Mem. Fac. Sci. Shimane Univ., 19, pp. 1–10 Dec. 20, 1985

Discrete Biharmonic Green Function β

Takashi KAYANO and Maretsugu YAMASAKI Department of Mathematics, Shimane University, Matsue, Japan (Received September 14, 1985)

As a discrete analogue to the results related to the biharmonic Green function β of a Riemannian manifold due to Sario et al., we discuss the existence and uniqueness of the discrete biharmonic Green function β of an infinite network. A discrete analogue to the normal derivative plays an important role in our study.

Introduction

On a regular subregion Ω of a Riemannian manifold, there exist two biharmonic Green functions, to be denoted by β and γ , with a biharmonic fundamental singularity, and with boundary data $\beta = \partial \beta / \partial n = 0$ and $\gamma = \Delta \gamma = 0$ (cf. [2]). A discrete analogue to the biharmonic Green function γ was studied in [5]. In this paper, we shall discuss the existence and uniqueness of a discrete analogue to the biharmonic Green function β . Discrete analogues to the biharmonic fundamental singularity $\Delta^2 \beta_a = \varepsilon_a$ and the boudary data $\beta_a = 0$ are easily formulated. The discrete analogue to the boundary data $\partial \beta_a / \partial n = 0$ seems to be not easy as in [1] or [3]. We replace this boundary data by the condition that a weak normal derivative of β_a vanishes on the boundary in §2 and §3. For a finite subnetwork N' of a locally finite infinite network N, the existence and uniqueness of the biharmonic Green function $\beta_a^{N'}$ of N' with pole at a satisfying explicit boundary data will be shown in §2. The biharmonic Green function β_a of N with pole at a will be studied in §3 related to the ideal boundary of N. For an exhaustion $\{N_n\}$ of N, the convergence of the sequence of the biharmonic Green functions $\beta_a^{N_n}$ of N_n will be discussed in §4.

§1. Preliminaries

Let X be a countable set of nodes, Y be a countable set of arcs, K be the node-arc incidence function and r be a strictly positive function on Y. Assume that the quartet $N = \{X, Y, K, r\}$ is an infinite network i. e., the graph $\{X, Y, K\}$ is connected, locally finite and has no self-loop. For notation and terminology, we mainly follow [4] and [6].

For a finite subnetwork $N' = \langle X', Y' \rangle$ of N, denote by nb(N') the subnetwork $\langle nb(X'), nb(Y') \rangle$ of N defined by $nb(X') = \bigcup \{X(x); x \in X'\}$ and $nb(Y') = \{y \in Y; e(y) \subset nb(X')\}$, where $e(y) = \{x \in X; K(x, y) \neq 0\}$ (the set of end nodes of y) and $X(x) = \{y \in Y, y \in X\}$

 $\cup \{e(y); K(x, y) \neq 0\}$ (the set of neighboring nodes of x). Let us put b(X') = nb(X') - X' and b(Y') = nb(Y') - Y' and regard the pair $\{b(X'), b(Y')\}$ as the boundary of N'.

Let L(X) be the set of all real functions on X. For $u \in L(X)$, the Laplacian $\Delta u \in L(X)$ of u is defined by

$$\Delta u(x) = -\sum_{v \in Y} K(x, y) r(y)^{-1} \left[\sum_{z \in X} K(z, y) u(z) \right].$$

A function $u \in L(X)$ is called harmonic or biharmonic on a set A according as $\Delta u(x)=0$ or $\Delta^2 u(x) = \Delta(\Delta u)(x) = 0$ on A respectively.

For a finite subnetwork $N' = \langle X', Y' \rangle$ of N, the harmonic Green function $g'_a = g^{N'}_a$ of N' with pole at $a \in X'$ is defined by

(1.1)
$$\Delta g'_a(x) = -\varepsilon_a(x)$$
 on X' ,

(1.2)
$$g'_a(x) = 0$$
 on $X - X'$,

where $\varepsilon_a(x) = 0$ if $x \neq a$ and $\varepsilon_a(a) = 1$.

The existence and uniqueness of g'_a was studied in [4]. Let $\{N_n\}$ be an exhaustion of N and let $g_a^{(n)}$ be the harmonic Green function of N_n with pole at a. Then we see that $g_a^{(n)} \leq g_a^{(n+1)}$ and the limit g_a of $\{g_a^{(n)}\}$ exists and does not depend on the choice of an exhaustion of N. We have either $g_a \in L(X)$ or $g_a = \infty$. In case $g_a = \infty$, we say that N has no Green function and denote by O_G the set of all infinite networks which have no Green function, In case $g_a \in L(X)$, we call it the harmonic Green function of N with pole at a. We have $\Delta g_a(x) = -\varepsilon_a(x)$ on X and $g_a(x) = g_x(a)$ for every $a, x \in X$.

For $\mu \in L^+(X)$, the (harmonic) Green potential $G\mu$ of μ is defined by

$$G\mu(x) = \sum_{z \in X} g_z(x)\mu(z) \,.$$

We have either $G\mu \in L(X)$ or $G\mu = \infty$. Let us put $M(G) = \{\mu \in L^+(X); G\mu \in L(X)\}$.

§2. Biharmonic Green function $\beta_a^{N'}$

Let *m* be a strictly positive function on *X*. We call it a weight function. For $u, v \in L(X)$, the inner product ((u, v)) of *u* and *v* and the norm ||u|| of *u* are defined by

$$((u, v)) = \sum_{x \in X} m(x)u(x)v(x)$$
 and $||u|| = [((u, u))]^{1/2}$

if the sum is well-defined. Denote by $L_2(X; m)$ the set of all $u \in L(X)$ with finite norm. Note that $L_2(X; m)$ is a Hilbert space with respect to the inner product ((u, v)).

We give some examples of the weight functions.

EXAMPLE 2.1. (1) m(x) = 1 on X. (2) $m(x) = \sum_{y \in Y} |K(x, y)| r(y)$ on X. In this case, $||u||^2 = \sum_{y \in Y} r(y) \sum_{x \in X} |K(x, y)| \cdot u(x)^2$. If $||1|| < \infty$, then $N \notin O_G$.

(3) $m(x) = \sum_{y \in Y} |K(x, y)| r(y)^{-1}$ on X. In this case, $||u||^2 = \sum_{y \in Y} r(y)^{-1} \sum_{x \in X} |K(x, y)|$.

 $u(x)^2$. If $||1|| < \infty$, then $N \in O_G$.

Let $N' = \langle X', Y' \rangle$ be a finite subnetwork of N and denote by H(N') the set of all $u \in L(X)$ which is harmonic on X' and satisfies the boundary condition: u(x)=0 on X-nb(X'). Then H(N') is a closed subspace of $L_2(X; m)$.

In order to construct a discrete analogue to the biharmonic Green function β , we introduce a discrete analogue to the weak normal derivative in [2]. Let $u \in L(X)$. For any $h \in H(N')$, $(\!(h, \Delta u)\!)$ is a continuous linear functional on H(N'). Thus there exists a unique $\partial u \in H(N')$ such that $(\!(h, \Delta u)\!) = (\!(h, \partial u)\!)$ for all $h \in H(N')$ by Riesz's theorem. We call ∂u the weak normal derivative of u on b(X') (with respect to the weight function m).

LEMMA 2.1. The weak normal derivative ∂u of u on b(X') vanishes on b(X') if and only if $((h, \Delta u)) = 0$ for all $h \in H(N')$.

PROOF. Let $\partial u(x) = 0$ on b(X'). Since ∂u is harmonic on X', we see by the maximum principle (cf. [5; Lemma 1.1]) that $\partial u(x) = 0$ on nb(X'), so that $(h, \Delta u) = ((h, \partial u)) = 0$ for all $h \in H(N')$. On the other hand, assume that $((h, \Delta u)) = 0$, for all $h \in H(N')$. Since $\partial u \in H(N')$, we have $((\partial u, \partial u)) = 0$, so that $\partial u(x) = 0$ on X.

Denote by W(N'; m) the orthogonal complement of H(N') in $L_2(X; m)$, i.e.,

$$W(N'; m) = \{v \in L_2(X; m); ((h, v)) = 0 \text{ for all } h \in H(N')\}.$$

Now we define the biharmonic Green function $\beta'_a = \beta^{N'}_a$ of N' with pole at $a \in X'$ by the following conditions:

- (2.1) $\Delta^2 \beta'_a(x) = \varepsilon_a(x)$ on X'
- (2.2) $\Delta \beta'_a \in W(N'; m)$, i.e., $\partial \beta'_a(x) = 0$ on b(X'),
- (2.3) $\beta'_a(x) = 0$ on X nb(X').

The uniqueness of β'_a follows from the following lemma.

LEMMA 2.2. Assume that $u \in L(X)$ satisfies the conditions:

- (2.4) $\Delta^2 u(x) = 0$ on X',
- $(2.5) \quad \Delta u \in W(N'; m),$
- (2.6) u(x) = 0 on X nb(X').

Then u(x) = 0 on X.

PROOF. Define $v \in L(X)$ by $v(x) = \Delta u(x)$ for $x \in nb(X')$ and v(x) = 0 for $x \in X - nb(X')$. Then $\Delta v(x) = 0$ on X' by (2.4), so that $v \in H(N')$. We have $||v||^2 = \langle v, \Delta u \rangle = 0$ by (2.5), and hence v(x) = 0 on X. Thus u is harmonic on nb(X'). It follows from (2.6)

and the maximum principle that u(x)=0 on X.

In order to prove the existence of β'_a , we consider the following extremum problem:

(2.7) Find $c(N'; a) = \inf \{ \|h - g'_a\|^2; h \in H(N') \},\$

where g'_a is the harmonic Green function of N' with pole at a.

We have by the standard projection theorem

LEMMA 2.3. Problem (2.7) has a unique solution h'_a , i.e., $h'_a \in H(N')$ such that $c(N'; a) = \|h'_a - g'_a\|^2$. Put $k'_a = h'_a - g'_a$. Then k'_a is the projection of $-g'_a$ onto W(N'; m) and

(2.8) $((h, k'_a)) = 0$ for every $h \in H(N')$.

REMARK 2.1. We have c(N'; a) > 0. In fact, if c(N'; a) = 0, then $k'_a = 0$ and $g'_a \in H(N')$. This is a contradiction.

REMARK 2.2. It should be noted that k'_a is not of constant sign. In fact, assume that k'_a is non-negative (non-positive resp.) on X and let \tilde{g}'_z be the harmonic Green function of nb(N') with pole at $z \in b(X')$. Since $\tilde{g}'_z > 0$ on nb(X') and $\tilde{g}'_z \in H(N')$, (2.8) implies that $k'_a(x)=0$ on nb(X'), i.e., c(N'; a)=0. This is a contradiction.

We give a simple example of β'_a .

EXAMPLE 2.2. Let J be the set of all non-negative integers. Let us take $X = \{x_n; n \in J\}$, $Y = \{y_{n+1}; n \in J\}$ and define K(x, y) by $K(x_n, y_{n+1}) = -1$ and $K(x_{n+1}, y_{n+1}) = 1$ for $n \in J$ and K(x, y) = 0 for any other pair (x, y). For any positive function r on Y, $N = \{X, Y, K, r\}$ is a locally finite infinite network. Let $X' = \{x_0, x_1, x_2\}$ and $Y' = \{y_1, y_2\}$. Then $N' = \langle X', Y' \rangle$ is a finite subnetwork of N and $b(X') = \{x_3\}$ and $b(Y') = \{y_3\}$. We have

$$H(N') = \{h \in L(X); h(x_n) = h(x_0) \ (1 \le n \le 3), h(x_n) = 0 \ (n \ge 4)\}.$$

Let $a = x_0$ and put $r_n = r(y_n)$. Then $g'_a(a) = r_1 + r_2 + r_3$, $g'_a(x_1) = r_2 + r_3$, $g'_a(x_2) = r_3$ and $g'_a(x_n) = 0$ $(n \ge 3)$. We see by Lemma 2.3 that $k'_a(x_n) = c - g'_a(x_n)$ (n = 0, 1, 2), $k'_a(x_3) = c$ and $k'_a(x_n) = 0$ $(n \ge 4)$ with a constant c. It follows from (2.8) that $c = \sum_{n=0}^{2} m(x_n)g'_a(x_n)/\sum_{n=0}^{3} m(x_n)$.

LEMMA 2.4. Let $u \in L(X)$. If u is harmonic on X', then $((u, k'_a)) = 0$.

PROOF. Define $h \in L(X)$ by h(x) = u(x) for $x \in nb(X')$ and h(x) = 0 for $x \in X - nb(X')$. Then $h \in H(N')$. Since $k'_a(x) = 0$ on X - nb(X'), we have $((u, k'_a)) = ((h, k'_a)) = 0$ by (2.8).

We have

THEOREM 2.1. For every finite subnetwork $N' = \langle X', Y' \rangle$ of N and $a \in X'$, the biharmonic Green function $\beta'_a = \beta^{N'}_a$ of N' with pole at a is given by

(2.9) $\beta'_a(x) = -\sum_{z \in nb(X')} \tilde{g}'_z(x) k'_a(z),$

where \tilde{g}'_z is the harmonic Green function of nb(N') with pole at $z \in nb(X')$.

PROOF. Since $\tilde{g}'_z(x) = 0$ for every $x \in X - nb(X')$, condition (2.3) is fulfilled. We have

$$\Delta \beta'_a(x) = -\sum_{z \in nb(X')} \left[\Delta \tilde{g}'_z(x) \right] k'_a(z) = k'_a(x)$$

for every $x \in nb(X')$. It follows from Lemma 2.3 that $(h, \Delta \beta'_a) = (h, k'_a) = 0$ for every $h \in H(N')$, which shows condition (2.2). Since $k'_a = -g'_a + h'_a$ with $h'_a \in H(N')$ and $\Delta \beta'_a(x) = k'_a(x)$ on nb(X'), we have for $x \in X'$

$$\Delta^2 \beta'_a(x) = \Delta k'_a(x) = \Delta (-g'_a + h'_a)(x) = -\Delta g'_a(x) = \varepsilon_a(x).$$

Namely condition (2.3) is fulfilled.

REMARK 2.3. Let \tilde{g}'_z be the harmonic Green function of nb(N') with pole at $z \in nb(X')$. For any $v \in L(X)$, define the potential $\tilde{G}'v \in L(X)$ of v by

$$\tilde{G}'v(x) = \sum_{z \in nb(X')} \tilde{g}'_z(x)v(z).$$

Then $H(N') = \{ \tilde{G}'v; v \in L(X), v(x) = 0 \text{ on } X' \}.$

§3. Biharmonic Green function β_a^N

In the rest of this paper, we always assume that N has a harmonic Green function, i.e., $N \notin O_G$.

Let us put

$$HL_2(N; m) = \{h \in L_2(X; m); h \text{ is harmonic on } X\}.$$

Then $HL_2(N; m)$ is a closed subspace of $L_2(X; m)$. Denote by W(N; m) the orthogonal complement of $HL_2(N; m)$ in $L_2(X; m)$, i.e.,

$$W(N; m) = \{ u \in L_2(X; m); ((h, u)) = 0 \text{ for all } h \in HL_2(N; m) \}.$$

Let $u \in L(X)$ such that $\Delta u \in L_2(X; m)$. For any $h \in HL_2(N; m)$, $(\!(h, \Delta u)\!)$ is a continuous linear functional on $HL_2(N; m)$. Thus there exists a unique $\partial u \in HL_2(N; m)$ such that $(\!(h, \Delta u)\!) = (\!(h, \partial u)\!)$ for all $h \in HL_2(N; m)$ by Riesz's theorem. We call ∂u the weak normal derivative of u on the ideal boundary (with respect to the weight function m).

We say that the weak normal derivative ∂u of u on the ideal boundary vanishes

on the ideal boundary if $\Delta u \in W(N; m)$.

We say that $u \in L(X)$ vanishes on the ideal boundary if it belongs to the following functional space

$$P(G) = \{ G\mu_1 - G\mu_2; \, \mu_1, \, \mu_2 \in M(G), \, \mu_1(x)\mu_2(x) = 0 \text{ on } X \} \, .$$

We define the biharmonic Green function $\beta_a = \beta_a^N$ of N with pole at $a \in X$ by the following conditions:

(3.1)
$$\Delta^2 \beta_a(x) = \varepsilon_a(x)$$
 on X ,

$$(3.2) \quad \varDelta \beta_a(x) \in W(N; m),$$

(3.3) $\beta_a \in P(G)$.

To prove the uniqueness of β_a , it suffices to show the following lemma:

LEMMA 3.1. Assume that u is biharmonic on X. If $u \in P(G)$ and $\Delta u \in W(N; m)$, then u(x)=0 on X.

PROOF. Let $u = G\mu_1 - G\mu_2$ with μ_1 , $\mu_2 \in M(G)$ and $\mu_1(x)\mu_2(x) = 0$ on X. Then $\Delta u(x) = \mu_2(x) - \mu_1(x)$ on X. By our assumption, $\Delta u \in HL_2(N; m)$. Since $\Delta u \in W(N; m)$, we have

$$0 = ((\Delta u, \Delta u)) = ||\Delta u||^2 = ||\mu_1||^2 + ||\mu_2||^2,$$

and hence $\mu_1(x) = \mu_2(x) = 0$ on X. Thus u(x) = 0 on X.

Similarly to problem (2.7), we consider the following extremum problem:

(3.4) Find $c(N; a) = \inf \{ \|h - g_a\|^2; h \in HL_2(N; m) \},\$

where g_a is the harmonic Green function of N with pole at a.

REMARK 3.1. The value c(N; a) of problem (3.4) is finite if and only if the norm $||g_a||$ of g_a is finite.

By the standard projection theorem, we have

LEMMA 3.2. If c(N; a) is finite, then there exists a unique optimal solution h_a of problem (3.4), i.e., $h_a \in HL_2(N; m)$ such that $c(N; a) = ||h_a - g_a||^2$. Put $k_a = h_a - g_a$. Then k_a is the projection of $-g_a$ onto W(N; m).

COROLLARY 1. $\Delta k_a(x) = \varepsilon_a(x)$ on X.

COROLLARY 2. If $g_a \in W(N; m)$, then $k_a = -g_a$. We have

THEOREM 3.1. Assume that

6

 $(3.5) \quad c(N; a) < \infty,$

(3.6) $\sum_{z \in X} g_x(z) |k_a(z)| < \infty$ for some $x \in X$.

Then the biharmonic Green function β_a of N with pole at a is given by

(3.7)
$$\beta_a(x) = -\sum_{z \in X} g_x(z) k_a(z)$$
.

PROOF. By Harnack's principle [5; Lemma 1.3] and by (3.6), $\beta_a(x)$ is welldefined for all $x \in X$. We have $\Delta \beta_a(x) = k_a(x) \in W(N; m)$ by Lemma 3.2 and $\Delta^2 \beta_a(x) = \varepsilon_a(x)$ on X. We see by (3.6) that $\beta_a \in P(G)$.

COROLLARY. If $g_a \in W(N; m)$, then $\beta_a(x) = \sum_{z \in X} g_x(z)g_a(z)$, which is equal to the discrete analogue to the biharmonic Green function γ (cf. [5]).

REMARK 3.2. If $m(x) \ge m_0 > 0$ on X, then $HL_2(N; m) = \{0\}$ by [5; Theorem 1.1]. If we further assume that $||g_a|| < \infty$, then $g_a \in W(N; m)$.

LEMMA 3.3. Assume that the norm of g_a is finite. Then $c(N; a) = ||g_a||^2$ if and only if $k_a = -g_a$.

PROOF. It suffices to show the "only if" part. Assume that $c(N; a) = ||g_a||^2$. Then we have by Lemma 3.2

$$\begin{split} 0 &= ((h_a, k_a)) = - ((h_a, g_a)) + ||h_a||^2, \\ &||k_a||^2 = ((-g_a + h_a, -g_a + h_a)) = ||g_a||^2 - ||h_a||^2. \end{split}$$

Since $c(N; a) = ||k_a||^2$, we have $||h_a|| = 0$, and hence $h_a(x) = 0$ on X.

We show that β_a is not equal to the biharmonic Green function γ in general.

EXAMPLE 3.1. Let N be the infinite network defined in Example 2.1. Assume that $\sum_{y \in Y} r(y) < \infty$ and $\sum_{x \in X} m(x) = 1$. Let $a = x_0$. Then $g_a(x_n) = \sum_{j=n+1}^{\infty} r(y_j)$ and $HL_2(N; m)$ consists only of constant functions. Since $g_a(x) \le g_a(a)$ on X, the norm of g_a is finite. We see easily that $k_a = -g_a + ((1, g_a))$. In case $\sum_{x \in X} g_a(x) < \infty$, i.e., $N \notin O_{OP}$ (cf. [6]), $\beta_a(x)$ exists by Theorem 3.1 and

$$\beta_{a}(x) = \sum_{z \in X} g_{x}(z) g_{a}(z) - ((1, g_{a})) \sum_{z \in X} g_{x}(z).$$

As for condition (3.5), we have

THEOREM 3.2. Let $a, b \in X$. Then $c(N; a) < \infty$ if and only if $c(N; b) < \infty$.

PROOF. By Harnack's principle [5; Lemma 1.3], there exists a constant $\alpha > 0$ such that $\alpha^{-1}g_b(x) \le g_a(x) \le \alpha g_b(x)$ on X. We have $\alpha^{-1} ||g_b|| \le ||g_a|| \le \alpha ||g_b||$. Our assertion follows from Remark 3.1.

As for condition (3.6), we have

THEOREM 3.3. Assume that the norm of g_a is finite and that $\sum_{z \in X} m(z)^{-1} g_a(z)^2 < \infty$. Then condition (3.6) is fulfilled.

PROOF. By Remark 3.1, $||k_a|| < \infty$. Let $x \in X$. We see by Harnack's principle that $\sum_{z \in X} m(z)^{-1} g_x(z)^2 < \infty$ (cf. the proof of Theorem 3.2). We have

$$\left[\sum_{z \in X} g_x(z) |k_a(z)|\right]^2 \le \left[\sum_{z \in X} m(z)^{-1} g_x(z)^2\right] \left[\sum_{z \in X} m(z) k_a(z)^2\right] < \infty.$$

§4. Convergence of $\beta_a^{(n)}$

Let $\{N_n\}(N_n = \langle X_n, Y_n \rangle)$ be an exhaustion of N. We are concerned with the convergence of the sequence $\{\beta_a^{(n)}\}$ of the biharmonic Green functions of N_n with pole at a.

We have

LEMMA 4.1. For any finite subnetwork $N' = \langle X', Y' \rangle$ of N and $a \in X'$, $c(N'; a) \leq N$

c(N; a).

PROOF. Let $h \in HL_2(N; m)$ and put $u = -g_a + h$. Define $v \in L(X)$ by v(x) = u(x) for $x \in nb(X')$ and v(x) = 0 for $x \in X - nb(X')$. Then $h' = v + g'_a \in H(N')$, so that $c(N'; a) \le ||v||^2 \le ||u||^2$.

LEMMA 4.2. Assume that c(N; a) is finite and let $k_a^{(n)}$ be the optimal solution of problem (2.7) replacing N' by N_n . Then $||k_a^{(n)} - k_a|| \rightarrow 0$ as $n \rightarrow \infty$.

PROOF. If n < m, then $k_a^{(n)} - k_a^{(m)}$ is harmonic on X_n and $((k_a^{(n)} - k_a^{(m)}, k_a^{(n)})) = 0$ by Lemma 2.4, so that

$$||k_a^{(n)} - k_a^{(m)}||^2 = ||k_a^{(m)}||^2 - ||k_a^{(n)}||^2.$$

Since $||k_a^{(n)}||^2 \le c(N; a)$ by Lemma 4.1, we see that $\{k_a^{(n)}\}$ is a Cauchy sequence in the Hilbert space $L_2(X; m)$. There exists $v \in L_2(X; m)$ such that $||k_a^{(n)} - v|| \to 0$ as $n \to \infty$. Note that $k_a^{(n)}(x)$ converges to v(x) for each $x \in X$. Let $g_a^{(n)}$ be the harmonic Green function of N_n with pole at a. Since $h_a^{(n)} = k_a^{(n)} + g_a^{(n)}$ is harmonic on X_n , we see that $h^* = v + g_a$ is harmonic on X. Thus $h^* \in HL_2(N; m)$. Let h be any element of $HL_2(N; m)$. Then $(|h, k_a^{(n)}|) = 0$ by Lemma 2.4, so that (|h, v|) = 0, i.e., $v \in W(N; m)$. It follows from Lemma 3.2 that $v = k_a$.

We have

THEOREM 4.1. Assume that the norm of g_a is finite and that $\sum_{z \in X} m(z)^{-1} g_a(z)^2 < \infty$. Then $\{\beta_a^{(n)}(x)\}$ converges to $\beta_a(x)$ for each $x \in X$.

PROOF. The existence of β_a follows from Theorems 3.1 and 3.3. For each $x \in X$, let us define $p_x^{(n)}$ and p_x by

Discrete Biharmonic Green Function β

$$\begin{split} p_x^{(n)}(z) &= m(z)^{-1} \tilde{g}_z^{(n)}(x) & \text{for } z \in nb(X_n) \,, \\ p_x^{(n)}(z) &= 0 & \text{for } z \in X - nb(X_n) \,, \\ p_x(z) &= m(z)^{-1} g_z(x) & \text{for } z \in X \,, \end{split}$$

where $\tilde{g}_{z}^{(n)}$ is the harmonic Green function of $nb(N_n)$ with pole at $z \in nb(X_n)$. We see by Theorems 2.1 and 3.1 that $\beta_a^{(n)}(x) = -\langle p_x^{(n)}, k_a^{(n)} \rangle$ and $\beta_a(x) = -\langle p_x, k_a \rangle$. We have

$$\begin{aligned} |\beta_{a}(x) - \beta_{a}^{(n)}(x)| &\leq |\langle p_{x} - p_{x}^{(n)}, k_{a}^{(n)} \rangle| + |\langle p_{x}, k_{a}^{(n)} - k_{a} \rangle| \\ &\leq ||p_{x} - p_{x}^{(n)}|| \, ||k_{a}^{(n)}|| + ||p_{x}|| \, ||k_{a}^{(n)} - k_{a}|| \end{aligned}$$

Note that $||p_x||^2 = \sum_{z \in X} m(z)^{-1} g_x(z)^2$ is finite by our assumption and Harnack's principle. By Lemmas 4.1 and 4.2, it suffices to show that $||p_x - p_x^{(n)}|| \to 0$ as $n \to \infty$ for each $x \in X$. For any $\varepsilon > 0$, there exists n_1 such that $x \in X' = X_{n_1}$ and

$$\sum_{z\in X-X'} m(z)^{-1}g_z(x)^2 < \varepsilon/3.$$

Since $\tilde{g}_z^{(n)}(x) = \tilde{g}_x^{(n)}(z)$ for any $z \in nb(X_n)$ if $n \ge n_1$ and $\tilde{g}_z^{(n)}(x)$ converges to $g_z(x)$, there exists n_2 such that

$$|g_{z}(x) - \tilde{g}_{z}^{(n)}(x)|^{2} < \varepsilon/3t$$
 with $t = \sum_{z \in X'} m(z)^{-1}$

for all $n \ge n_2$ and $z \in X'$. Let $n \ge \max\{n_1, n_2\}$. Since $0 \le \tilde{g}_x^{(n)}(z) \le g_x(z)$ on X, we have

$$\sum_{z \in X-X'} m(z)^{-1} [g_x(z) - \tilde{g}_x^{(n)}(z)]^2 \le \sum_{z \in X-X'} m(z)^{-1} g_x(z)^2 < \varepsilon/3.$$

We have

$$\begin{split} \|p_{x} - p_{x}^{(n)}\|^{2} &< \sum_{z \in nb(X_{n})} m(z)^{-1} [g_{z}(x) - \tilde{g}_{z}^{(n)}(x)]^{2} + \varepsilon/3 \\ &< \sum_{z \in X} m(z)^{-1} [g_{x}(z) - \tilde{g}_{x}^{(n)}(z)]^{2} + \varepsilon/3 \\ &< \sum_{z \in X'} m(z)^{-1} [g_{x}(z) - \tilde{g}_{x}^{(n)}(z)]^{2} + 2\varepsilon/3 \\ &< [\sum_{z \in X'} m(z)^{-1}]\varepsilon/3t + 2\varepsilon/3 = \varepsilon. \end{split}$$

Therefore $||p_x - p_x^{(n)}|| \to 0$ as $n \to \infty$.

References

- C. Blanc: Une interprétation élémentaire des théorèmes fondamentaux de M. Nevanlinna, Comm. Math. Helv. 12 (1939), 153-163.
- [2] L. Sario et al.: Classification theory of Riemannian manifolds, Lecture Notes in Math. 605, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [3] C. Saltzer: Discrete potentials and boundary value problems, Duke Math. J. 31 (1964), 299-320.

Takashi KAYANO and Maretsugu YAMASAKI

- [4] M. Yamasaki: Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.
- [5] M. Yamasaki: Biharmonic Green function of an infinite network, ibid. 14 (1980), 55-62.
- [6] M. Yamasaki: Quasiharmonic classification of infinite networks, Discrete Applied Math. 2 (1980), 339-344.

10