defined. If $\sigma=\tau$, then we denote simply

$$
I_{K}(\sigma):=I_{K}(\sigma, \sigma)
$$

and we call it the energy.
Lemma 3.1. (i) If $\mu \in \mathfrak{M}^{+}$has finite mass, then $K \mu$ is lower semi-continuous.
(ii) If $\left\{\mu_{n}\right\}_{n} \subset \mathfrak{M}^{+}$converges weakly to $\mu \in \mathfrak{M}^{+}$, then

$$
\liminf _{n \rightarrow \infty} K \mu_{n}(x) \geq K \mu(x)
$$

(iii) If $\left\{\mu_{n}\right\}_{n} \subset \mathfrak{M}^{+}$and $\left\{\nu_{n}\right\}_{n} \subset \mathfrak{M}^{+}$converge weakly to $\mu \in \mathfrak{M}^{+}$and $\mu \in \mathfrak{M}^{+}$ respectively, then

$$
\liminf _{n \rightarrow \infty} I_{K}\left(\mu_{n}, \nu_{n}\right) \geq I_{K}(\mu, \nu)
$$

Proof. (ii) Let $\left\{K_{p}\right\}_{p}$ be an increasing sequence of continuous functions with compact supports which converges to K. Then $\left\{K_{p} \mu\right\}_{p}$ is an increasing sequence of continuous functions and converges to $K \mu$. Therefore $K \mu$ is lower semi-continuous.
(iiii) First we shall prove that $d \mu_{n}(x) d \nu_{n}(y) \rightharpoondown d \mu(x) d \nu(y)$. Let $f(x, y)$ be a continuous function with compact support. Also let B_{1}, B_{2} and B_{3} be open balls in \mathbb{R}^{N} such that supp $f \subset B_{1} \times B_{1}$ and $\bar{B}_{1} \subset B_{2} \subset \bar{B}_{2} \subset B_{3}$. The Weierstrass approximation theorem implies that there is a sequence $\left\{P_{m}(x, y)\right\}_{m}$ of polynomials which converges uniformly to $f(x, y)$ in $\bar{B}_{2} \times \bar{B}_{2}$. We can take continuous functions $\left\{\varphi_{m j}\right\}_{m, j}$ and $\left\{\psi_{m j}\right\}_{m, j}$ such that $\varphi_{m j}=\psi_{m j}=0$ outside B_{3} and $\left\{\sum_{j} \varphi_{m j}(x) \psi_{m j}(y)\right\}_{m}$ converges uniformly to $f(x, y)$ in \mathbb{R}^{N}. Therefore, for given $\varepsilon>0$ and any $x, y \in \mathbb{R}^{N}$,

$$
\left|f(x, y)-\sum_{j} \varphi_{m j}(x) \psi_{m j}(y)\right|<\varepsilon \quad \text { for sufficiently large } m \text {. }
$$

Hence

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \iint f(x, y) d \mu_{n}(x) d \nu_{n}(y) \\
& \quad \leq \limsup _{n \rightarrow \infty}\left(\iint \sum_{j} \varphi_{m j}(x) \psi_{m j}(y) d \mu_{n}(x) d \nu_{n}(y)+\varepsilon \mu_{n}\left(\bar{B}_{2}\right) \nu_{n}\left(\bar{B}_{2}\right)\right) \\
& \quad=\limsup _{n \rightarrow \infty}\left(\sum_{j} \int \varphi_{m j}(x) d \mu_{n}(x) \int \psi_{m j}(y) d \nu_{n}(y)+\varepsilon \mu_{n}\left(\bar{B}_{2}\right) \nu_{n}\left(\bar{B}_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{j} \int \varphi_{m j}(x) d \mu(x) \int \psi_{m j}(y) d \nu(y)+\varepsilon \mu\left(B_{3}\right) \nu\left(B_{3}\right) \\
& \leq \iint f(x, y) d \mu(x) d \nu(y)+2 \varepsilon \mu\left(B_{3}\right) \nu\left(B_{3}\right) .
\end{aligned}
$$

Similarly we have the opposite inequality. Therefore

$$
d \mu_{n}(x) d \nu_{n}(y) \rightharpoondown d \mu(x) d \nu(y)
$$

Take K_{p} as in (ii). Then

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} I_{K}\left(\mu_{n}, \nu_{n}\right) & \geq \liminf _{n \rightarrow \infty} \iint K_{p}(x-y) d \mu_{n}(x) d \nu_{n}(y) \\
& =\iint K_{p}(x-y) d \mu(x) d \nu(y)
\end{aligned}
$$

Therefore the monotone convergence theorem implies the result.
(iii) Since $I_{K}\left(\mu, \delta_{x}\right)=K \mu(x)$ where δ_{x} is the Dirac measure at x, (iiii) implies (iii).

Theorem 3.1 (Weak maximum principle). There exists a constant c such that if $\mu \in \mathfrak{M}^{+}$satisfies $K \mu \leq 1$ on supp μ, then $K \mu \leq c$ everywhere.
Proof. We can find $\left\{e_{j}\right\}_{j=1}^{c} \subset \mathbb{R}^{N}$ such that $\left|e_{j}\right|=1$ and $\mathbb{R}^{N} \backslash\{x\}=\bigcup_{j=1}^{c} \Gamma_{j}$ for $x \in \mathbb{R}^{N} \backslash \operatorname{supp} \mu$, where $\Gamma_{j}=\left\{y ;\left\langle e_{j}, y-x\right\rangle>|y-x| \cos \pi / 6\right\}$ and $\langle\cdot, \cdot\rangle$ denotes the inner product. Let ξ_{j} be (one of) the closest point to x in $\Gamma_{j} \cap \operatorname{supp} \mu$. Remark that $\left|y-\xi_{j}\right| \leq|y-x|$ for any $y \in \Gamma_{j} \cap \operatorname{supp} \mu$. Therefore

$$
K \mu(x) \leq \sum_{j=1}^{c} \int_{\Gamma_{j}} K(x-y) d \mu(y) \leq \sum_{j=1}^{c} \int_{\Gamma_{j}} K\left(\xi_{j}-y\right) d \mu(y) \leq \sum_{j=1}^{c} K \mu\left(\xi_{j}\right) \leq c
$$

We denote $C_{\mathrm{W}}=C_{\mathrm{W}}(K)$ for the minimal constant satisfying Theorem 3.1.
Lemma 3.2. Let $\mu \in \mathfrak{M}^{+}$. Then the following two conditions are equivalent:
(i) $K_{n} \mu$ converges uniformly to $K \mu$ on E where $K_{n}(x):=\min (K(x), n)$;
(ii) For any $\varepsilon>0$, there is an $\eta>0$ such that

$$
\int_{|x-y|<\eta} K(x-y) d \mu(y)<\varepsilon \quad \text { for any } x \in E .
$$

Proof. First suppose that the condition (i) holds, i.e. for any $\varepsilon>0$ and any $x \in E$

$$
\int\left(K(x-y)-K_{n}(x-y)\right) d \mu(y)<\varepsilon \quad \text { for sufficiently large } n \text {. }
$$

Take η such that $K(\eta) \geq 2 n$. Since $K(r)-K_{n}(r) \geq n$ for $r<\eta$,

$$
n \mu(B(x, \eta)) \leq \int_{B(x, \eta)}\left(K(x-y)-K_{n}(x-y)\right) d \mu(y)<\varepsilon
$$

and thus

$$
\int_{B(x, \eta)} K(x-y) d \mu(y) \leq \int_{B(x, \eta)} K_{n}(x-y) d \mu(y)+\varepsilon=n \mu(B(x, \eta))+\varepsilon<2 \varepsilon
$$

this means the condition (iii) holds.
Next suppose that the condition (iii) holds. If $K(\eta) \leq n$, then, since $K(r)-$ $K_{n}(r)=0$ for $r \geq \eta$ and $K(r)-K_{n}(r) \leq K(r)$ for all r,

$$
\begin{aligned}
K \mu(x)-K_{n} \mu(x) & =\int_{|x-y|<\eta}\left(K(x-y)-K_{n}(x-y)\right) d \mu(y) \\
& \leq \int_{|x-y|<\eta} K(x-y) d \mu(y)<\varepsilon
\end{aligned}
$$

this means the condition (ii) holds.
Definition 3.2 (Uniform convergence of potentials). Let $\mu \in \mathfrak{M}^{+}$. Then $K \mu$ converges uniformly on a set E if μ satisfies (one of) the conditions of Lemma 3.2.

Lemma 3.3. Suppose that K is continuous on $(0, \infty)$. Let $\mu \in \mathfrak{M}^{+}$with finite mass such that $K \mu$ converges uniformly on $\operatorname{supp} \mu$. Then $K \mu$ is continuous everywhere.

Proof. From the assumption, for any $\varepsilon>0$, there is an η such that

$$
\int_{\overline{B(x, 2 \eta)}} K(x-y) d \mu(y)<\varepsilon \quad \text { for any } x \in \operatorname{supp} \mu
$$

Let z be any point and let $\left\{z_{n}\right\}_{n}$ be a sequence of points converging to z. Also let $\mu_{1}=\left.\mu\right|_{\overline{B(z, \eta)}}$ and $\mu_{2}=\mu-\mu_{1}$. If $x \in \operatorname{supp} \mu_{1}$, then $x \in \operatorname{supp} \mu$ and $|z-x| \leq \eta$. Therefore

$$
K \mu_{1}(x)=\int_{\overline{B(z, \eta)}} K(x-y) d \mu(y) \leq \int_{\overline{B(x, 2 \eta)}} K(x-y) d \mu(y)<\varepsilon
$$

The weak maximum principle implies that

$$
K \mu_{1} \leq C_{\mathrm{W}} \varepsilon \text { everywhere. }
$$

Next we consider

$$
K \mu_{2}\left(z_{n}\right)=\int_{|z-y| \geq \eta} K\left(z_{n}-y\right) d \mu(y) .
$$

We may assume that $\left|z_{n}-y\right| \geq \eta / 2$. Since $K\left(z_{n}-y\right)$ is bounded, the bounded convergence theorem implies

$$
\lim _{n \rightarrow \infty} K \mu_{2}\left(z_{n}\right)=\int_{|z-y| \geq \eta} K(z-y) d \mu(y) \leq K \mu(z)
$$

Hence

$$
\limsup _{n \rightarrow \infty} K \mu\left(z_{n}\right) \leq C_{\mathrm{W}} \varepsilon+K \mu(z)
$$

Using Lemma 3.1 (i), we have the result.

Theorem 3.2 (Continuity principle). Suppose that K is continuous on $(0, \infty)$. Let $\mu \in \mathfrak{M}^{+}$with compact support. If $K \mu$ is continuous on $\operatorname{supp} \mu$, then $K \mu$ is continuous everywhere.
Proof. Since $K_{n} \mu$ is continuous and converges to $K \mu$ as $n \rightarrow \infty$, Dini's theorem implies that $K_{n} \mu$ converges uniformly to $K \mu$ on supp μ, i.e. $K \mu$ converges uniformly on $\operatorname{supp} \mu$. Therefore Lemma 3.3 gives the result.
Lemma 3.4. Let $\mu \in \mathfrak{M}^{+}$with finite mass such that $K \mu<\infty \mu$-a.e. For any $\varepsilon>0$ there exists a closed set F such that $\mu\left(\mathbb{R}^{N} \backslash F\right)<\varepsilon$ and $K \mu$ converges uniformly on F. Moreover, if K is continuous on $(0, \infty)$, then $\left.K \mu\right|_{F}$ continuous everywhere.
Proof. Since $K_{n} \mu$ converges to $K \mu$, the Egorov theorem implies that there is a set E such that $\mu\left(\mathbb{R}^{N} \backslash E\right)<\varepsilon$ and $K_{n} \mu$ converges uniformly to $K \mu$ on E, i.e. for any $\delta>0$ we have

$$
\int\left(K(x-y)-K_{n}(x-y)\right) d \mu(y)<\delta \quad \text { for any } x \in E \text { and sufficiently large } n \text {. }
$$

Let F be the closure of E. It is clear that

$$
\mu\left(\mathbb{R}^{N} \backslash F\right)<\varepsilon
$$

Now let $x \in F$ and let $\left\{x_{j}\right\}_{j}$ be a sequence in E which converges to x. Since K is lower semi-continuous, Fatou's lemma implies

$$
\begin{gathered}
\int\left(K(x-y)-K_{n}(x-y)\right) d \mu(y) \leq \int \liminf _{j \rightarrow \infty}\left(K\left(x_{j}-y\right)-K_{n}\left(x_{j}-y\right)\right) d \mu(y) \\
\leq \liminf _{j \rightarrow \infty} \int\left(K\left(x_{j}-y\right)-K_{n}\left(x_{j}-y\right)\right) d \mu(y) \leq \delta
\end{gathered}
$$

Therefore $K \mu$ converges uniformly on F. Lemma 3.3 implies the remaining part.
Theorem 3.3 (Strong maximum principle). Suppose that $K(r)$ is absolutely continuous and that $K^{\prime}(r) r^{N-1}$ is increasing. Then $C_{\mathrm{W}}(K)=1$.
Proof. When $N \geq 3$ we let $H(t)=K\left(t^{1 /(2-N)}\right)$. Then

$$
H^{\prime}(t)=t^{(N-1) /(2-N)} K^{\prime}\left(t^{1 /(2-N)}\right) /(2-N),
$$

which is increasing. Therefore K can be written as

$$
K(r)=H(\Phi(r))
$$

with a convex function H where $\Phi(r)=r^{2-N}$. Similarly, when $N=2$, the above holds for $\Phi(r)=-\log r$.
Let $\mu \in \mathfrak{M}^{+}$such that $K \mu \leq 1$ on $\operatorname{supp} \mu$. First we assume that $\operatorname{supp} \mu$ is compact. From Lemma 3.4, for any $\delta>0$ there is a closed set $F \subset \operatorname{supp} \mu$ such that $\mu\left(\mathbb{R}^{N} \backslash F\right)<\delta$ and $\left.K \mu\right|_{F}$ is continuous everywhere. We let $\mu_{1}=\left.\mu\right|_{F}$.
We shall prove that $K \mu_{1}$ is subharmonic outside F. Let σ be the surface measure of $|y|=\rho$ such that $\|\sigma\|=1$. Then, by Jensen's inequality,

$$
\int_{|y|=\rho} K(x+y) d \sigma(y)=\int_{|y|=\rho} H(\Phi(x+y)) d \sigma(y) \geq H\left(\int_{|y|=\rho} \Phi(x+y) d \sigma(y)\right) .
$$

If $|x|>\rho$, then, since Φ is harmonic except the origin, we have $\int_{|y|=\rho} \Phi(x+y) d \sigma(y)=$ $\Phi(x)$. Therefore

$$
\int_{|y|=\rho} K(x+y) d \sigma(y) \geq H(\Phi(x))=K(x) .
$$

Let $x \notin F$ and $0<\rho<\operatorname{dist}(x, F)$. Then

$$
\int_{|y|=\rho} K \mu_{1}(x-y) d \sigma(y)=\iint_{|y|=\rho} K((z-x)+y) d \sigma(y) d \mu_{1}(z) .
$$

If $z \in F$, then $|z-x| \geq \operatorname{dist}(x, F)>\rho$, and thus

$$
\int_{|y|=\rho} K((z-x)+y) d \sigma(y) \geq K(z-x)
$$

Therefore

$$
\int_{|y|=\rho} K \mu_{1}(x-y) d \sigma(y) \geq \int K(z-x) d \mu_{1}(z)=K \mu_{1}(x),
$$

which means $K \mu_{1}$ is subharmonic.
If x is a boundary point of $\mathbb{R}^{N} \backslash F$, then $x \in \operatorname{supp} \mu$, and

$$
K \mu_{1}(x) \leq K \mu(x) \leq 1 .
$$

When $|x|$ tends to ∞, we have $K \mu_{1}(x) \rightarrow 0$. Hence, by the maximum principle of subharmonic functions,

$$
K \mu_{1}(x) \leq 1 \quad \text { for } x \notin F .
$$

This inequality also holds for $x \in F$, thus it holds everywhere.
Let $x \notin \operatorname{supp} \mu$ and $\rho=\operatorname{dist}(x, \operatorname{supp} \mu)$. Then, since $\mu\left(\mathbb{R}^{N} \backslash F\right)<\delta$,

$$
K \mu(x)=K \mu_{1}(x)+\int_{\mathbb{R}^{N} \backslash F} K(x-y) d \mu(y) \leq 1+\delta K(\rho) .
$$

Since δ is arbitrary, we have the theorem in this case.
Next we consider the general case. Let $\nu_{R}=\left.\mu\right|_{\overline{B(0, R)}}$. Then the previous part implies

$$
K \nu_{R} \leq 1 \quad \text { everywhere. }
$$

Therefore the monotone convergence theorem gives

$$
K \mu(x)=\lim _{R \rightarrow \infty} K \nu_{R}(x) \leq 1 \quad \text { everywhere },
$$

and thus the result follows.
Question 3.1. Find a necessary condition for K to satisfy the strong maximum principle.

4. Capacity

4.1. Definitions and some properties.

Definition 4.1 (Capacity). For a set E

$$
C_{K}(E):=\sup \left\{\mu(E) ; \mu \in \mathfrak{M}^{+}, \operatorname{supp} \mu \subset E, K \mu \leq 1 \text { everywhere }\right\} .
$$

Definition 4.2 (Quasi-everywhere). A property is said to hold quasi-everywhere, q.e. for short, if it holds except a set E such that $C_{K}(E)=0$.

Lemma 4.1. If E is an F_{σ}-set with $C_{K}(E)=0$ and $K \mu$ is bounded on E, then $\mu(E)=0$.

Proof. First we assume that E is compact. Let $M=\sup _{E} K \mu$ and $\tau=\left.\left(M C_{\mathrm{W}}\right)^{-1} \mu\right|_{E}$. Then $K \tau \leq C_{\mathrm{W}}^{-1}$ on $\operatorname{supp} \tau$, and thus $K \tau \leq 1$ everywhere. Therefore

$$
\mu(E)=M C_{\mathrm{W}} \tau(E) \leq M C_{\mathrm{W}} C_{K}(E)=0 .
$$

Now we consider the general case. Take a sequence $\left\{F_{n}\right\}_{n}$ of compact sets which converges increasingly to E. Since $C_{K}\left(F_{n}\right) \leq C_{K}(E)=0$, we have $\mu\left(F_{n}\right)=0$ from the first part, and thus we have the result.

Lemma 4.2. If $\left\{E_{n}\right\}_{n}$ is a sequence of F_{σ}-sets, then

$$
C_{K}\left(\bigcup_{n} E_{n}\right) \leq \sum_{n} C_{K}\left(E_{n}\right)
$$

Proof. Let $\mu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \mu \subset \bigcup_{n} E_{n}$ and $K \mu \leq 1$ everywhere. First we assume that all E_{n} are compact. Since supp $\left.\mu\right|_{E_{n}} \subset E_{n}$ and $\left.K \mu\right|_{E_{n}} \leq 1$ everywhere, we have $\mu\left(E_{n}\right) \leq C_{K}\left(E_{n}\right)$. Therefore

$$
\mu\left(\bigcup_{n} E_{n}\right) \leq \sum_{n} \mu\left(E_{n}\right) \leq \sum_{n} C_{K}\left(E_{n}\right)
$$

Hence the lemma follows in this case.
Next we consider the general case. Take a compact set $F_{n} \subset E_{n}$ for every n. Then

$$
\mu\left(F_{n}\right) \leq C_{K}\left(F_{n}\right) \leq C_{K}\left(E_{n}\right) .
$$

Since $\mu\left(E_{n}\right)=\sup _{F_{n}} \mu\left(F_{n}\right)$, we have $\mu\left(E_{n}\right) \leq C_{K}\left(E_{n}\right)$. Therefore the lemma follows similarly to the first part.

4.2. Equilibrium measure.

Lemma 4.3. Let F be a non-empty compact set and let

$$
\gamma=\inf \left\{I_{K}(\mu) ; \mu \in \mathfrak{M}^{+}, \operatorname{supp} \mu \subset F, \mu(F)=1\right\} .
$$

Then $C_{K}(F) \leq \gamma^{-1} \leq C_{\mathrm{W}} C_{K}(F)$ and there is a measure $\mu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \mu \subset F, \mu(F)=1, I_{K}(\mu)=\gamma, K \mu \geq \gamma$ q.e. on F and $K \mu \leq \gamma$ on $\operatorname{supp} \mu$.

Proof. First assume that $\gamma=\infty$. If $C_{K}(F)>0$, then there is a measure $\mu \in \mathfrak{M}^{+}$ such that $\operatorname{supp} \mu \subset F, \mu(F)=1$ and $K \mu$ is bounded. Then $I_{K}(\mu)<\infty$, which is a contradiction. Therefore $C_{K}(F)=0$. Hence any measure $\mu \in \mathfrak{M}^{+}$with supp $\mu \subset F$ and $\mu(F)=1$ satisfies the conditions.

Next assume that $\gamma<\infty$. Let $\left\{\mu_{n}\right\}_{n} \subset \mathfrak{M}^{+}$be a sequence such that $\operatorname{supp} \mu_{n} \subset$ $F, \mu_{n}(F)=1$ and

$$
\lim _{n \rightarrow \infty} I_{K}\left(\mu_{n}\right)=\gamma
$$

By taking a subsequence we may assume that μ_{n} converges weakly to a measure μ. Then it is easy to see that $\operatorname{supp} \mu \subset F$ and $\mu(F)=1$. Lemma 3.1 (iiii) yields

$$
\gamma \leq I_{K}(\mu) \leq \liminf _{n \rightarrow \infty} I_{K}\left(\mu_{n}\right)=\gamma,
$$

that is

$$
I_{K}(\mu)=\gamma
$$

Let $T_{m}=\left\{x \in F ; K \mu(x) \leq \gamma-m^{-1}\right\}$ and $T=\{x \in F ; K \mu(x)<\gamma\}$. Suppose that $C_{K}\left(T_{m}\right)>0$. Then we can find a measure $\tau \in \mathfrak{M}^{+}$such that $\operatorname{supp} \tau \subset$ $T_{m}, \tau\left(T_{m}\right)=1$ and $K \tau \leq c_{0}<\infty$ everywhere. Now let $\mu_{t}=(1-t) \mu+t \tau$ for $0<t<1$. Then supp $\mu_{t} \subset F$ and $\mu_{t}(F)=1$. Therefore

$$
I_{K}\left(\mu_{t}\right) \geq \gamma
$$

On the other hand, since

$$
I_{K}(\mu, \tau)=\int K \mu d \tau \leq\left(\gamma-m^{-1}\right) \tau\left(T_{m}\right)=\gamma-m^{-1}
$$

and

$$
I_{K}(\tau)=\int K \tau d \tau \leq c_{0}
$$

we have
$I_{K}\left(\mu_{t}\right) \leq(1-t)^{2} \gamma+2 t(1-t)\left(\gamma-m^{-1}\right)+t^{2} c_{0}=\gamma-2 m^{-1} t+\left(2 m^{-1}-\gamma+c_{0}\right) t^{2}<\gamma$
when t is sufficiently small, which is a contradiction. Therefore $C_{K}\left(T_{m}\right)=0$. Since $T=\bigcup_{m} T_{m}$, Lemma 4.2 gives

$$
C_{K}(T) \leq \sum_{m} C_{K}\left(T_{m}\right)=0
$$

which means that $K \mu \geq \gamma$ q.e. on F. Also, using Lemma 4.1, we have $\mu(T)=0$.
Next suppose that there is an $x \in \operatorname{supp} \mu$ with $K \mu(x)>\gamma$. Then we can take a neighborhood O of x such that $K \mu>\gamma$ on O. Since $\mu(T)=0$ and $\gamma=I_{K}(\mu)=\int_{F} K \mu d \mu$, we have $K \mu=\gamma \mu$-a.e. Hence $\mu(O)=0$, which is a contradiction. Therefore $K \mu \leq \gamma$ on supp μ.

Finally let $\nu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \nu \subset F$ and $K \nu \leq 1$ everywhere. Let $\nu_{1}=$ $\nu(F)^{-1} \nu$. Then $\operatorname{supp} \nu_{1} \subset F$ and $\nu_{1}(F)=1$. Therefore

$$
\gamma \leq I_{K}\left(\nu_{1}\right)=\nu(F)^{-2} I_{K}(\nu) .
$$

Since $I_{K}(\nu)=\int K \nu d \nu \leq \int d \nu=\nu(F)$, we have $\nu(F) \leq \gamma^{-1}$. Hence

$$
C_{K}(F) \leq \gamma^{-1}
$$

On the other hand, let $\mu_{1}=\left(C_{\mathrm{W}} \gamma\right)^{-1} \mu$. Then $K \mu_{1} \leq C_{\mathrm{W}}^{-1}$ on $\operatorname{supp} \mu_{1}$, and thus $K \mu_{1} \leq 1$ everywhere. Therefore

$$
C_{K}(F) \geq \mu_{1}(F)=\left(C_{\mathrm{W}} \gamma\right)^{-1}
$$

and we have the lemma.
Since $\gamma>0$, we have $C_{K}(E)<\infty$ for a bounded set E.
Theorem 4.1 (Equilibrium measure). Let F be a non-empty compact set. There is a measure $\mu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \mu \subset F, K \mu \leq 1$ on $\operatorname{supp} \mu, K \mu \geq 1$ q.e. on F and $C_{K}(F) \leq \mu(F)=I_{K}(\mu) \leq C_{W} C_{K}(F)$.

Proof. Let μ_{0} be a measure given by Lemma 4.3, and let $\mu=\gamma^{-1} \mu_{0}$. Then the conclusion is trivial.

Theorem 4.2. Suppose that K is continuous on $(0, \infty)$. Let F be a non-empty compact set and suppose that, for every $x \in F$, there is a bounded cone V_{x} with vertex at x such that $V_{x} \subset F$. Also suppose that K satisfies the doubling condition, i.e. there is a constant C such that $K(r) \leq C K(2 r)$. Then there is a measure $\mu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \mu \subset F, K \mu \leq 1$ on $\operatorname{supp} \mu, K \mu \geq 1$ on F and $C_{K}(F) \leq$ $\mu(F)=I_{K}(\mu) \leq C_{\mathrm{W}} C_{K}(F)$.

Proof. Let μ be an equilibrium measure for F. We have only to prove that $K \mu(x) \geq$ 1 for $x \in F$. Without loss of generality, we can assume that $0 \in F$, and we shall prove $K \mu(0) \geq 1$.

Let $c=\operatorname{Area}\left(V_{0} \cap \partial B(0, R)\right) / \operatorname{Area}(\partial B(0, R))$. Remark that c depends only on V_{0}. For $\alpha>0$

$$
\int_{t}^{\alpha} \frac{K(r) r^{N-1}}{\int_{0}^{r} K(s) s^{N-1} d s} d r=\left[\log \int_{0}^{r} K(s) s^{N-1} d s\right]_{r=t}^{\alpha}
$$

tends to 0 as $t \rightarrow \alpha$ and tends to ∞ as $t \rightarrow 0$. Therefore we can find $t_{0}(\alpha)$ such that

$$
\int_{t_{0}(\alpha)}^{\alpha} \frac{K(r) r^{N-1}}{\int_{0}^{r} K(s) s^{N-1} d s} d r=c^{-1}
$$

Let

$$
q_{\alpha}(x)= \begin{cases}\frac{K(x)}{J_{|y|<|x|} K(y) d y} & \text { if } x \in V_{0} \text { and } t_{0}(\alpha)<|x|<\alpha, \\ 0 & \text { otherwise } .\end{cases}
$$

Then

$$
\int q_{\alpha}(x) d x=c \int_{t_{0}(\alpha)}^{\alpha} \frac{K(r) r^{N-1}}{\int_{0}^{r} K(s) s^{N-1} d s} d r=1 .
$$

The weak maximum principle shows that $\int K(y) d \mu(y)=K \mu(0)$ is finite. Therefore, for $\varepsilon>0$, we can find $\rho>0$ such that

$$
\int_{|y|<\rho} K(y) d \mu(y)<\varepsilon .
$$

Now we consider the integration

$$
\int K(x-y) q_{\alpha}(x) d x .
$$

If $|x-y| \geq|y| / 2$, then $K(x-y) \leq K(y / 2)$. Therefore

$$
\int_{|x-y| \geq|y| / 2} K(x-y) q_{\alpha}(x) d x \leq K(y / 2) .
$$

If $|x-y|<|y| / 2$, then $|y| / 2 \leq|x|$. Therefore

$$
\begin{array}{r}
\int_{|x-y|<|y| / 2} K(x-y) q_{\alpha}(x) d x \leq \int_{|x-y|<|y| / 2} \frac{K(x-y) K(x)}{\int_{|z|<|x|} K(z) d z} d x \\
\leq K(y / 2) \int_{|x-y|<|y| / 2} \frac{K(x-y)}{\int_{|z|<|y| / 2} K(z) d z} d x=K(y / 2) .
\end{array}
$$

Hence, using the doubling condition, we have

$$
\int K(x-y) q_{\alpha}(x) d x \leq 2 K(y / 2) \leq 2 C K(y)
$$

Therefore

$$
\int_{|y|<\rho} \int K(x-y) q_{\alpha}(x) d x d \mu(y) \leq 2 C \int_{|y|<\rho} K(y) d \mu(y) \leq 2 C \varepsilon
$$

Since K is uniformly continuous in $\{y ;|y| \geq \rho\} \cap \operatorname{supp} \mu$, there is an α such that

$$
|K(y-x)-K(y)|<\varepsilon \quad \text { if }|x| \leq \alpha
$$

for any $y \in\{y ;|y| \geq \rho\} \cap \operatorname{supp} \mu$. Therefore

$$
\left|\int K(y-x) q_{\alpha}(x) d x-K(y)\right| \leq \int|K(y-x)-K(y)| q_{\alpha}(x) d x \leq \varepsilon
$$

for any $y \in\{y ;|y| \geq \rho\} \cap \operatorname{supp} \mu$. Hence

$$
\begin{aligned}
& \left|\int_{|y| \geq \rho} \int K(y-x) q_{\alpha}(x) d x d \mu(y)-\int_{|y| \geq \rho} K(y) d \mu(y)\right| \\
& \quad \leq \int_{|y| \geq \rho} \varepsilon d \mu(y) \leq \varepsilon \mu(F)=\varepsilon C_{\mathrm{W}} C_{K}(F) .
\end{aligned}
$$

Therefore

$$
\left|\iint K(y-x) q_{\alpha}(x) d x d \mu(y)-K \mu(0)\right| \leq\left(2 C+1+C_{\mathrm{W}} C_{K}(F)\right) \varepsilon .
$$

Hence

$$
\lim _{\alpha \rightarrow 0} \iint K(y-x) q_{\alpha}(x) d x d \mu(y)=K \mu(0)
$$

On the other hand, since $K \mu \geq 1$ q.e. on F and the potential of the Lebesgue measure is bounded, we have $K \mu \geq 1$ a.e. on F. Therefore

$$
\iint K(y-x) q_{\alpha}(x) d x d \mu(y)=\int K \mu(x) q_{\alpha}(x) d x \geq \int q_{\alpha}(x) d x=1
$$

Hence the theorem is proved.

4.3. Extremal problems.

Theorem 4.3. Let F be a compact set with $C_{K}(F)>0$. Let

$$
\begin{gathered}
A=\inf \left\{\nu\left(\mathbb{R}^{N}\right) ; \nu \in \mathfrak{M}^{+}, K \nu \geq 1 \text { q.e. on } F\right\}, \\
B=\sup \left\{\nu(F) ; \nu \in \mathfrak{M}^{+}, K \nu \leq 1 \text { q.e. on } F, K \nu \text { is bounded, } \operatorname{supp} \nu \subset F\right\} .
\end{gathered}
$$

Then

$$
\begin{aligned}
& C_{K}(F) / C_{\mathrm{W}} \leq A \leq C_{\mathrm{W}} C_{K}(F) \\
& C_{K}(F) / C_{\mathrm{W}} \leq B \leq C_{\mathrm{W}} C_{K}(F)
\end{aligned}
$$

Proof. Let μ be an equilibrium measure for F. Let $\nu_{1} \in \mathfrak{M}^{+}$such that $K \nu_{1} \geq 1$ q.e. on F. Since $K \mu$ is bounded, we have $K \nu_{1} \geq 1 \mu$-a.e. Therefore

$$
C_{K}(F) \leq \mu(F) \leq \int_{F} K \nu_{1} d \mu=\int K \mu d \nu_{1} \leq C_{\mathrm{W}} \nu_{1}\left(\mathbb{R}^{N}\right)
$$

Hence $C_{K}(F) \leq C_{\mathrm{W}} A$.
Since μ satisfies $K \mu \geq 1$ q.e. on F,

$$
A \leq \mu(F) \leq C_{\mathrm{W}} C_{K}(F) .
$$

Let $\nu_{2} \in \mathfrak{M}^{+}$such that $K \nu_{2} \leq 1$ q.e. on $F, K \nu_{2}$ is bounded and $\operatorname{supp} \nu_{2} \subset F$. Then $K \nu_{2} \leq 1 \mu$-a.e. Also since $K \mu \geq 1$ q.e. on F, we have $K \mu \geq 1 \nu_{2}$-a.e. Therefore

$$
C_{\mathrm{W}} C_{K}(F) \geq \mu(F) \geq \int_{F} K \nu_{2} d \mu=\int_{F} K \mu d \nu_{2} \geq \nu_{2}(F) .
$$

Hence $C_{\mathrm{W}} C_{K}(F) \geq B$.
Since μ / C_{W} satisfies $K\left(\mu / C_{\mathrm{W}}\right) \leq 1$ q.e. on $F, K\left(\mu / C_{\mathrm{W}}\right)$ is bounded and $\operatorname{supp}\left(\mu / C_{\mathrm{W}}\right) \subset F$,

$$
C_{K}(F) / C_{\mathrm{W}} \leq \mu(F) / C_{\mathrm{W}} \leq B
$$

Lemma 4.4. If $K \nu \leq 1$ q.e. on $\operatorname{supp} \nu$ and $K \nu$ is bounded, then $K \nu \leq 1$ on $\operatorname{supp} \nu$.
Proof. Let $E=\{x \in \operatorname{supp} \nu ; K \nu(x)>1\}$ and suppose that $x \in E$. We can find a neighborhood O of x such that $K \nu>1$ on O. Since $C_{K}(E)=0$ and $K \nu$ is bounded, Lemma 4.1 implies that $\nu(E)=0$, and thus $\nu(O)=0$, which is a contradiction.

Lemma 4.5. Suppose that $N \geq 2$. Also suppose that $K(r)$ is absolutely continuous, $K^{\prime}(r) r^{N-1}$ is increasing and that $K(r)=0$ for sufficiently large r. Then the Fourier transformation of K is strictly positive, i.e.

$$
\hat{K}(\xi):=\int K(x) e^{-i\langle\xi, x\rangle} d x>0 \quad \text { for any } \xi
$$

where $\langle\cdot, \cdot\rangle$ is the inner product.

Proof. It is easy to see that $\hat{K}(0)>0$, therefore we may assume that $\xi \neq 0$. Without loss of generality we may assume that $|\xi|=1$. Let $r=|x|$ and φ the angle between x and ξ. Then

$$
\begin{align*}
\hat{K}(\xi) & =c \int_{0}^{\infty} \int_{0}^{\pi} K(r) e^{-i r \cos \varphi} r^{N-1} \sin ^{N-2} \varphi d \varphi d r \tag{4.1}\\
& =c \int_{0}^{\infty} K(r) r^{N-1} \int_{-\pi / 2}^{\pi / 2} e^{i r \sin \theta} \cos ^{N-2} \theta d \theta d r \\
& =2 c \int_{0}^{\infty} K(r) r^{N-1} \int_{0}^{\pi / 2} \cos (r \sin \theta) \cos ^{N-2} \theta d \theta d r
\end{align*}
$$

where c is a positive constant.
Let

$$
J(r)=\int_{0}^{\pi / 2} \cos (r \sin \theta) \cos ^{N-2} \theta d \theta
$$

Then

$$
\begin{aligned}
J^{\prime}(r) & =-\int_{0}^{\pi / 2} \sin (r \sin \theta) \sin \theta \cos ^{N-2} \theta d \theta \\
J^{\prime \prime}(r) & =-\int_{0}^{\pi / 2} \cos (r \sin \theta) \sin ^{2} \theta \cos ^{N-2} \theta d \theta
\end{aligned}
$$

Therefore

$$
\begin{align*}
r J^{\prime \prime}(r) & +(N-1) J^{\prime}(r)+r J(r) \tag{4.2}\\
= & r \int_{0}^{\pi / 2} \cos (r \sin \theta) \cos ^{N} \theta d \theta-(N-1) \int_{0}^{\pi / 2} \sin (r \sin \theta) \sin \theta \cos ^{N-2} \theta d \theta \\
= & {\left[\sin (r \sin \theta) \cos ^{N-1} \theta\right]_{0}^{\pi / 2}=0 }
\end{align*}
$$

Since $|\sin \varphi| \leq|\varphi|$, we have

$$
\left|J^{\prime}(r)\right| \leq \int_{0}^{\pi / 2} r \sin ^{2} \theta \cos ^{N-2} \theta d \theta \leq \frac{1}{2} \pi r .
$$

On the other hand, since

$$
\int_{0}^{r} K(t) t^{N-1} d t \geq K(r) \int_{0}^{r} t^{N-1} d t=\frac{1}{N} K(r) r^{N}
$$

and we assume that $\int_{0}^{r} K(t) t^{N-1} d t<\infty$, we have

$$
\begin{equation*}
\lim _{r \rightarrow 0} K(r) r^{N}=0 \tag{4.3}
\end{equation*}
$$

Therefore

$$
\lim _{r \rightarrow 0}\left|K(r) r^{N-1} J^{\prime}(r)\right| \leq \frac{\pi}{2} \lim _{r \rightarrow 0} K(r) r^{N}=0 .
$$

We have by (4.1) and (4.2)

$$
\hat{K}(\xi)=2 c \int_{0}^{\infty} K(r) r^{N-1} J(r) d r
$$

$$
\begin{aligned}
& =-2 c \int_{0}^{\infty} K(r) r^{N-1}\left(J^{\prime \prime}(r)+\frac{N-1}{r} J^{\prime}(r)\right) d r \\
& =-2 c \int_{0}^{\infty}\left(K(r) r^{N-1} J^{\prime \prime}(r)+K(r)(N-1) r^{N-2} J^{\prime}(r)\right) d r \\
& =-2 c\left[K(r) r^{N-1} J^{\prime}(r)\right]_{r=0}^{\infty}+2 c \int_{0}^{\infty} K^{\prime}(r) r^{N-1} J^{\prime}(r) d r \\
& =2 c \int_{0}^{\infty} K^{\prime}(r) r^{N-1} J^{\prime}(r) d r .
\end{aligned}
$$

Now we shall show that $\liminf _{r \rightarrow 0}\left(-K^{\prime}(r) r^{N+1}\right)=0$. If not, there are $c_{0}>0$ and $r_{0}>0$ such that

$$
-K^{\prime}(r) r^{N+1} \geq c_{0} \quad \text { for } 0<r<r_{0}
$$

Therefore

$$
K(r)-K\left(r_{0}\right)=-\int_{r}^{r_{0}} K^{\prime}(t) d t \geq c_{0} \int_{r}^{r_{0}} t^{-N-1} d t=\frac{c_{0}}{N}\left(r^{-N}-r_{0}^{-N}\right)
$$

and thus

$$
r^{N}\left(K(r)-K\left(r_{0}\right)\right) \geq \frac{c_{0}}{N}\left(1-r^{N} r_{0}^{-N}\right) .
$$

The equation (4.3) shows that $0 \geq c_{0} / N$, which is a contradiction. Hence we can find a sequence $\left\{r_{j}\right\}_{j}$ such that $r_{j} \searrow 0$ and

$$
-K^{\prime}\left(r_{j}\right) r_{j}^{N+1} \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

Since

$$
J(0)-J(r)=\int_{0}^{\pi / 2}(1-\cos (r \sin \theta)) \cos ^{N-2} \theta d \theta>0 \quad \text { for } r>0
$$

we have

$$
\lim _{j \rightarrow \infty} \int_{r_{j}}^{\infty}(J(0)-J(r)) d\left(K^{\prime}(r) r^{N-1}\right)=\int_{0}^{\infty}(J(0)-J(r)) d\left(K^{\prime}(r) r^{N-1}\right) .
$$

Since $J^{\prime}(0)=0$, we have $J(r)=J(0)+O\left(r^{2}\right)$, and thus

$$
\left(J(0)-J\left(r_{j}\right)\right) K^{\prime}\left(r_{j}\right) r_{j}^{N-1}=O\left(K^{\prime}\left(r_{j}\right) r_{j}^{N+1}\right) \rightarrow 0
$$

Since $J^{\prime}(r) \leq 0$ for sufficiently small r and $K^{\prime}(r) \leq 0$,

$$
\int_{r_{j}}^{\infty} J^{\prime}(r) K^{\prime}(r) r^{N-1} d r \rightarrow \int_{0}^{\infty} J^{\prime}(r) K^{\prime}(r) r^{N-1} d r=\frac{1}{2 c} \hat{K}(\xi) \quad \text { as } j \rightarrow \infty .
$$

Therefore

$$
\begin{aligned}
0 & <\int_{0}^{\infty}(J(0)-J(r)) d\left(K^{\prime}(r) r^{N-1}\right)=\lim _{j \rightarrow \infty} \int_{r_{j}}^{\infty}(J(0)-J(r)) d\left(K^{\prime}(r) r^{N-1}\right) \\
& =\lim _{j \rightarrow \infty}\left(\left[(J(0)-J(r)) K^{\prime}(r) r^{N-1}\right]_{r_{j}}^{\infty}+\int_{r_{j}}^{\infty} J^{\prime}(r) K^{\prime}(r) r^{N-1} d r\right)=\frac{1}{2 c} \hat{K}(\xi) .
\end{aligned}
$$

Hence we have the lemma.

Lemma 4.6. Suppose that $N \geq 2$. Also suppose that $K(r)$ is absolutely continuous, $K^{\prime}(r) r^{N-1}$ is increasing and that $K(r)=0$ for sufficiently large r. Let $\sigma \in \mathfrak{M}$ with compact support such that $I_{K}(|\sigma|)<\infty$ and the total variation $\|\sigma\|$ is finite. Then $I_{K}(\sigma) \geq 0$, and the equality holds if and only if $\sigma \equiv 0$.

Proof. From the assumption $I_{K}(\sigma)=\int K \sigma d \sigma$ is finite, thus $K \sigma$ can be defined at $|\sigma|$-a.e. points. The Fourier transformation of σ is

$$
\hat{\sigma}(\xi)=\int e^{-i\langle\xi, x\rangle} d \sigma(x)
$$

Now let

$$
\Phi_{n}(x)=(n / \pi)^{N / 2} \exp \left(-n|x|^{2}\right) .
$$

It is easy to see that

$$
\hat{\Phi}_{n}(\xi)=\exp \left(-|\xi|^{2} /(4 n)\right),
$$

which is a positive and integrable function. Since $|\hat{K}(\xi)| \leq \int K(x) d x<\infty$ and $|\hat{\sigma}(\xi)| \leq \int d|\sigma|<\infty$, we have $\hat{\Phi}_{n} \hat{K} \hat{\sigma}$ is also integrable. Therefore

$$
\begin{gathered}
\int \hat{\Phi}_{n}(\xi) \hat{K}(\xi)|\hat{\sigma}(\xi)|^{2} d \xi=\int \hat{\Phi}_{n}(\xi) \hat{K}(\xi) \hat{\sigma}(\xi) \int e^{i\langle\xi, y\rangle} d \sigma(y) d \xi \\
=\iint \hat{\Phi}_{n}(\xi) \hat{K}(\xi) \hat{\sigma}(\xi) e^{i\langle\xi, y\rangle} d \xi d \sigma(y)
\end{gathered}
$$

Here

$$
\begin{aligned}
\Phi_{n} * K \sigma(y) & =(2 \pi)^{-N} \int \hat{\Phi}_{n}(\xi) \widehat{K \sigma}(\xi) e^{i\langle\xi, y\rangle} d \xi \\
& =(2 \pi)^{-N} \int \hat{\Phi}_{n}(\xi) \hat{K}(\xi) \hat{\sigma}(\xi) e^{i\langle\xi, y\rangle} d \xi \quad \text { for a.e. } y .
\end{aligned}
$$

Since the potential of the Lebesgue measure is bounded, $K \sigma$ is integrable. Thus the both sides are continuous, therefore the above holds everywhere. Hence

$$
\begin{equation*}
\int \hat{\Phi}_{n}(\xi) \hat{K}(\xi)|\hat{\sigma}(\xi)|^{2} d \xi=(2 \pi)^{N} \int \Phi_{n} * K \sigma(y) d \sigma(y) \tag{4.4}
\end{equation*}
$$

Now we assume that $K \sigma$ is continuous. Since $\operatorname{supp} \sigma$ is compact, $K \sigma$ is bounded. Therefore $\Phi_{n} * K \sigma$ converges to $K \sigma$ as $n \rightarrow \infty$. Since $\Phi_{n} * K \sigma$ and $K \sigma$ are continuous, we have that $\Phi_{n} * K \sigma$ converges locally uniformly to $K \sigma$. Also we have $\hat{\Phi}_{n} \hat{K}|\hat{\sigma}|^{2}$ converges increasingly to $\hat{K}|\hat{\sigma}|^{2}$. Therefore (4.4) becomes

$$
\begin{equation*}
\int \hat{K}(\xi)|\hat{\sigma}(\xi)|^{2} d \xi=(2 \pi)^{N} \int K \sigma(y) d \sigma(y)=(2 \pi)^{N} I_{K}(\sigma) . \tag{4.5}
\end{equation*}
$$

Next we consider the general case. By Lemma 3.4, there exists a closed set F_{m} such that $|\sigma|\left(\mathbb{R}^{N} \backslash F_{m}\right)<1 / m$ and $\left.K|\sigma|\right|_{F_{m}}$ continuous everywhere. We may assume that F_{m} increases as m increases. Let $\sigma_{m}=\left.\sigma\right|_{F_{m}}$ and divide it into two parts, $\sigma_{m}=\sigma_{m}^{+}-\sigma_{m}^{-}$. Then, since $K \sigma_{m}^{+}$and $K \sigma_{m}^{-}$continuous everywhere, thus $K \sigma_{m}=K \sigma_{m}^{+}-K \sigma_{m}^{-}$is also continuous.

Let $\tau_{m}=\sigma-\sigma_{m}$. Then

$$
\begin{aligned}
2 I_{K}\left(\sigma, \tau_{m}\right)-I_{K}\left(\tau_{m}\right) & =2 I_{K}(\sigma)-2 I_{K}\left(\sigma, \sigma_{m}\right)-\left(I_{K}(\sigma)-2 I_{K}\left(\sigma, \sigma_{m}\right)+I_{K}\left(\sigma_{m}\right)\right) \\
& =I_{K}(\sigma)-I_{K}\left(\sigma_{m}\right) .
\end{aligned}
$$

Since $\left|\tau_{m}\right| \leq|\sigma|$,

$$
\left|I_{K}(\sigma)-I_{K}\left(\sigma_{m}\right)\right| \leq 2 I_{K}\left(|\sigma|,\left|\tau_{m}\right|\right)+I_{K}\left(\left|\tau_{m}\right|\right) \leq 3 I_{K}\left(|\sigma|,\left|\tau_{m}\right|\right)
$$

Since $|\sigma|\left(\mathbb{R}^{N} \backslash F_{m}\right) \rightarrow 0$ and $\int K|\sigma| d|\sigma|<\infty$,

$$
I_{K}\left(|\sigma|,\left|\tau_{m}\right|\right)=\int_{\mathbb{R}^{N} \backslash F_{m}} K|\sigma| d|\sigma| \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

and thus

$$
\lim _{m \rightarrow \infty} I_{K}\left(\sigma_{m}\right)=I_{K}(\sigma) .
$$

Since

$$
\left|\hat{\sigma}(\xi)-\hat{\sigma}_{m}(\xi)\right| \leq \int d\left|\tau_{m}\right|<1 / m
$$

$\hat{\sigma}_{m}$ converges uniformly to $\hat{\sigma}$ as $m \rightarrow \infty$. We apply (4.5) for σ_{m} and obtain

$$
\begin{gathered}
\int \hat{K}(\xi)|\hat{\sigma}(\xi)|^{2} d \xi=\int \liminf _{m \rightarrow \infty} \hat{K}(\xi)\left|\hat{\sigma}_{m}(\xi)\right|^{2} d \xi \leq \liminf _{m \rightarrow \infty} \int \hat{K}(\xi)\left|\hat{\sigma}_{m}(\xi)\right|^{2} d \xi \\
=(2 \pi)^{N} \liminf _{m \rightarrow \infty} I_{K}\left(\sigma_{m}\right)=(2 \pi)^{N} I_{K}(\sigma)
\end{gathered}
$$

Therefore $I_{K}(\sigma) \geq 0$. If $I_{K}(\sigma)=0$ and $\hat{\sigma}(\xi) \neq 0$ for some ξ, then $\hat{\sigma} \neq 0$ in some neighborhood of ξ, and thus the above equation implies that $\hat{K}(\xi)=0$, which contradict Lemma 4.5. Therefore $\hat{\sigma} \equiv 0$, and thus $\sigma \equiv 0$.

Theorem 4.4. Suppose that $N \geq 2$. Also suppose that $K(r)$ is absolutely continuous and that $K^{\prime}(r) r^{N-1}$ is increasing. Let F be a compact set with $C_{K}(F)>0$. Then there uniquely exists the measure μ_{0} which minimizes

$$
\left\{I_{K}(\mu) ; \mu \in \mathfrak{M}^{+}, \operatorname{supp} \mu \subset F, \mu(F)=1\right\}
$$

(cf. Lemma 4.3). Also there uniquely exists the measure ν_{0} which maximizes

$$
\left\{\nu(F) ; \nu \in \mathfrak{M}^{+}, K \nu \leq 1 \text { q.e. on } F, K \nu \text { is bounded, } \operatorname{supp} \nu \subset F\right\}
$$

(cf. Theorem 4.3), and they satisfies

$$
\nu_{0}=C_{K}(F) \mu_{0} .
$$

Proof. Let $\phi(r)=-K^{\prime}(r) r^{N-1}$. Then ϕ is non-negative decreasing function which satisfies

$$
K(r)=\int_{r}^{\infty} \phi(t) t^{1-N} d t
$$

Let $r_{0}=2 \operatorname{diam} F$ and take $r_{1}>r_{0}$ such that

$$
\int_{r_{0}}^{r_{1}} \phi\left(r_{0}\right) t^{1-N} d t=\int_{r_{0}}^{\infty} \phi(t) t^{1-N} d t
$$

Let

$$
\phi_{1}(r)=\left\{\begin{array}{ll}
\phi(r) & \text { if } r<r_{0}, \\
\phi\left(r_{0}\right) & \text { if } r_{0} \leq r<r_{1}, \\
0 & \text { if } r_{1} \leq r
\end{array} \quad \text { and } \quad K_{1}(r)=\int_{r}^{\infty} \phi_{1}(t) t^{1-N} d t .\right.
$$

Then $K_{1}(r)=K(r)$ if $r<r_{0}$ and $K_{1}(r)=0$ if $r_{1}<r$. Then we see easily that $C_{K}(F)=C_{K_{1}}(F)$ and $K \mu=K_{1} \mu$ on F and $I_{K}(\mu)=I_{K_{1}}(\mu)$ for any measure μ whose support is in F. Note that $C_{\mathrm{W}}=1$ by Theorem 3.3

Let μ_{1} and μ_{2} be measures which minimize

$$
\left\{I_{K}(\mu) ; \mu \in \mathfrak{M}^{+}, \operatorname{supp} \mu \subset F, \mu(F)=1\right\} .
$$

By Lemma 4.3

$$
K_{1} \mu_{1}=C_{K_{1}}(F)^{-1} \quad \text { q.e. on } F
$$

and $K_{1} \mu_{2}$ is bounded, thus the above holds μ_{2}-a.e. Therefore

$$
I_{K_{1}}\left(\mu_{1}, \mu_{2}\right)=\int C_{K_{1}}(F)^{-1} d \mu_{2}=C_{K_{1}}(F)^{-1} .
$$

Hence

$$
I_{K_{1}}\left(\mu_{1}-\mu_{2}\right)=I_{K_{1}}\left(\mu_{1}\right)-2 I_{K_{1}}\left(\mu_{1}, \mu_{2}\right)+I_{K_{1}}\left(\mu_{2}\right)=0 .
$$

Also we have

$$
I_{K_{1}}\left(\left|\mu_{1}-\mu_{2}\right|\right) \leq I_{K_{1}}\left(\mu_{1}+\mu_{2}\right)=I_{K_{1}}\left(\mu_{1}\right)+2 I_{K_{1}}\left(\mu_{1}, \mu_{2}\right)+I_{K_{1}}\left(\mu_{2}\right)<\infty .
$$

Therefore Lemma 4.6 implies $\mu_{1}=\mu_{2}$, i.e. the minimizing measure is unique.
Let ν be a measure which maximizes

$$
\left\{\nu(F) ; \nu \in \mathfrak{M}^{+}, K \nu \leq 1 \text { q.e. on } F, K \nu \text { is bounded, } \operatorname{supp} \nu \subset F\right\} .
$$

And let

$$
\mu=C_{K_{1}}(F)^{-1} \nu .
$$

Then $\mu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \mu \subset F$ and $\mu(F)=1$. Since $K_{1} \nu \leq 1$ q.e. on F, we have $K_{1} \nu \leq 1 \nu$-a.e. Therefore

$$
I_{K_{1}}(\mu)=C_{K_{1}}(F)^{-2} I_{K_{1}}(\nu) \leq C_{K_{1}}(F)^{-1} .
$$

This means μ minimizes

$$
\left\{I_{K}(\mu) ; \mu \in \mathfrak{M}^{+}, \operatorname{supp} \mu \subset F, \mu(F)=1\right\}
$$

Hence we have the theorem.
Example 4.1. A measure which minimizes

$$
\left\{\nu\left(\mathbb{R}^{N}\right) ; \nu \in \mathfrak{M}^{+}, K \nu \geq 1 \text { q.e. on } F\right\}
$$

need not be unique (cf. Theorem 4.3).

Proof. Let $F=\left\{x \in \mathbb{R}^{2} ;|x|=1\right\}$ and $K(r)=\log ^{+}(2 / r)$. Let μ be a measure on F such that

$$
d \mu=d \theta /(2 \pi \log 2)
$$

Then

$$
K \mu(x)=(2 \pi \log 2)^{-1} \int_{0}^{2 \pi} \log ^{+}\left(2 /\left|x-e^{i \theta}\right|\right) d \theta
$$

depends only on $|x|$. Since $K \mu$ is harmonic in $|x|<1$,

$$
K \mu(0)=(2 \pi)^{-1} \int_{0}^{2 \pi} K \mu\left(r e^{i t}\right) d t=K \mu\left(r e^{i \alpha}\right) \quad \text { for any } 0<r<1 \text { and any } \alpha .
$$

Thus $K \mu$ is constant in $|x|<1$. Also we have

$$
K \mu(0)=(2 \pi \log 2)^{-1} \int_{0}^{2 \pi} \log 2 d \theta=1
$$

Therefore $K \mu=1$ on $|x|<1$. Since $K \mu$ is lower semi-continuous, we have $K \mu \leq 1$ on $|x|=1$. On the other hand, since

$$
K^{\prime}(r) r= \begin{cases}-1 & \text { if } r<2, \\ 0 & \text { if } r>2,\end{cases}
$$

K satisfies the strong maximum principle. Hence $K \mu=1$ on $|x|=1$. This means that $\mu \in \mathfrak{M}^{+}$satisfies $K \mu \geq 1$ q.e. on F. Thus Theorem 4.3 implies

$$
C_{K}(F) \leq \mu\left(\mathbb{R}^{N}\right)=(\log 2)^{-1}
$$

Also, since $\mu \in \mathfrak{M}^{+}$, $\operatorname{supp} \mu \subset E$ and $K \mu \leq 1$ on $\operatorname{supp} \mu$,

$$
C_{K}(F) \geq \mu(F)=(\log 2)^{-1} .
$$

Therefore

$$
C_{K}(F)=(\log 2)^{-1}
$$

and μ is a minimizing measure.
Next let

$$
\nu=\delta / \log 2
$$

where δ is the Dirac measure at the origin. When $|x| \leq 1$, we have

$$
K \nu(x)=K(x) / \log 2 \geq 1
$$

i.e. $\nu \in \mathfrak{M}^{+}$such that $K \nu \geq 1$ q.e. on F. Also we have

$$
\nu\left(\mathbb{R}^{N}\right)=(\log 2)^{-1}
$$

This means that ν is also a minimizing measure.

4.4. The Choquet capacity.

Definition 4.3 (Choquet capacity). A set function c is called a Choquet capacity if it satisfies the following :
(i) $0 \leq c(E) \leq \infty$ for any E.
(ii) if $E_{1} \subset E_{2}$, then $c\left(E_{1}\right) \leq c\left(E_{2}\right)$.
(iii) if $E_{n} \nearrow E$, then $c\left(E_{n}\right) \rightarrow c(E)$.
(iv) if E_{n} is compact and $E_{n} \searrow E$, then $c\left(E_{n}\right) \rightarrow c(E)$.

Definition 4.4 (Capacitable). A set E is called to be c-capacitable if

$$
c(E)=\sup \{c(F) ; F \text { is compact, } F \subset E\} .
$$

Definition $4.5\left(C_{K}^{*}\right)$. For a set E

$$
C_{K}^{*}(E):=\inf \left\{C_{K}(O) ; O \text { is open, } E \subset O\right\} .
$$

We shall show that C_{K}^{*} is a Choquet capacity under some assumptions. It is clear that C_{K}^{*} satisfies the conditions (ii) and (iii) of Definition 4.3.
Lemma 4.7. For any set E

$$
C_{K}(E)=\sup \left\{C_{K}(F) ; F \text { is compact, } F \subset E\right\}
$$

Proof. Let $\mu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \mu \subset E$ and $K \mu \leq 1$ everywhere. Also let $\nu=\left.\mu\right|_{\overline{B(0, R)}}$ and $F=\operatorname{supp} \nu$. Then F is a compact set in E and $K \nu \leq 1$ everywhere. Therefore

$$
\sup _{F} C_{K}(F) \geq C_{K}(F) \geq \nu(F)=\mu(E \cap \overline{B(0, R)})
$$

Letting $R \rightarrow \infty$, we have

$$
\sup _{F} C_{K}(F) \geq \mu(E) .
$$

Hence

$$
\sup _{F} C_{K}(F) \geq C_{K}(E) .
$$

The opposite is trivial, and we have the lemma.
Lemma 4.8. For any compact set F

$$
C_{K}(F)=C_{K}^{*}(F) .
$$

Proof. Let $O_{n}=\{x ; \operatorname{dist}(x, F)<1 / n\}$. We can find $\mu_{n} \in \mathfrak{M}^{+}$such that supp $\mu_{n} \subset$ $O_{n}, K \mu_{n} \leq 1$ everywhere and

$$
\mu_{n}\left(O_{n}\right)>C_{K}\left(O_{n}\right)-1 / n .
$$

Since O_{1} is bounded, we have $C_{K}\left(O_{1}\right)<\infty$, and thus $\left\{\mu_{n}\left(\mathbb{R}^{N}\right)\right\}_{n}$ is bounded. Therefore by taking a subsequence we may assume that $\left\{\mu_{n}\right\}_{n}$ converges weakly to a measure μ. Then Lemma 3.1 (iii) gives

$$
K \mu(x) \leq \liminf _{n \rightarrow \infty} K \mu_{n}(x) \leq 1
$$

Since $\operatorname{supp} \mu \subset F$,
$C_{K}(F) \geq \mu(F)=\lim _{n \rightarrow \infty} \mu_{n}\left(O_{n}\right) \geq \lim _{n \rightarrow \infty}\left(C_{K}\left(O_{n}\right)-1 / n\right)=\lim _{n \rightarrow \infty} C_{K}\left(O_{n}\right) \geq C_{K}^{*}(F)$.
The opposite is clear, and we have the lemma.
Theorem 4.5. Let $\left\{F_{n}\right\}_{n}$ be a decreasing sequence of compact sets which converges to E. Then

$$
C_{K}^{*}\left(F_{n}\right) \rightarrow C_{K}^{*}(E),
$$

i.e. C_{K}^{*} satisfies the condition (iv) of Definition 4.3.

Proof. Let O be an open set containing E. Then $F_{n} \subset O$ for sufficiently large n. Therefore

$$
\lim _{n \rightarrow \infty} C_{K}^{*}\left(F_{n}\right) \leq C_{K}^{*}\left(F_{n}\right) \leq C_{K}(O)
$$

Hence

$$
\lim _{n \rightarrow \infty} C_{K}^{*}\left(F_{n}\right) \leq C_{K}^{*}(E)
$$

The opposite is clear, and we have the theorem.
Lemma 4.9. For any sets $\left\{E_{n}\right\}_{n}$

$$
C_{K}^{*}\left(\bigcup_{n} E_{n}\right) \leq \sum_{n} C_{K}^{*}\left(E_{n}\right)
$$

Proof. For any $\varepsilon>0$ we find an open set O_{n} containing E_{n} such that

$$
C_{K}\left(O_{n}\right) \leq C_{K}^{*}\left(E_{n}\right)+2^{-n} \varepsilon .
$$

Then Lemma 4.2 implies

$$
C_{K}^{*}\left(\bigcup_{n} E_{n}\right) \leq C_{K}\left(\bigcup_{n} O_{n}\right) \leq \sum_{n} C_{K}\left(O_{n}\right) \leq \sum_{n} C_{K}^{*}\left(E_{n}\right)+\varepsilon
$$

Since ε is arbitrary, we have the lemma.
Lemma 4.10. Suppose that K is continuous on $(0, \infty)$. Let $\mu \in \mathfrak{M}^{+}$with finite mass such that $K \mu<\infty \mu$-a.e. For given $\varepsilon>0$ there is an open set O such that $C_{K}(O)<\varepsilon$ and $K \mu$ is continuous outside O.
Proof. Take $\left\{n_{j}\right\}_{j}$ and $\left\{\delta_{j}\right\}_{j}$ such that $n_{j} \rightarrow \infty, \delta_{j} \rightarrow 0$ and $\sum_{j} n_{j} \delta_{j}<\varepsilon / C_{\mathrm{W}}$. For each j Lemma 3.4 gives that there exists a restricted measure μ_{j} of μ such that $K \mu_{j}$ is continuous and $\nu_{j}\left(\mathbb{R}^{N}\right)<\delta_{j}$ where $\nu_{j}=\mu-\mu_{j}$. Let

$$
O_{j}=\left\{x ; K \nu_{j}(x)>1 / n_{j},|x|<n_{j}\right\},
$$

and let F be a compact set $\subset O_{j}$. Since $K\left(n_{j} \nu_{j}\right)=n_{j} K \nu_{j}>1$ on F, Theorem4.3 yields

$$
C_{K}(F) / C_{\mathrm{W}} \leq n_{j} \nu_{j}\left(\mathbb{R}^{N}\right)<n_{j} \delta_{j} .
$$

Therefore Lemma 4.7 implies

$$
C_{K}\left(O_{j}\right) \leq C_{\mathrm{W}} n_{j} \delta_{j}
$$

If we set $O=\bigcup_{j} O_{j}$, then by Lemma 4.2

$$
C_{K}(O) \leq \sum_{j} C_{K}\left(O_{j}\right) \leq C_{\mathrm{W}} \sum_{j} n_{j} \delta_{j}<\varepsilon .
$$

Now let $x \notin O$. Then $x \notin O_{j}$ for each j. Since $|x|<n_{j}$ for sufficiently large j,

$$
K \nu_{j}(x) \leq 1 / n_{j} \quad \text { for sufficiently large } j \text {. }
$$

Hence for any $x_{0} \notin O$

$$
\begin{aligned}
& \limsup _{x \rightarrow x_{0}, x \notin O}\left|K \mu(x)-K \mu\left(x_{0}\right)\right| \\
& \quad \leq \limsup _{x \rightarrow x_{0}, x \notin O}\left|K \mu_{j}(x)-K \mu_{j}\left(x_{0}\right)\right|+\limsup _{x \rightarrow x_{0}, x \notin O}\left|K \nu_{j}(x)-K \nu_{j}\left(x_{0}\right)\right| \\
& \quad \leq 0+2 / n_{j} .
\end{aligned}
$$

Letting $j \rightarrow \infty$ we have the lemma.
Lemma 4.11. Suppose that K is continuous on ($0, \infty$). Let $\left\{\mu_{n}\right\}_{n} \subset \mathfrak{M}^{+}$and $\mu \in \mathfrak{M}^{+}$such that $\left\{\mu_{n}\left(\mathbb{R}^{N}\right)\right\}_{n}$ is bounded, $\bigcup_{n} \operatorname{supp} \mu_{n}$ is bounded, $K \mu_{n}<\infty \mu_{n}$ a.e., $K \mu<\infty \mu$-a.e. and $\mu_{n} \rightharpoondown \mu$. Then there is a set E such that $C_{K}^{*}(E)=0$ and

$$
\liminf _{n \rightarrow \infty} K \mu_{n}(x)=K \mu(x) \quad \text { for } x \notin E .
$$

Proof. For each m we can find an open set O_{m} such that $K \mu$ and $K \mu_{n}$'s are continuous outside O_{m} and $C_{K}\left(O_{m}\right)<1 / m$ (By Lemma 4.10 we find an open set for each of μ and μ_{n} 's, and we set O_{m} to the union of them).

Let

$$
F_{n r \rho m}=\left\{x ; K \mu(x) \leq r, K \mu_{n}(x) \geq \rho, x \notin O_{m}\right\}
$$

for rational numbers r and ρ with $r<\rho$, and let

$$
G_{n r \rho m}=\bigcap_{k=n}^{\infty} F_{k r \rho m} .
$$

Take x outside the closure of $\bigcup_{n} \operatorname{supp} \mu_{n}$. Since $K(x-\cdot)$ is continuous in $\bigcup_{n} \operatorname{supp} \mu_{n}$,

$$
\lim _{n \rightarrow \infty} K \mu_{n}(x)=\lim _{n \rightarrow \infty} \int K(x-y) d \mu_{n}(y)=\int K(x-y) d \mu(y)=K \mu(x) .
$$

Therefore $x \notin F_{\text {nrpm }}$ for sufficiently large n, and thus $x \notin G_{n r \rho m}$. Hence $G_{n r \rho m}$ is compact.

If $C_{K}\left(G_{n r \rho m}\right)>0$, then, using Lemma 3.4, we can find a positive measure $\nu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \nu \subset G_{n r \rho m}$ and $K \nu$ is continuous. Since $\mu_{k} \rightharpoondown \mu$,

$$
0=\lim _{k \rightarrow \infty} \int K \nu d\left(\mu_{k}-\mu\right)=\lim _{k \rightarrow \infty} \int\left(K \mu_{k}-K \mu\right) d \nu \geq(\rho-r) \nu\left(\mathbb{R}^{N}\right)
$$

which is a contradiction. Therefore $C_{K}\left(G_{n r \rho m}\right)=0$. Hence Lemma 4.8 implies

$$
C_{K}^{*}\left(G_{n r \rho m}\right)=0 .
$$

Let

$$
E=\left(\bigcup_{n, r, \rho, m} G_{n r \rho m}\right) \cup\left(\bigcap_{m} O_{m}\right) .
$$

Since $C_{K}^{*}\left(\bigcap_{m} O_{m}\right) \leq C_{K}\left(O_{m}\right)<1 / m$ for any m, we have $C_{K}^{*}\left(\bigcap_{m} O_{m}\right)=0$. Therefore by Lemma 4.9 we have

$$
C_{K}^{*}(E) \leq \sum_{n, r, \rho, m} C_{K}^{*}\left(G_{n r \rho m}\right)+C_{K}^{*}\left(\bigcap_{m} O_{m}\right)=0 .
$$

Let x be a point such that $\liminf _{n \rightarrow \infty} K \mu_{n}(x)>K \mu(x)$. Then there are r and ρ such that

$$
K \mu_{n}(x) \geq \rho>r \geq K \mu(x) \quad \text { for sufficiently large } n \text {. }
$$

If $x \in O_{m}$ for any m, then $x \in \bigcap_{m} O_{m} \subset E$. Otherwise we can find an m with $x \notin O_{m}$, thus $x \in F_{n r \rho m}$. Therefore $x \in G_{n r \rho m} \subset E$. Hence if $x \notin E$ then $\liminf _{n \rightarrow \infty} K \mu_{n}(x) \leq K \mu(x)$. Lemma 3.1 (iii) implies the result.

Lemma 4.12. Suppose that the strong maximum principle holds and K is continuous on $(0, \infty)$. Let O be a bounded open set. Then there exist a measure $\mu \in \mathfrak{M}^{+}$ and a set E such that $\operatorname{supp} \mu \subset \bar{O}, K \mu \leq 1, \mu\left(\mathbb{R}^{N}\right)=C_{K}(O), C_{K}^{*}(E)=0$ and $K \mu=1$ on $O \backslash E$,

Proof. By Lemma 4.7 we can find a sequence $\left\{F_{n}\right\}_{n}$ of compact sets such that $F_{n} \nearrow O$ and $\mu_{n}\left(F_{n}\right) \rightarrow C_{K}(O)$ where μ_{n} is a equilibrium measure for F_{n}. By taking a subsequence we may assume that $\left\{\mu_{n}\right\}_{n}$ converges weakly to a measure μ. We have

$$
K \mu(x) \leq \liminf _{n \rightarrow \infty} K \mu_{n}(x) \leq 1
$$

and

$$
\mu\left(\mathbb{R}^{N}\right)=\lim _{n \rightarrow \infty} \mu_{n}\left(\mathbb{R}^{N}\right)=C_{K}(O)
$$

Let $U_{n k}=\left\{x \in F_{n} ; K \mu_{n}(x) \leq 1-1 / k\right\}$ and $U=\bigcup_{n, k} U_{n k}$. Then, since $U_{n k}$ is compact and $C_{K}\left(U_{n k}\right)=0$,

$$
C_{K}^{*}(U) \leq \sum_{n, k} C_{K}^{*}\left(U_{n k}\right)=\sum_{n, k} C_{K}\left(U_{n k}\right)=0 .
$$

Also let V be an exceptional set of Lemma 4.11, and let $E=U \cup V$. Then

$$
C_{K}^{*}(E) \leq C_{K}^{*}(U)+C_{K}^{*}(V)=0
$$

and

$$
K \mu(x)=\liminf _{n \rightarrow \infty} K \mu_{n}(x)=1 \quad \text { for } x \in O \backslash E .
$$

Thus we have the lemma.
Theorem 4.6. Suppose that the strong maximum principle holds and K is continuous on $(0, \infty)$. Then C_{K}^{*} is a Choquet capacity.

Proof. We have only to prove that C_{K}^{*} satisfies the condition (iiii) of Definition 4.3, i.e. if $E_{n} \nearrow E$, then $C_{K}^{*}(E)=\lim _{n \rightarrow \infty} C_{K}^{*}\left(E_{n}\right)$.

We can find an open set $O_{n} \supset E_{n}$ and

$$
C_{K}\left(O_{n}\right) \leq C_{K}^{*}\left(E_{n}\right)+1 / n
$$

By Lemma 4.12 we find a measure μ_{n} and a set U_{n} such that $C_{K}^{*}\left(U_{n}\right)=0$ and $K \mu_{n}=1$ on $O_{n} \backslash U_{n}$. We find a subsequence $\left\{\mu_{n_{k}}\right\}_{k}$ of $\left\{\mu_{n}\right\}_{n}$ converges weakly to a measure μ. By Lemma 4.11 we can find a set V such that $C_{K}^{*}(V)=0$ and $K \mu(x)=\liminf _{k \rightarrow \infty} K \mu_{n_{k}}(x)$ outside V. Then

$$
K \mu(x)=\liminf _{k \rightarrow \infty} K \mu_{n_{k}}(x)=1 \quad \text { for } x \in E \backslash(U \cup V)
$$

where $U=\bigcup_{n} U_{n}$.
For any $\varepsilon>0$ we set $O_{\varepsilon}=\{x ; K \mu(x)>1-\varepsilon\}$. Then $E \backslash(U \cup V) \subset O_{\varepsilon}$. Let $\nu \in \mathfrak{M}^{+}$with $\operatorname{supp} \nu \subset O_{\varepsilon}$ and $K \nu \leq 1$ everywhere. Then

$$
\nu\left(O_{\varepsilon}\right) \leq(1-\varepsilon)^{-1} \int_{O_{\varepsilon}} K \mu d \nu=(1-\varepsilon)^{-1} \int K \nu d \mu \leq(1-\varepsilon)^{-1} \mu\left(\mathbb{R}^{N}\right)
$$

Therefore

$$
C_{K}\left(O_{\varepsilon}\right) \leq(1-\varepsilon)^{-1} \mu\left(\mathbb{R}^{N}\right)
$$

Hence

$$
\begin{aligned}
& C_{K}^{*}(E) \leq C_{K}^{*}(E \backslash(U \cup V))+C_{K}^{*}(U)+C_{K}^{*}(V) \leq C_{K}^{*}\left(O_{\varepsilon}\right) \leq(1-\varepsilon)^{-1} \mu\left(\mathbb{R}^{N}\right) \\
& \quad=(1-\varepsilon)^{-1} \lim _{k \rightarrow \infty} \mu_{n_{k}}\left(\mathbb{R}^{N}\right)=(1-\varepsilon)^{-1} \lim _{k \rightarrow \infty} C_{K}\left(O_{n_{k}}\right) \\
& \quad \leq(1-\varepsilon)^{-1} \lim _{k \rightarrow \infty}\left(C_{K}^{*}\left(E_{n_{k}}\right)+1 / n_{k}\right)=(1-\varepsilon)^{-1} \lim _{k \rightarrow \infty} C_{K}^{*}\left(E_{n_{k}}\right) .
\end{aligned}
$$

Since $\left\{E_{n}\right\}_{n}$ is monotone increasing,

$$
C_{K}^{*}(E) \leq(1-\varepsilon)^{-1} \lim _{n \rightarrow \infty} C_{K}^{*}\left(E_{n}\right)
$$

Letting $\varepsilon \rightarrow 0$,

$$
C_{K}^{*}(E) \leq \lim _{n \rightarrow \infty} C_{K}^{*}\left(E_{n}\right)
$$

The opposite is trivial, and we have the theorem.
Theorem 4.7. A set E is C_{K}^{*}-capacitable if and only if $C_{K}^{*}(E)=C_{K}(E)$.
Proof. Lemmas 4.7 and 4.8 imply that

$$
C_{K}(E)=\sup \left\{C_{K}^{*}(F) ; F \text { is compact, } F \subset E\right\}
$$

Thus the theorem is easily proved.
Theorem 4.8. If $C_{K}^{*}(E)=0$ and $\nu \in \mathfrak{M}^{+}$such that $K \nu$ is bounded, then $\nu(E)=$ 0.

Proof. For any $\varepsilon>0$ there is an open set O containing E such that

$$
C_{K}(O)<\varepsilon
$$

Take a compact set F in O. Let $M=\sup K \nu$ and $\mu=\left.M^{-1} \nu\right|_{F}$. Then $\operatorname{supp} \mu \subset F$ and $K \mu \leq 1$ everywhere. Therefore

$$
M^{-1} \nu(F)=\mu(F) \leq C_{K}(F) \leq C_{K}(O)<\varepsilon .
$$

Hence

$$
\nu(E) \leq \nu(O)=\sup _{F} \nu(F) \leq M \varepsilon .
$$

Since ε is arbitrary, we have the theorem.

5. Extremal Problems

Let F be a compact set.
Definition 5.1 (Chebychev's constant).

$$
M_{n}(F):=n^{-1} \sup _{x_{1}, \ldots, x_{n}} \inf _{x \in F} \sum_{j=1}^{n} K\left(x-x_{j}\right) .
$$

Definition 5.2 (Generalized diameter).
$D_{n}(F):=\frac{2}{n(n-1)} \inf _{x_{1}, \ldots, x_{n} \in F} \sum_{i<j} K\left(x_{i}-x_{j}\right)=\frac{1}{n(n-1)} \inf _{x_{1}, \ldots, x_{n} \in F} \sum_{i \neq j} K\left(x_{i}-x_{j}\right)$.
Theorem 5.1. $D_{n}(F)$ is increasing and

$$
\lim _{n \rightarrow \infty} D_{n}(F)=\gamma, \quad D_{n+1}(F) \leq M_{n}(F) \leq C_{K}(F)^{-1},
$$

Where γ is the number defined in Lemma 4.3.
Proof. Since K is lower semi-continuous, we can find $\xi_{1}^{(n)}, \ldots, \xi_{n}^{(n)} \in F$ such that

$$
D_{n}=\frac{2}{n(n-1)} \sum_{i<j} K\left(\xi_{i}^{(n)}-\xi_{j}^{(n)}\right) .
$$

Then

$$
\begin{aligned}
D_{n+1} & =\frac{2}{n(n+1)(n-1)} \sum_{k=1}^{n+1} \sum_{i<j}^{(k)} K\left(\xi_{i}^{(n+1)}-\xi_{j}^{(n+1)}\right) \\
& \geq \frac{2}{n(n+1)(n-1)} \sum_{k=1}^{n+1} \frac{n(n-1)}{2} D_{n}=D_{n}
\end{aligned}
$$

where $\sum_{i<j}^{(k)}$ means the summation over i and j such that $i<j, i \neq k$ and $j \neq k$.
Let $\mu \in \mathfrak{M}^{+}$such that supp $\mu \subset F$ and $\mu(F)=1$. Since

$$
\frac{n(n-1)}{2} D_{n} \leq \sum_{i<j} K\left(x_{i}-x_{j}\right) \quad \text { for } x_{1}, \ldots, x_{n} \in F
$$

we have

$$
\frac{n(n-1)}{2} D_{n} \leq \int \cdots \int \sum_{i<j} K\left(x_{i}-x_{j}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{n}\right)
$$

$$
=\sum_{i<j} \iint K\left(x_{i}-x_{j}\right) d \mu\left(x_{i}\right) d \mu\left(x_{j}\right)=\frac{n(n-1)}{2} I_{K}(\mu) .
$$

Therefore $D_{n}(F) \leq \gamma$.
Let $\mu_{n}=n^{-1} \sum_{j} \delta_{\xi_{j}^{(n)}}$ where δ_{ξ} is the Dirac measure at ξ. Also let $K_{m}(x)=$ $\min (K(x), m)$. Then

$$
\begin{aligned}
I_{K_{m}}\left(\mu_{n}\right) & =n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} K_{m}\left(\xi_{i}^{(n)}-\xi_{j}^{(n)}\right)=n^{-2} \sum_{i \neq j} K_{m}\left(\xi_{i}^{(n)}-\xi_{j}^{(n)}\right)+n^{-1} m \\
& \leq n^{-1}(n-1) D_{n}+n^{-1} m
\end{aligned}
$$

Take a subsequence $\left\{\mu_{n_{k}}\right\}_{k}$ which converges weakly to a measure μ. Then

$$
I_{K_{m}}(\mu) \leq \liminf _{k \rightarrow \infty} I_{K_{m}}\left(\mu_{n_{k}}\right) \leq \liminf _{k \rightarrow \infty} D_{n_{k}}=\lim _{n \rightarrow \infty} D_{n} .
$$

Letting $m \rightarrow \infty$, by the monotone convergence theorem we have

$$
I_{K}(\mu) \leq \lim _{n \rightarrow \infty} D_{n} .
$$

Therefore we have the first part.
For j with $1 \leq j \leq n+1$ and $x \in F$ we define

$$
A_{j}(x)=\sum_{i \neq j} K\left(x-\xi_{i}^{(n+1)}\right) .
$$

Then

$$
M_{n} \geq n^{-1} \inf _{x \in F} A_{j}(x)=n^{-1} A_{j}\left(\xi_{j}^{(n+1)}\right)
$$

Therefore

$$
\begin{aligned}
D_{n+1} & =\frac{1}{n(n+1)} \sum_{i \neq j} K\left(\xi_{i}^{(n+1)}-\xi_{j}^{(n+1)}\right)=\frac{1}{n(n+1)} \sum_{j} A_{j}\left(\xi_{j}^{(n+1)}\right) \\
& \leq \frac{1}{n(n+1)} \sum_{j} n M_{n}=M_{n} .
\end{aligned}
$$

Now assume that $C_{K}(F)>0$. Let $\nu \in \mathfrak{M}^{+}$such that $\operatorname{supp} \nu \subset F$ and $K \nu \leq 1$ everywhere and let $\mu=C_{K}(F)^{-1} \nu$. Then

$$
K \mu=C_{K}(F)^{-1} K \nu \leq C_{K}(F)^{-1} \quad \text { everywhere. }
$$

Therefore

$$
\begin{aligned}
& \frac{\nu(F)}{C_{K}(F)} n^{-1} \inf _{x \in F} \sum_{j=1}^{n} K\left(x-x_{j}\right)=\mu(F) n^{-1} \inf _{x \in F} \sum_{j} K\left(x-x_{j}\right) \\
& \quad \leq \int_{F} n^{-1} \sum_{j} K\left(x-x_{j}\right) d \mu(x)=n^{-1} \sum_{j} K \mu\left(x_{j}\right) \leq C_{K}(F)^{-1} .
\end{aligned}
$$

Take supremum of the left hand side with varying ν, then

$$
n^{-1} \inf _{x \in F} \sum_{j=1}^{n} K\left(x-x_{j}\right) \leq C_{K}(F)^{-1} .
$$

Take supremum of the left hand side with varying x_{1}, \ldots, x_{n}, then

$$
M_{n} \leq C_{K}(F)^{-1}
$$

This is trivial when $C_{K}(F)=0$. Thus the theorem follows.
Now we go back to the classical case. This takes place in the complex plane \mathbb{C}, i.e. $N=2$. We shall show a classical result. For example see [1].

Definition 5.3 (Diameter of order n).

$$
d_{n}(F):=\sup _{x_{1}, \ldots, x_{n} \in F} \prod_{i<j}\left|x_{i}-x_{j}\right|^{2 / n(n-1)} .
$$

Definition 5.4 (Chebychev polynomial of order n).

$$
\rho_{n}(F)=\inf \left\{\sup _{x \in F}\left|x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}\right|^{1 / n} ; a_{0}, \ldots, a_{n-1} \in \mathbb{C}\right\} .
$$

Theorem 5.2. d_{n} is decreasing and

$$
\lim _{n \rightarrow \infty} d_{n}(F)=\lim _{n \rightarrow \infty} \rho_{n}(F) .
$$

Proof. Let \tilde{F} be the convex hull of F. Take $a \geq \operatorname{diam} F$ and let $K(r)=\log ^{+}(a / r)$. Then Theorem 3.3 implies that K satisfies the strong maximum principle. Also

$$
\log \frac{a}{d_{n}(F)}=\inf _{x_{1}, \ldots, x_{n} \in F} \frac{2}{n(n-1)} \sum_{i<j} \log \frac{a}{\left|x_{i}-x_{j}\right|}=D_{n}(F) .
$$

Since a polynomial can be represented by $\prod_{j=1}^{n}\left(x-x_{j}\right)$,

$$
\log \frac{a}{\rho_{n}(F)}=\frac{1}{n} \sup _{x_{1}, \ldots, x_{n}} \inf _{x \in F} \sum_{j} \log \frac{a}{\left|x-x_{j}\right|}
$$

Take $x_{1} \notin \tilde{F}$ and let $x_{1}^{\prime} \in \tilde{F}$ be the closest point to x_{1} and $x_{j}^{\prime}=x_{j}$ for $j=2, \ldots, n$. Then it is easy to see that $\left|x-x_{1}^{\prime}\right| \leq\left|x-x_{1}\right|$ for any $x \in F$. Therefore

$$
\sum_{j} \log \frac{a}{\left|x-x_{j}^{\prime}\right|} \geq \sum_{j} \log \frac{a}{\left|x-x_{j}\right|}
$$

Hence

$$
\inf _{x \in F} \sum_{j} \log \frac{a}{\left|x-x_{j}^{\prime}\right|} \geq \inf _{x \in F} \sum_{j} \log \frac{a}{\left|x-x_{j}\right|}
$$

This means that

$$
\log \frac{a}{\rho_{n}(F)}=\frac{1}{n} \sup _{x_{1}, \ldots, x_{n} \in \tilde{F}} \inf _{x \in F} \sum_{j} \log \frac{a}{\left|x-x_{j}\right|}=M_{n}(F) .
$$

Hence Theorem 5.1 implies the result.

References

[1] L. V. Ahlfors, Conformal Invariants, McGraw-Hill, 1973.
[2] H. Aikawa and M. Essén, Potential Theory - Selected Topics, Lecture Notes in Mathematics, vol. 1633, Springer, 1996.
[3] K. Hatano, Is a net measure an outer measure?, Mem. Fac. Sci. Eng. Shimane Univ. 31 (1998), 9-10.

Yonago National College of Technology, 683-8502, JAPAN
E-mail address: kurata@yonago-k.ac.jp

