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A differentiable left I. P. Ioop (G, p) admits on the tangent space at the unit element two 

kinds of bilinear operations dp and dL which are induced from the multiplication p and left 

inner mappings. In this paper, after recalling some formulas of the Chern connection of a 

local 3-web of a diffp*rentiable loop, relations between this connection and bilinear operations 

above are investigated in differentiable left I. P. Ioops. The results are applied to homo-

geneous Lie loops and it is shown that the bilinear- and trilinear products of the tangent Lie 

triple algebras are given by the torsion and the curvature of the Chern connections 

S 1. ImtrocluctioEa 

A quasigroup (G, //) with the multiplication xy = p(x, y) for x, y in G is called a 

loop if it has a unit element e in G (cf. [1], [7]). We denote by L* the left translation 

of a loop G by an element x. A Ioop G has the left inverse property if, for every x in 

G, there exists a two-sided inverse x~1 of x such that L*-*L* = IG (the identity map on 

G). Such a loop will be called a left I. P. Ioop. For any two elements a, b of a loop G, 

the permutation of G given by L.,b=L~gL*Lb is called a left inner mapping of G. 

A homogeneous loop G is a left I. P. Ioop in which all left inner mappings are automor-

phisms of G (cf. [12], [13], [25]) 

Let G be a left I. P. Ioop. For x, y, z in G, we set 

~(x, y, z) =x((x~1y) (x~1z)) . 

Then, the ternary system n : G x G x G~>G satisfies the following relations ; 

(H1) n(x, x, y)=y, 

(H2) n(x, y, x) =y, 

(H~) n(x, e, n(e, x, y)) =n(e, x, n(x, e, y)) = y, 

where e denotes the unit element of G. In this case, for any fixed x in G, the multi-

plication ,l. given by ~*(y, z) = n(x, y, z) makes G a left I. P. Ioop with the unit element 

An rsomorphism (G /1) ~ (G p ) holds for every x and especlally // = p. Assume x. ' 
that (G, //) rs a homogeneous loop Then (G 11 ) , * is homogeneous, and the ternary 
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operation n on G satisfies the additional relations (cf. [15]); 

(H3) ~(x, y, n(y, x, z)) = z, 

(H4) n(x, y, n(u, v, w)) = n(n(x, y, u), n(x, y, v), n(x, y, w)) . 

In this case the permutation n(x, y) of G given by n(x, y)z = n(x, y, z) induces an 

rsomorphism (G, I/*) ~; (G, py) for any x, y in G 

In general, a ternary system n : G x G x G->G satisfying the relations (H1)' (H2), 

(H3) and (H4) is called a homogeneous systenl on G, and the permutations ~(x, y) of 

G are called displacements of (G, n) (cf. [15], [16]). It has been shown that the dis-

placement n(x, y) f'rom x to any point y of a homogeneous system (G, n) has exact]y 

the same properties as those of the left translations of the homogeneous loop (G, I/*) 

at x grven above 

In 1930's, it was found that the concept of loops is closely connected with the 

concept of 3-webs (cf. [6], [24]). Let (G, pt) be a loop. We consider three families 

a(P), p = 1, 2, 3, of subsets of W= G x G as follows : For any g e G, we set F(1)(9) = 

{(9, v)lveG}, F(2)(9)={(u, g)lueG} and F(3)(g)={(u, v)lp(u, v)=g}, and we call 

them vertical lines, horizontal lines and transversal lines of W, respectively. Then 

(7(P) = {F(p)(g)l9 e G}, p = 1, 2, 3, satisfy the following axionrs (Wi), (W2) of 3-web on 

W (cf. [5], [6]); 

(W1) Each point in W is contained in exactly one line of every a(P), p = 1, 2, 3. 

(W2) Two lines of different families have exactly one point in common. 

Moreover, if (G, p) is non-trivial, we have 

(W3) There exist three lines F(p), P = 1, 2, 3, which contain no point in common. 

In general, a set Wwith three f'amilies a(P), p = 1, 2, 3, of subsets F(p) satisfying (W1) 

and (W2) is called a 3-web and it is said to be non-degenerate if (Ws) is satisfied. Let 

W be a non-degenerate 3-web with families a(p), p = 1, 2, 3, of 'lines' in W. For any fixed 

vertical line G = F(i), choose a point e of G fixed. Then, we can define a multiplication 

on G in the following manner (Fig. 1) : Let G' be the horizontal line through e 

For any two points x, y e G, Iet x' e G' be the intersection of the transversal line through 

x with G', and let P(x, y) be the point of intersection of the vertical line through x' 

and the horizontal line through y. Then, we get the point //(x, y) of G as the inter-

section of the transversal line through P(x, y) with the vertical line G. We can check 

easily that (G, //) is a loop with, the unit element e, and that the 3-web of this loop 

constructed on (} x G is equivalent to the given 3-web W. Here, 3-webs W and W' 

are equiva lent if there exists a bijection oc : W~ W' under which the vertical-, horizontal-

and transversal lines are preserved, respectively. In our case, the equivalence is given 

by P : G x G~' W sending (x, y) into the point P(x, y) 

Let (G, p) be a loop represented on the vertical line {e} x G of the 3-web W= 

G x G. In [6] , it was shown that each element x of the loop (G, ,l) has a two-sided 

inverse x~i if'and only if the corresponding 3-web Wis hexagonal at e (Fig. 2), that is, 
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the hexagon (H) in Fig. 2 with the center e is a closed figure, and shown that (G, I/) 

has the left_ inverse property if and only if W satisfies the Bl~closure condition of Bol 

along the vertical line {e} x G, that is, the figure (Bl) in Fig. 3 is closed. Note that 

these conditlons are weaker than the corresponding closure conditions appeared in 

[6] which are to hold at any place in W. The closed figure which characterizes homo-

geneous loops is rather complicated and we omit to illustrate it. However, here is a 

special class of homogeneous loops, K-homogeneous loops, which can be characterized 

by the closed figure (K) in Fig. 4. A K-homogeneous loop is a left I. P. Ioop with the 

following property : (K) For any x and y in G, there exists a unique element z in G 

such that L*Ly = L.L*. In= fact, we can show that the left inner mappings of a left 
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I. P. Ioop G are automorphisms of G if the condition (K) is satisfied (Proposition 4) 

In 1936, S. S. Chern introduced in his thesis [9] a differential geometric method 

to the theory of 3-webs in diffe_rentiable manifolds whose 'lines' are given by differential 

systems, and found an affine connection on 3-webs invariant under differentiable 

equivalences of 3-webs, whtch we will call the Chern connection in this paper. He 

characterized closure conditions of some figures in 3-webs by means of relations of the 

torslon and the curvature of the Chern connection 

In this paper, after recalling the formulas for the torsion and the curvature of the 

Chern connection, we will apply them to 3-webs of differentiable left I. P. Ioops and of 

differentiable homogeneous loops (homogeneous Lie loops), and then clarify the inter-

relation between the canonical connection of homogeneous Lie loops and the bilinear 

operations on the tangent spaces at the unit elements, induced by multiplications and 

left inner mappings of the loops. On our way to this investigation, we will get the 

relation of tangent Lie triple algebras of homogeneous Lie loops and their Akivis 

algebras (cf. [3] or Ch. IX of [8]). Recently. K. H. Hofmann-K. Strambach have 

treated it in [12]. We will also show that geodesic K-homogeneous Lie loops are 

reduced to Lie groups. 
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S 2. Cherm conneetioEns of 3-webs 

In this section, we will recall the results about Chern connections of differentiable 

3-webs in [9] . Let M be a 2r-dimensional differentiable manifold of class C~. A 

differentiable 3-web W of dimension r (codimension r) in M is a triple of foliations 

~ (P), p = 1, 2, 3, of codimension r on an open subset W of M with the following pro-

perties : Given any point p in W, there exists exactly one leaf F(p) of ~ (P) through 

p, for each p = 1, 2, 3, such that the tangent spaces Tp(F(p)) of F(p) at p satisfy 

Tp(F(.))> = {O} and 

 = Tp(W) for p ~ T, I ~ p, T ~ 3, with 

 denoting 

the linear span in the tangent space Tp( W). This can be described in terms of differ-

ential systems as follows : A differentiable 3-web W with foliations ~ (p), p = 1, 2, 3, 

is given by three families of involutive differential systems co(1p), . . . , co~p) on W with which 

the foliation ~ (P) is defined by the equations co(kp) = O, k = 1,..., r, where each of the 

families of 1-forms {co~l)""' co~l); cot2),"', co(2)}, {a)~l)""' co~1); cot3),･･･, co(3)} and 

{cot2),"', a)~2) ; co~3),"" co~3)} is linearly independent at each point of W. In this case, 

we can choose the forms a)(kp) to satisfy 

(2.1) co(k..)=co~l)+co(k2)' k I , r, 

without loss of generality. 

Let W be a differentiable 3-web of codimension r in a differentiable manifold M 

of dimension 2r and assume that it is given by involutive differential systems {co(kp)}, 

p = 1, 2, 3, satisfying (2.1). Then there exist 1-forms e;p)k on W such that 

(2.2) dcok -coi A e(p)k (p)- (p) * . 
If we put 

(2.3) O(3)k = O;2)k + A,~jco~l) + Bikj co~2) 

=e(il)k + C,~j co~1) +DikjcoJ(2), 

we can show the relations B~.=B~. Cc.=C ~i and A~ _A~i=Dikj -D~i, by using 
'J J'' 'J . . 

' J 

dcok = deo~l)+dco(k2)' In the following, we denote 
(3) 

aikj = Aikj - A~i (2 . 4) 

Also, we can show that the forms Of 1)k-Of2)k are described as follows 

O(1)k -O(2)k =Af})k co~l) + A(2)kcoj (2.5) 

* ' ,j (2), where A;;)k-AJ(.~)k=A;~)k-AJ(.~)k=a,~j. Now, from (2.5) we can consider 1-forms 

co~ given by 

(2.6) co~ = O{k) - A;})kco~ 1) = O{2)f, + A{~)/, a)J 
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From (2,2) and (2.3) the following formulas follow : 

(2.7) dco~l) co(1) A co +alJ co{1) A O)(1) 

dcok =co{2) ~ A co alJ co(2) A co~2), (2) 

(2.8) dco~ = coJl'. A co~ + b~Imco{1) A co("2), 

with differentiable functions a,~j and b~l~ satisfying, a,cj + a~i=0. The Chern 

connection of the 3-web W is, by definition, the afiine connection on W whose con-

nection forms ~~~, I ~oc, P~2r, are given by ~)~=~p~~~=co~ and (~.k+i=~~)~+k=0, 

1 ~ i, k~r, with respect to the linearly independent 1-forms {co~l)""'co~1); 
o)~2),"', cot2)}' The formulas (2.7) and (2.8) show that the torsion tensor T~V and the 

curvature tensor ~~v6 with respect to the base forms {co~l) ; co(k2)} are given by*) 

T,cj ~ r+k _ _2a,~j and T" =0 otherwise ; = T .+i.+j ~ py 

k _ .+k _ .+k 
k
 = i~ j.+~1 = b~ im' ~jl'+~ ~ - .+jl*+~~~ .+j.+1~ ~ 

~~ v 6 = O otherwrse 

For brevity, we will call the functions a{,j and b~im the torsion and the curvature of 

the Chern connection of the 3-web. One of the most significant facts is that the Chern 

connection rs mvariant under any diffeomorphism which induces an equivalence of 

3-webs. 

REMARK. In [10] and [1l], V. Goldberg introduced another connection on 
3-web by choosing e}3)k as the c0~nection forms with respect to the base forms {a)k ' 

(1) ' 

co(k2)}, and he generalized it on d-webs w(d, n, r) of codimension r in nr-dimensional 

manifolds (cf. Ch. X of [8]). 

Now, we show some relations of the torsion and the curvature of the Chern 

connection of a differentiable 3-web, which owe to S . S . Chern [9] ･ By substituting 

the first equation of (2.7) to the equation ddcotl) = O, we have 

co{1) A (dco~ - co~ A co~) = (V{･1)alk~+aik*a';･1 +a~iaJi.~)co~1) A co(1) m A co(1) 

+V(2)ak col A co("I)Aco~2), 
j l~ (1) 

wh er e 

V(a)ak coj *(a) k j J + al~co;a)k _ a~m cofa)j _ ak.co(')j 

j Im (a)=0j almco(.) . IJ ~ , 
(1) k j (2) k j daklm=aj almco(1)+ej almco(2), 

= j +co(.2)k, co(.')=F(a)k i oc=1,2. co~ co(1)k ij co(a)' 

* In this paper, we adopt the opposite signs of torsion and curvature of affine connection to 

those appeared in usual bibliography 
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Then, from (2.8), we obtain 

(Vf･1)alkm + aikmaJi.1 -a~laJi.~)co~l) A o){1) A co("2) = O, 

(Vj.2)alk~ ~ blkmj)a)(1) A co(ml) A co~2) = O, 

which imply the following formulas 

(~ . (V;1)alkm + 2aikmal;･ I ) = O 

J , I ,m ' ' (2.9) 2VJ(.2)alkm = blk~j ~ b~l j' 

where ~:j,1,m denotes the cyclic summation with respect to j, l, m. In the same way, 

by the equation ddco(k2) = O, we get 

(2. 10) J ' I ,m(V}2)alkm + 2at~la;･m) = O, ~;. 

(1) k k bk 2Vj alm=blj~~ mjl' 

By the formulas (2.9) and (2.10) we have 

(2. 1 1) (~jJ,m(b~im ~ blkjm) = 4~; ac ai jJ,m tj Im' 

2Valkm=(blkjm~ b~jl)co~l) +(blkmj~ bk .)co!2) ' 
ml J 

On the other hand, by using (2.7) and (2.8), the following formulas are obtained from 

the equation ddco5 = O : 

(1) k _V(1) b'~ =2b~imalp, (2.12) Vp bjim I Jpm k i 
V(2)b~im V(m2)b~lp =2bjliapm' 

where 

V(a)b~im a(')b~imco~･)+bi co(')k-b~lma);･a)i 
jlm i 

k (a)i_b~lico(ma)1 oc 1 2 - b j imco I . 

S 3･ 3-Webs of differentiable left I. P. lloops 

Let (G, //) be a diffe.rentiable loop of dimension r with unit element e. As con-

sidered in S 1, a differentiable 3-web of (G, p) on G x G is given by the following three 

families a(P), p = 1, 2, 3, of r-dimensional submanifolds F(p)(g), g e G, of G x G, i.e., 

vertical lines F(1)(g) = {9} x G, horizontal lines F(2)(9) = G x {9} and transversal lines 

F(3)(g) = {(u, v)1//(u, v) =g}. Let U be a coordinate neighborhood of e and choose a 

neighborhood V of e such that p(V, V) is contained in U. Then, for the coordinate 

neighborhood W= Vx V of (e, e) in G x G with coordinates (u 1 ..., u'; vl . . ., v*), the 

3-web {(7(p)} on G x G induces a local 3-web on W defined by the following differential 



44 Michihiko ICnc~~WA 
systems; ~(1)=a(1)Iw' duk=0; ~(2)=a(2)lw' dvk=0; ~(3)=a(3)lw' dllk=0. We 
set- cotl)=P~dui, co(~2) = Q~dvi and co~3)=d/lk for P~=a~i/lk and Q~=evillk, where 

llk(u, v)=/lk(ul,..., u'; vl,..., v'). Then the 3-web {~(P)} on W is described by the 

equations co(kp) = O with cok = co~l)+co(k2)' so that we can apply the results in S2. The 
(3) 

r x r-matrices (P~) and (Q~) are nonsingular on Wwhose inverse matrices will be denoted 

by (P~) and (~~), respectively. Since dco~l)=~;dP~ A co~l) and do)(k2) = ~J,'.dQ~ A co~2)' 

we can write the 1-forms O(.1)k and e(.2)k given in (2.2) by the following manner ; 

e(.1)k = ( p5i - ~5 ~~eu" Ppk)co{1) ~ p5~~avq Ppko){2) ' 

(3. 1) e(.2)k = _ ~~~~auqQ~co{1) + (y,~j _ Q~~~5a.qQ~)co(2) ' 

where P,cj and y,~j are suitable functions satisfying p,cj = p~i and y,~j = y~i･ From 

(3.1) we can obtain the torsion a ,~j of the Chern connection in the following ; 

1
 (3.2) aikj= 2 (~5~~ p~Q~)a~pavq// 

For the connection form coki Of the Chern connection, we have 

(3.3) co~ = F,~j co{1) + F~ .coi Fc. = - P,PQ~aupevqllk' 
J J' (2)' *J 

A straightforward calculation of the 2-form dco~ - o)j A co~ shows the followings 

(3.4) b~l~~e(1)f~m~a(2)fk.+fc fi +~k.ri. -r~.~k _rk F~i 
im lj' ' ~ I ' m IJ 'j l~ Il J~ Jl Im 

and 

a(1)tk . _e(1)rk.-rk .ri .- ~k ~i (3.5) I ~J ~ IJ~ ~t IJ FliF~j 
a(2)F~m e("2)r~1=fc ri -r~lr3~, 

' '~ jl ' 
wh e re 

(3. 6) afl)rikj = Fra~~r,~j 
ef2)rt~j = ~rav~rlcj' 

Together with these formulas we get a local expression of the curvature b~im of the 

Chern connection as follows 

(3.7) b~Im=~P~P~Q~ e a a ･llk ' up uq v 
+ pIPQ~Q~aupavqav'/lk 

+ppQqa a /lk(p~P~au au'/li-p*Q~au av l/ ) 

' m up vq * l 
+ pPIQ~aupavq// (PjQ~au'av'/li - Q5Q~av'av'/li)' 

Hence, we have the following ; 
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PROPOSITION 1. Let (G, //) be a differentiable loop of dimension r. Choose a 

coordinate neighborhood of the unit element e. Then, for a neighborhood V of e, 

the coefficients of the Chern connection, its torsion and curvature of the local 3-web 

on W= Vx Vare evaluated at (e, e) as follows: 

(3.8) F,cj(e, e) = - auie'j/lk(e e) 

(3.9) a,~j(e, e) = ~ (a~ja･illk(e, e) - e~,a.j,lk(e, e)) , 

(3.10) b~im(e, e)=a~la.,e.~ll (e e) e*la~,a ~,l (e e) 

+ f~i(e, e)r,J.~(e, e) -r,~~(e, e)rlj(e, e), 

where the components are indexed with respect to the base forms {co~l); co(k2)} with 

co~l) = e~i/lkdui and co(k2) = e.i/lkdvi. 

PRooF. To show the formulas, we are only to notice the following facts in the 

formulas (3.2), (3.3) and (3.7); P~(e, e)=Q~(e, e)=~~, ~~(e, e)=~~(e, e) =~~ and 

a*ia~jllk(e, e) = a.ie.j/lk(e, e) =0. q. e. d. 
In the rest of this section, we assume that the differentiable loop (G, p) has the left 

inverse property, that is, there exists an inverse x~1 of each x in G such that x~1(xy) = y 

for y e G. We use the notation J, L. and L*,b for the transformations of G defined 

by the inversion J(x) = x~1, Ieft translations L*(x) = ax and left inner mappings L.,b = 

L.~L*Lb Choose a coordinate neighborhood U of e and denote by /lk(ul . . ., u'; 
vl ... v*) the coordinates of //(u, v) when p(u, v) e U. We investigate the relations of 

the torsion and the curvature of the Chern connection at the point (e, e) of the 3-web 

W= Vx V. The following is seen immediately from //(u, e) = u and //(e, v) = v ' 

a~i/lk(u, e) = ~~, a.i/4k(e, v) = 5~ 

(3. 1 1) a~ia~j･ ･ ･ a*~/lk(u, e) = O, 

a'ievj"'a'~/lk(e v) O 

By the relation 

(3.12) p(x, x~1)=/1(x x) e 
we have 

(3.13) aiJk(e) = - a~, 
aiajJk(e) = a~ia.j/lk(e, e) + a~ja.i/lk(e, e) . 

Furthermore, from the third order partial derivatives of the equations (3 . 1 2), the 

followings are obtained : 
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(3.14) aJalamJk(e) ~;J I ~,(au'avla ~/lk aula~~avj/lk -F,cj(Flm + F~l)) (e, e) 

~;j I ~(e~,a~la'~/lk a~'avla ~/lk - F~i(F;~+F~l)) (e, e) , 

where rikj(e, e) = - a~iavjPk(e, e) are the components of the Chern connection of the 

3-web evaluated at (e, e). By (3.14) and (3.10) of Proposition 1, we have ; 

PROPOSITION 2. (Cf. [9]) If the 3-web ofa differentiable loop (G, //) is hexagonal 

at e (Fig. 2 in S1), that is, if each x has an inverse x~1 such that x~1x=xx~1 =e, then 

th,e curvature b~l~ of the Chern connection satis,fies the following relation at (e, e): 

(3 . 1 5) ~j,1'~ b5im(e, e) = O. 

Now, we derive some formulas from the left inverse property ; p(u~1, p(u, v)) = v. 

Diffe_rentiating this equation in u and v, we get 

a~ia.p/lk(u~1, uv)ajJi(u)a.1/lP(u, v) 

(3.16) + a a.pllk(u , uv)a.j/i(u, v)a.1/lP(u, v) 

+ avi/lk(u~1, uv)auje'lpi(u, v) = O. 

By differentiating (3.16) once again in u and evaluating it at (e, e) we have 

(3.17) (2auje'la'~/lk - eujavle'~/lk - e~la'ja'~llk) (e, e) 

=(F~.Fi +F~iri. -Ft~m (F'J.1+Flj)) (e, e). 
IJ l~ J~ 

Hence, from (3.10) of Proposition 1, we obtain 

b~1~(e e)+blkj~(e e)=(a a 'a ~/lk+a.je.lav~// 

' ' ' ul 'J v 
2a~la~,av~// ) (e e)+(r~,rJi.~+Fk. Fi 

jt Im 
- r,~~(rlj + r,;･1))(e, e) =0. 

Thus, we have ; 

PRoposmoN 3. (Cf. [2]) If the 3-web of a differentiable loop (G, /4) sati~',fies the 

(Bl)=closure condition along the vel'tical line {e} x G (Fig. 3 in S1), that is, if (G, I/) 

has the left inverse property, then the curvature b~im of the Chern connection satisfies 

thefollowing relation at (e, e): 

(3.18) b~lm(e, e) + blkjm(e, e) = O. 

For any elements a, b in G, the left inner mapping L*,b is a diffeomorphism of G 

onto itself and it leaves the unit element e fixed. Let ~; = T.(G) be the tangent space 

of G at e, L~,b(e) the linear tansformation of ~ induced from La,b' Choose a co-
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ordinate nerghborhood U of e. Then, L~,beGL(~) has the following matrix-
represention with respect to the natural coordinate basis at e : 

(3.19) (L~, b(e))~ = a･･/lk((ab)-1, ab)a../lP(a, b)a.jpq(b, e) . 

The differentiable map L* : G x G~'GL(R) given by L*(a, b) = L~,b(e) induces a 

bilinear map dL : ~; x ~ ->End (~) in the following way 

(3.20) dL(X, Y)~ = XP Yqa..ab"L~k(e, e) 

for X = Xiai(e) and Y= Yiei(e) in 

(3.21) e.leb~L~k(e, e) = a~,a~~a.jktk(e, e) 

~ a*~a'la'jptk(e, e) 

+ a.ia.j/lk(e, e)a~a.,/li(e, e) 

- a~~a.i/lk(e, e)a~,a.j/li(e, e) . 

We consider another bilinear map d// : ~ x ~ ~' ~ at e induced from the multiplication 

// of the loop, that is, in any local coordinates around e, we set 

(3.22) ･ dll(X. Y) = Xi Yja~*a.jpk(e, e)ak(e) 

for X =Xiai(e) and Y= Yiei(e). 

THEOREM 1. Let (G, p) be a differentiable left I. P. Ioop, ~ the tangent space of 

G at the unitelemente. The bilinear maps dL: ~ x ~->End(~) and dp: ~ x 

~5 given by (3.20) and (3.22), respectively, are described with respect to any local co-

ordinates around e by the curvature and the torsion of the Chern connection in the 

following way; 

dL(X, Y)~ = - XIY~blk~j(e, e) (3 .23) 

d//(X, Y)k - d,l(Y, X) k = -2XiYja,~j(e, e) (3 .24) 

for any X=Xiai(e) and Y= Yiei(e) in ~, where a,cj and blk~j are indexed with respect 

to the base forms {co~l); (o(k2)} 9iven by a)~l)=P~dui and (o(k.2)=Q~dvi. 

PRooF. Comparing the equation (3.10) of Proposition I with (3.21), we get 

(3.23). The equation (3.24) is obtained directly from (3.9) of Proposition I and the 

definition (3.22) of d//･ q. e. d 
From Proposition 3 and the equation (3.23), we have 

COROLLARY 1. dL(X, Y) + dL(Y, X) = Ofor X. Ye ~;. 
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In his work [3], M. Akivis introduced a tangent algebra of a differentiable loop, 

which was given the name 'Akivis algebra' by K. H. Hofmann-K. Strambach in [8], 

[12] . The Akivis algebra of a differentiable loop (G, //) is, by definition, the tangent 

space (~; at e with the bilinear operation [X, Y] and the trilipear operation 

 given by (cf. Ch. X of [8]) 

[X, Y]k = - 2XiYja,cj , 

k =XIY~Zjb~im 

for X = Xiai(e), Y= Yiai(e) and Z = Ziai(e) with respect to any local coordinates at e. 

It satisfies the following axioms ; 

(A 1) [X, X] = O 

(A2) ~;(.

-

)= (~[[X, Y], Z] , where ~; denotes the cyclic summation with respect to X, Y, Z. The condition (A2) 

is assured by the first equation of the formula (2.11) of S. S. Chern 

COROLLARY 2. The Akivis algebra (~, [ , l, 

) of a differentiable left I. P loop is given by 

[X, Y] = d//(X, Y) - d/1(Y, X) , 

 = dL(X, Z)Y 

for X, Y, Ze ~. 

S 4. Camonical commectioms of homogemeous Lie ~oops and Cherm commectioms 

Let (G, p) be an r-dimensional differentiable left I. P. Ioop of class C". If (G, /1) 

satisfies the condition ; (L) each left inner mapping L.,b is an automorphism of (G, p) ; 

it is called a homogeneous Lie loop ([13]). In this section, we consider the differentiable 

homogeneous system n of a homogeneous Lie loop (G, p) and describe the relations of 

the torslon and the curvature tensor of the canonical connection with those of the 

Chern connection of the 3-web of (G, p). The concept of canonical connections has 

been introduced in [13] for homogeneous Lie loops and for differentiable homogeneous 

systems In [16Ll]. More generally, we define the canonical connection on a differ-

entiable left I. P. Ioop (G, p) as follows : Let n be the ternary system on G defined by 

n(x, y, z) =x((x~1y) (x~1z)) (cf. S1). Then ~ is differentiable and it satisfies (H1)' 

(H2) and (H~) in S I . Since each left translation L* is a diffeomorphism of G, any 

displacement n(x, y) : G->G given by n(x, y)z=n(x, y, z) is a diffeomorphism of G 

We denote by d~(x, y) the linear map of T*(G) to Ty(G) induced by the displacement 

n(x, y). At an arbitrary point x in G, we choose a coordinate neighborhood U and 
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we denote by E~ = ai(x), i = 1, 2, . . the natural basis of the tangent space T*(G) at . ,r, 

x with respect to the local coordinates (ui). put E~(y) = dn(x, y)E~ for y e U. Then 

we have differentiable vector fields E~,･･･, E~ on U which are linearly independent at 

each point in U. For any differentiable vector field Y on G, we can set Y= Y'E~ on U 

with differentiable functions Y' on U. Let X be another differentiable vector field 

on G. We can define the covariant diffp_rentiation of Y at x with respect to X in the 

following ; 

( Vx Y). = (X Yi) (x)E~-(4. 1) 

The connection on G defined by the operator of the covariant differentiation V above 

will be called the canonical connection of the differentiable left I. P. Ioop ,(G, I/)-

From the definition above, we can see that the canonical connection V of (G, ,l) 

coincides with one introduced in [13] if (G, //) is a homogeneous Lie loop. By the 

property (H2), there exists a neighborhood V of x such that n(a, b, c) e U for a, b, c e V 

We denote the coordinates of n(a, b, c) and their partial derivatives by nk(ai, bj, c~), 

e*=nk, abjnk, a.~nk, and so on. The properties (H1) and (H2) imply the followings ; 

(4.2) a.ink(a, a, c) =~~, abi7lk(a, b, a)=~~, 

a.*a.j" 'e.~nk(a, a, c) = eb*ebj" 'ab~nk(a, b, a) = O. 

Smce E (y) dn(x y)E (a~,nk(x y u))~ *ek(y) a.,nk(x y x)ak(y) for y e U, we 

can set 

ek(y) = Y~(y)E~(y) , 

where ( Y~(y)) is the inverse matrix of (a.jnk(x, y, x)). By the equation 

a YkJa.k~~(x y x) + Yk(y)ab'e kn~(x y, x) =0 

and by the definition (4.1) of the covariant derivatives, we get the components of the 

canonical connection ; 

(4.3) . F,cJ(x) = - ab'a.jnk(x x x) 

where Vataj = F,~jek in the coordinate neighborhood U. Hence, we have 

(4.4) , - ebja*ink(x, x, x) , T,~j(x) = abia.jnk(x x x) 

where T,j FJ , - F,cj are the components of the torsion tensor of the canomcal 

connection V 

In the following, we assume that (G, p) is a homogeneous Lie loop. Then, we 

have seen in S I that the associated homogeneous system n satisfies (H3) and (H4) 

Differentiate the both sides of the equation 
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(H4) n(e, x, n(e, u, v)) = n(x, n(e, x, u), n(e, x, v)) 

m u and v, in a neighborhood of e contained in U. Then, we get 

(4.5) ab"a.'nk(x, n(e, x, u), n(e, x, v))a.~,nq(e, x, u)a.jn'(e, x, v) 

= a..a..nk(e, x, n(e, u, v))ab~~q(e, u, v)a.jn'(e, u, v) 

+ a.,nk(e, x, n(e, u, v))ab~a.jni(e, u, v) . 

We use the notation in S3 for p(u, v) =n(e, u, v); i.e., 

P5(x, y) = abjnk(e, x, y). Q~(x, y) = a.jnk(e x y) 

and (P~), (Q~) are the inverse matrices of (P~) and (Q~), respectively. The equation 

(4.5) evaluated at u = v = e implies 

(4.6) r,cj(x) = rphq(e)Q~(x, e)Q~~(x, e)~~(x, e) - a..a../lk(x, e)Q~~(x, e)~~(x, e) 

for x e U. From the equation (4.5), we can obtain 

(4.7) (a..ab"a.'nk(x, x, x) + ab.ab"a"nk(x, x, x) 

+ab,e..a..?1k(x, x, x))Q~ (x, e)Qj(x, e) 

=ab"a.~a.jnk(e, x, e)+ F,~.(x)ab'a.~ni(e, x, e)Q~(x, e) 

+F~i(x)ab'a,jni(e, x, e)Q~ (x, e) 

- F~j(e)eb"a.,nk(e, x, e). 

Evaluating the both sides of the equation (4.7) at x = e and substittiting the equatiQn 

(4'8) ~ aIF~j(e) = a~,ab~a.j~k(e, e, e) + ab'ab~a jnk(e e e) + ab~a.,a.jnk(e e e) 

' '' ,' ' we get 

(4.9) R~im(e) = ab,a.~a.jnk(e, e, e) - ab~e.,a.j~k(e, e, e) 

+ F~i(e)r~j(e) - r~i(e)FI j(e) + r,~j(e) Tj~(~) , 

where R~im = ~ aIF~j + a~rlkj ~ F~ir~j + F~iF;j are the components of the curvature 

tensor of the canonical connection 

By the way, the equations (4.7) and (4.8) also imply the following ; 

(4.10) al T~j(e) = - F~i(e) T~j(e) + r;~(e) T,~j(e) + r; j(e) T~i(e) , 

that is, V T(e) = O, which has been shown in [13] to hold at each point of the homo-

geneous Lie loop G. 
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The Chern connection of the local 3-web of the homogeneous Lie loop (G, /1) 
has the components r,~j(u, v) written in the form (3.3). Hence, we have 

a.jFlk~=PhppQqa a.*pka *a.jlli 
l , ~~" ~ 
+ pIPQ~Q~a~.a. */lka.^e,j// i 

-pPQqa e a.jllk 
l ~ ~" ." , 

and, evaluating it at (e, e), we have 

a.jFlk~(e, e)=F,~(e, e)rlJ(e e) a~,a.~e ,llk(e e) 

Since Flk~(e, e) =Flk~(e), we obtain from (4.8) and (4.10) 

(4. 1 1) a.j(F~I ~ Flk'~)(e, e) = R~1~(e) + aj Tlk~(e) 

+ T~.(e) Tj~(e) + TJ~~(e) T~i(e) 
'J 

+ TJi.1(e) Tik~(e). 

THEOREM 2. Let (G, //) be a homogeneous Lie loop. Denote by d// and dL the 

bilinear maps on the tangent space ~= T.(G) at the unit element e, induced from the 

multiplication // and left inner mappings, respectively (cf. (3.20), (3.22)). Then, the 

torsion tensor Tand th.e curvatilre tensor R of the canonical connection of (G, /4) admit 

the following experessions : 

(4. 12) T.(X, Y) = d//(X, Y) - d//( Y, X) , 

(4. 1 3) R.(X, Y) = 2 dL(X. Y) 

for X, Y in ~. The components of T and R with respect to any local coordinates 

(ui) around e are related with the Chern connection of the local 3-web as follows; 

(4.14) Tikj(e) = -2aikj(e, e) , 

(4.15) R~l~(e) = - 2blk~j(e, e) , 

where a,cj an,d blk~j are the torsion and the curvature of the Chern connection with 

respect to the base forms {co~l); co(~2)} 9iven by (o~l) =P~dui and co(k2) = Q~dvi. 

PROOF Smce p; (u v) n (e u, v), we have F,cj(e) = - a*,a.jllk(e, e), which Im 

plies (4.12) and (4.14) by virtue of (3.22), (3.24) and (4.4). On the other hand, by using 

the components of dL(X. Y) given in (3.20) and (3.21), we get 

~ I Y~R~im(e) = dL(X, Y)~ - dL( Y, X)~-

Then, Corollary I to Theorem I and the equation (3.23) in Theorem I Iead us to the 

equations (4.13) and (4.15). q. e. d. 
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　　In［13］we　have　mtroducedl　the　concept　of　tangent　L1e　tr1p1e　a1gebra　of　a　homo－

geneous　L1e1oop（G，μ）as　fonows　Let⑮＝孔（G）be　thetangent　space　of　G　at　tlhe　un1t

θ．WesetXγ＝孤X，y）and1）（X、γ）＝R、（X，y）forX，γ∈⑥，whereτandRdenote

the　torsion　and　the　curvature　ofthe　canonica1comection　of（G，μ）．We　have　seen

that　the　b111near　product　Xγand－the　tr11inear　product1）（X，y）Z　sat1sfy　the　ax1o亙n　of

〃θ椚p1εα1σθ加α（genera1L1e　tr1p1e　syste血ofK　Yamagut1［26］），

（L1）　　　　　一XX＝O

（L2）　　　　　1）（X，X）＝O

（L3）　　　　　6（1）（X，y）Z＋（Xy）Z）＝O

（L4）　　　　　　6D（X瓦Z）＝O

（L5）　　　　　1）（X，γ）（σγ）＝（1）（X，y）σ）γ十σ（の（X，y）γ）

（L6）　　　　　［1）（X，y），D（σ，γ）］＝D（1）（X，γ）σ，γ）十1）（σ，D（X，γ）γ），

where6denotesthecyc11csumm就10nw1threspecttoX，γandZ　Wehavedeve1oped
1n　the　ser1es　ofart1c1es［13］一［23］an＆na1ogy　ofthe　theory　ofL1e　groups　and　L1e　a1gebras

for　homogeneous　L1e1oops　or，m血ore　genera1case，for　d．1伍erent1ab1e　ho血ogeneous

syste㎜s　Now，血o血Theorem2and．Coro11ary2to　Theorem1，1t　fo11ows　thaけhe
tangent　Ak1v1s　a且gebra　and　the　tangent1L1e　tr1p1e　a1gebra　c01nc1de　w1th鋤ch　other　for

lhomogeneous　L1e1oops，up　to　the　order　and　a　sca1ar　mu1t1p1e　of　the　tr111near　product，

that　is，

　　　C0R0LLARY　　工勿⑮わθ肋θ伽〃σθ〃Ψocθgグo1τo閉oσ醐θo蝸五昭1ooρ（G，μ）〃

肋θωη〃θ1θ閉θ〃θ．　τ伽〃，肋θ如〃σθ〃〃ε炉ψ1θo1σθ加α｛⑮；Xy；1）（X，γ）Z｝αη∂

伽伽gε耐〃加1M1gθわ70｛⑮；［X，γ］，〈X，XZ〉｝〃〃θZ肋∂肋伽〃1ow物；

　　　　　　　　Xγ＝［Xラγ］，D（X，y）Z＝2〈X，Z，γ〉力γ　X，兄Z∈⑮．

　　REMARK　The　same　resu1t　has　been　shown　recent1y　m［12］

　　Fma11y，we　cons1der　the　canomca1comect1on　of　a　K－homogeneous　L1e1oop

　　把R0PosITI0N4　　L釘（（チ，μ）わθo1φな∫　P　1oop　　4ア耐80れ功ω肋ε60弼ゐれo殉（K）

肋§1，伽η州M〃o榊ogθκθo蝸1oop．

　　PR00F．　The　cond－ition（K）imp1ies　that，for　any　x，γ，〃in　G，there　exists　an

e1ement　w　m　G　such　that

　　　　　　　　　　　　　　　　　1二。一11二L1二’L－i1二。一11二　＝五。
　　　　　　　　　　　　　　　　　　xγ　　　x　　γ　　ω　　ツ　　　　x　　　　xγ　　　　　w・

Operat1ng　both　s1d－es　of　th1s　equat1on　to　the　umtらwe　get　w＝L、，y〃　Therefore，we

have　L、，yL”＝LwL工，y，that　is，
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L.,y(uv) = (L*,yu) (L.,yv) . q. e. d. 

PROPOSITION 5. A homogeneous loop (G, ll) is K-homogeneous if and only if the 

homogeneous system n : G x G x G~･G satisfies 

(K') For any x, y e G, there exists an element z e G such that, n(x, y)=n(e, z). 

PROOF For any x y e G set u = x~1y. by (H3) and (H4), the equation 

L*L~L~ I = L. can be rewritten as n(x, xu) = n(e, z). - q. e. d. 

Now, we assume that (G, //) is a K-homogeneous Lie loop. By the proposinon 

above, the differentiable homogeneous system 11 of (G, //) must satisfy the condition 

(K'). Let x be a fixed point in G and set n(x, y, v) =n(e, u, v) with y = p(u, x) for y, 

v e G. In a coordinate neighborhood around e, we can see 

ayiuk(y) = P~(u x) 

abia.jnk(x, y, v) = eb~a.jnk(e, u, v)P~(u, x) . 

Hence, the components r,cj of the Chern connection can be evaluated at (e, x) as 

follows : 

r~. (e, x)= -P~(e, x)~~(e, x)a~ha.~llk(e, x) 
' J 

= - P~(e, x)a~.a.j/lk(e, x) 

-abia.jnk(x, x, x), 

that is, r~j(e, x) =F,cj(x). 

Thus, we have 

PROPOSITION 6. The canonical connection of a K-homogeneous Lie loop satisfies 

F,~j(x) = I'~j(e, x) 

in a neighborhood of the unit e, where r~j are the components of the Chern connection 

with respect to the baseforms {(o(1); co(2)}' 

THEOREM 3. Let (G, p) be a K-homogeneous Lie loop. Then, the curvature R 

of the canonical connection vanishes identically on G. 

PRooF. Since T,~j(x) = r~ i(e, x) - r~,~j(e, x) by Proposition 6, we can use (4.11) 

with ajTlk~(x) = a.j(Flk~ ~ Flkm) (e, x) and we can see 

R~im(e)+~;J I ~T,J(e)Tl~(e) O 
From the condition (L3) of the tangen~ Lie triple algebra, which is equivalent to the 

condition (A2) of Akivis algebra, we can show 

O = (~j, l,~(R~1~(e) + T,J(e) Tl~(e)) 

= 4~; T~ .(e) Tl~(e) 
j,1,~ *J 
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Hence, we have R~im(e) = O, and this holds at every point of G since (G, p) 

geneous 

By Theorem I . I in [16-Il] we have immediately the following ; 

COROLLARY. Let (G, p) be a connected analytic K-homogeneous Lie 
(G, //) is geodesic, then it is reduced to a Lie group. 

is homo-
q. e, d. 

loop. If 
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