Supplement to the Paper "Construction of Regular *-Semigroups"

Miyuki Yamada
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 3, 1984)

Abstract

This is a continuation of the previous paper "Note on Construction of Regular *-Semigroups, Mem. Fac. Sci., Shimane Univ. 15 (1981), 17-22". In this paper, we shall investigate the structure of completely regular [H-compatible regular, strongly \mathbf{H}-compatible regular] *-semigroups.

§1. Prelimimary

In the previous paper [2], the author has shown a way of constructing every general regular *-semigroup by means of a fundamental regular *-semigroup. This paper is a continuation of [2]. Every terminology and notation should be referred to [2], unless otherwise stated. In the previous paper [2], the following has been shown: Let Γ be a fundamental regular $*$-semigroup, and E_{Γ} and F_{Γ} the set of idempotents of Γ and the set of projections of Γ respectively. Let $M=\Sigma\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ a partial groupoid which is a disjoint sum of groups $\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ and satisfies the condition (C.0) of [2]. Put $N_{M}\left(F_{\Gamma}\right)=\Sigma\left\{S_{\tau}: \tau \in F_{\Gamma}\right\}$, and let $\Delta=\{\bar{\gamma}, C(\delta, \tau)\}_{\delta, \tau, \gamma \in \Gamma}$ a factor set belonging to $\left\{N_{M}\left(F_{\Gamma}\right), \Gamma\right\}$ (see [2]). Then, the $*$-regular product $N_{M}\left(F_{\Gamma}\right) \underset{\Delta}{\otimes} \Gamma$ (see [2]) of $N_{M}\left(F_{\Gamma}\right)$ and Γ becomes a regular $*$-semigroup, and coversely every regular $*$-semigroup can be obtained in this way. In this case, the multiplication and the special involution (*-operation) * are given by

$$
\begin{aligned}
& N_{M}\left(F_{\Gamma}\right) \otimes \underset{\Delta}{\otimes} \Gamma=\left\{(a, \gamma): a \in S_{\gamma \gamma^{*},} \gamma \in \Gamma\right\}, \\
& (a, \gamma)(b, \delta)=\left(a b^{\bar{\gamma}} C(\gamma, \delta), \gamma \delta\right), \\
& (a, \gamma)^{*}=\left(t, \gamma^{*}\right), \text { where } t \text { is given by } t^{\bar{\gamma}}=a^{-1} C\left(\gamma, \gamma^{*}\right)^{-1} .
\end{aligned}
$$

In this paper, we investigate the following two special cases:
Case I. $\quad \Gamma$ is a fundamental completely regular *-semigroup.
Case II. $\quad \Gamma$ is an H-degenerate regular [orthodox] $*$-semigroup, ${ }^{1)}$ and M is a partial groupoid [semigroup] which is a disjoint union [a band E_{Γ}] of groups $\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$.

[^0]
§2. Case II

Let Γ be a fundamental completely regular *-semigroup, and $\Delta=\{\bar{\gamma}, C(\delta, \eta)\}_{\gamma, \delta, \eta \in \Gamma}$ a factor set belonging to $\left\{N_{M}\left(F_{\Gamma}\right), \Gamma\right\}$, and assume that Δ satisfies the following condition:
(C.1) For any $\gamma \in \Gamma, C\left(\gamma, \gamma \gamma^{-1}\right)=C\left(\gamma \gamma^{-1}, \gamma\right)=e_{\gamma \gamma^{*},}$ where $e_{\gamma \gamma^{*}}$ is the identity of $S_{\gamma \gamma^{*}}$

Then, the following result can be obtained:
Theorem 1. The *-regular product $N_{M}\left(F_{\Gamma}\right) \underset{\Delta}{\otimes} \Gamma$ is a completely regular *semigroup. Further, every completely regular $*$-semigroup can be obtained in this fashion.

Proof. The first part: We need only to show that $N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$ is a union of groups. Let $(a, \gamma),\left(b, \gamma^{-1}\right) \in N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$. Then, $(a, \gamma)\left(b, \gamma^{-1}\right)=\left(a b^{\bar{\gamma}} C\left(\gamma, \gamma^{-1}\right), \lambda\right)$, where $\lambda=\gamma \gamma^{-1} \in E_{\Gamma}$. Now, let c be an arbitrary element of $S_{\lambda \lambda^{*}}$. Then, $\left(a b^{\bar{\gamma}} C\left(\gamma, \gamma^{-1}\right), \lambda\right)(c, \lambda)=\left(a b^{\bar{\eta}} C\left(\gamma, \gamma^{-1}\right) c^{\bar{\lambda}} C(\lambda, \lambda), \lambda\right)$. We can easily see that for any (x, λ), where $x \in S_{\lambda \lambda^{*}}$ and $\lambda \in E_{\Gamma}, x^{\bar{\lambda}}=x$. In fact: Let $\lambda=\eta \delta$, where $\eta, \delta \in F_{\Gamma}$ (such elements η and δ exist). Now, $x^{\bar{\delta} \bar{\eta}}=x^{\overline{\delta \eta} C(\eta, \delta)}=C(\eta, \delta) x^{\bar{\eta} \bar{\delta}} C(\eta, \delta)=e_{\lambda \lambda^{*}} x^{\bar{\lambda}} e_{\lambda \lambda^{*}}=x^{\bar{\lambda}}$. Therefore, $\quad x^{\bar{\lambda}}=e_{\eta} e_{\delta} x e_{\delta} e_{\eta}=e_{\eta \delta} e_{\eta \delta \eta} x e_{\eta \delta \eta} e_{\delta \eta} \quad$ (since $e_{\eta \delta \eta} x=x e_{\eta \delta \eta}=x$) $=e_{\eta \delta \eta} x e_{\eta \delta \eta} \quad$ (since $\eta \delta \mathscr{R} \eta \delta \eta$ and $\eta \delta \eta \mathscr{L} \delta \eta$, where \mathscr{R} and \mathscr{L} are Green's R - and L-relations, it follows from (3) of (C.0) of [2] that $e_{\eta \delta} e_{\eta \delta \eta}=e_{\eta \delta \eta}$ and $\left.e_{\eta \delta \eta} e_{\delta \eta}=e_{\eta \delta \eta}\right)=x$. Therefore, $\left(a b^{\bar{\gamma}} C\left(\gamma, \gamma^{-1}\right) c^{\bar{c}} C(\lambda, \lambda), \lambda\right)=\left(a b^{\bar{\gamma}} C\left(\gamma, \gamma^{-1}\right) c, \lambda\right)$ (since $\left.C(\lambda, \lambda)=e_{\lambda \lambda^{*}}\right)$. Since c is an arbitrary element of $S_{\lambda \lambda^{*}}$, there exists $c^{\prime} \in S_{\lambda \lambda^{*}}$ such that $(a, \gamma)\left(b, \gamma^{-1}\right)\left(c^{\prime}, \lambda\right)=\left(e_{\lambda \lambda^{*}}, \lambda\right)$. Let $\left(b, \gamma^{-1}\right)\left(c^{\prime}, \lambda\right)=\left(d, \gamma^{-1}\right)$. Then, $(a, \gamma)\left(d, \gamma^{-1}\right)=\left(e_{\lambda \lambda^{*}}, \lambda\right)$. Similarly, there exists $\left(e, \gamma^{-1}\right)$ such that $\left(e, \gamma^{-1}\right)(a, \gamma)=\left(e_{\lambda^{*}}, \lambda\right)$. Now, $(a, \gamma)\left(e_{\lambda^{*}}, \lambda\right)=\left(a e_{\lambda^{*}}^{\bar{\gamma}} C(\gamma, \lambda), \gamma\right)=$ (a, γ) (by (C.1)), and ($\left.e_{\lambda \lambda^{*}}, \lambda\right)(a, \gamma)=\left(e_{\lambda \lambda^{*}} a^{\bar{\lambda}} C\left(\lambda, \gamma^{-1} \gamma\right)=(a, \gamma)\right.$ (since $C(\lambda, \gamma)=e_{\gamma \gamma^{*}}$ and $\left.a^{\bar{\gamma}}=a\right)$. Further, $\left(d, \gamma^{-1}\right)\left(e_{\lambda \lambda^{*}}, \lambda\right)=\left(d e_{\lambda \lambda^{*}}^{\overline{\gamma^{-1}}} C\left(\gamma^{-1} . \lambda\right), \gamma^{-1}\right)=\left(d e_{\gamma^{-1}\left(\gamma^{-1}\right)^{*}} e_{\gamma^{-1}\left(\gamma^{-1}\right)^{*},} \gamma^{-1}\right)$ $=\left(d, \gamma^{-1}\right)$. Similarly, $\quad\left(e, \gamma^{-1}\right)\left(e_{\lambda \lambda^{*}}, \lambda\right)=\left(e, \gamma^{-1}\right)$. Now, $\quad\left(e, \gamma^{-1}\right)(a, \gamma)\left(d, \gamma^{-1}\right)=$ $\left(e, \gamma^{-1}\right)\left(e_{\lambda \lambda^{*}}, \lambda\right)=\left(e, \gamma^{-1}\right)$. Therefore, $\left(e_{\lambda \lambda^{*}}, \lambda\right)\left(d, \gamma^{-1}\right)=\left(e, \gamma^{-1}\right)$. Then, $(a, \gamma)\left(e_{\lambda \lambda^{*}}, \lambda\right)$. $\left(d, \gamma^{-1}\right)\left(e_{\lambda \lambda^{*}}, \lambda\right)=\left(e_{\lambda \lambda^{*}}, \lambda\right)$ and $\left(e_{\lambda \lambda^{*}}, \lambda\right)\left(d, \gamma^{-1}\right)\left(e_{\lambda \lambda^{*}}, \lambda\right)(a, \gamma)=\left(e, \gamma^{-1}\right)(a, \gamma)=\left(e_{\lambda \lambda^{*}}, \lambda\right)$. Thus, (a, γ) is contained in the maximal subgroup $G_{\left(e_{\lambda \lambda} \lambda^{*}, \lambda\right)}$ (of $\left.N_{M}\left(F_{\Gamma}\right) \otimes \Gamma\right)$ containing ($e_{\lambda \lambda^{*},}, \lambda$). Accordingly, $N_{M}\left(F_{\Gamma}\right) \underset{\Delta}{\otimes} \Gamma$ is a union of groups.

The latter half: Let S be a completely regular $*$-semigroup. Let μ be the maximum idempotent separating congruence on S. Then, $\Gamma=S / \mu$ is a fundamental regular *-semigroup (of course, Γ is also a completely regular *-semigroup), and the natural homomorphism $\xi: S \rightarrow S / \mu$ is a *-homomorphism (see [1]). Hence, a *-peration * in Γ can be defined by $(a \xi)^{*}=a^{\#} \xi$, where \# is the *-operation in S. Further, it is obvious that $\lambda \xi^{-1}=S_{\lambda}$ is a subgroup of S for each $\lambda \in E_{\Gamma}$ (where E_{Γ} is the set of idem-
potents of Γ). Hence, $M=\Sigma\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ is a partial subgroupoid of S and satisfies (C.0) of [2]. Let $N_{M}\left(F_{\Gamma}\right)=\Sigma\left\{S_{\lambda}: \lambda \in F_{\lambda}\right\}$, where F_{Γ} is the set of projections of Γ, that is, $F_{\Gamma}=\left\{\tau \in E_{\Gamma}: \tau^{*}=\tau\right\}$. For any $\gamma \in \Gamma$, let $\gamma \xi^{-1}=S_{\gamma}$. Let x_{γ} be a representative of S_{γ} for each $\gamma \in \Gamma$, and especially $x_{\lambda}=e_{\lambda}$ for each $\lambda \in E_{\Gamma}$ (where e_{λ} is the identity of S_{λ}). Since $S_{\gamma \gamma^{*} x_{\gamma}}=S_{\gamma}$ (see [2]), for any x_{γ}, x_{δ} there exists $C(\gamma, \delta) \in S_{\gamma \delta(\gamma \delta)^{*}}$ such that $x_{\gamma} x_{\delta}=$ $C(\gamma, \delta) x_{\gamma \delta}$. Then, $u x_{\gamma} v x_{\delta}=u v^{\bar{\gamma}} C(\gamma, \delta) x_{\gamma \delta}$ for $u \in S_{\gamma \gamma^{*}}, v \in S_{\delta \delta^{*}}$, where $v^{\bar{y}}=x_{\gamma} v x_{\gamma}^{*}$. Now, it follows from [2] that $\Delta=\{\bar{\gamma}, C(\eta, \delta)\}_{\gamma, \delta, \eta \epsilon \Gamma}$ satisfies (C.3) of [2] and $N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$ is *-isomorphic to S. Therefore, to complete the proof, it is need only to show that $\{C(\eta, \delta) ; \eta, \delta \in \Gamma\}$ satisfies (C.1). Let $\gamma \gamma^{-1}=\lambda$. Then, $x_{\lambda} x_{\gamma}=C(\lambda, \gamma) x_{\gamma}$. Now, $e_{\lambda} x_{\gamma} x_{\gamma^{*}}=C(\lambda, \gamma) x_{\gamma} x_{\gamma^{*}}$, and hence $e_{\lambda} e_{\gamma \gamma^{*}} C\left(\gamma, \gamma^{*}\right)=C(\lambda, \gamma) e_{\gamma \gamma^{*}} C\left(\gamma, \gamma^{*}\right)$. Therefore, $e_{\gamma \gamma^{*}} C\left(\gamma, \gamma^{*}\right)=C(\lambda, \gamma) C\left(\gamma, \gamma^{*}\right)$, and $e_{\gamma \gamma^{*}}=C(\lambda, \gamma) e_{\gamma \gamma^{* *}}$. Hence, $e_{\gamma \gamma^{*}}=C(\lambda, \gamma)$. Similarly, we have $C(\gamma, \lambda)=e_{\gamma \gamma^{* *}}$. Thus, $\{C(\eta, \delta): \eta, \delta \in \Gamma\}$ satisfies (C.1).

§3. Case III

In this section, we shall prove the following result:
Theorem 2. Let $\left(\Gamma,{ }^{*}\right)^{2)}$ be an H-degenerate regular [otrhodox] *-semigroup, and $M=\Sigma\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ a partial groupoid [semigroup] which is a disjoint union [a band] of groups $\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ and satisfies (C.0) of [2]. Let F_{Γ} be the set of projections of (Γ, *), and put $N_{M}\left(F_{\Gamma}\right)=\Sigma\left\{S_{\lambda}: \lambda \in F_{\Gamma}\right\}$. Let $\Delta=\{\bar{\gamma}, C(\delta, \eta)\}_{\gamma, \delta, \eta \in \Gamma}$ be a factor set belonging to $\left\{N_{M}\left(F_{\Gamma}\right), \Gamma\right\}$. Then, the *-regular product $N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$ is an H-compatible [strongly H-compatible] ${ }^{3)}$ regular $*$-semigroup. Further, every H-compatible [strongly H-compatible] regular $*$-semigroup can be constructed in this fashion.

Proof. The first half: We first consider the part []. It is need only to show that if $\left(\Gamma,{ }^{*}\right)$ is orthodox and if M is a band E_{Γ} of groups $\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ which satisfies (C.0) of [2] then the maximal subgroups of $N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$ form a band of groups. Now, the set of idempotents of $N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$ is $E=\left\{\left(e_{\lambda \lambda^{*}}, \lambda\right): \lambda \in E_{\Gamma}\right\}$, where e_{τ} is the identity of S_{τ} for each $\tau \in E_{\Gamma}$ (see Theorem 2.1 of [2]). It is also easy to see that the H-class containing $\left(e_{\lambda \lambda^{*}}, \lambda\right)$ is $\left\{(a, \lambda): a \in S_{\lambda \lambda^{*}}\right\}=\underline{S}_{\lambda}$. Let $\lambda, \delta \in E_{\Gamma}$. Then, $(a, \lambda)(b, \delta)=$ ($a b^{\bar{\lambda}} C(\lambda, \delta), \lambda \delta$) and $\lambda \delta \in E_{\Gamma}$ since E_{Γ} is a band. Therefore, the maximal subgroups of $N_{M}\left(F_{\Gamma}\right) \underset{\Delta}{\otimes \Gamma}$ form a band E_{Γ} of the groups $\left\{\underline{S}_{\lambda}: \lambda \in E_{\Gamma}\right\}$.

Next consider the case where ($\Gamma,{ }^{*}$) is an H-degenerate regular semigroup and M is a partial groupoid which is a disjoint union of groups $\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ and satisfies (C.0) of [2]. Now, $(a, \gamma) \mathscr{H}(b, \delta)$ implies $(a, \gamma) \mathscr{L}(b, \delta)$, where \mathscr{H} and \mathscr{L} are Green's H- and

[^1]L-relations respectively. Hence, there exist $\left(c, \delta_{1}\right),\left(d, \delta_{2}\right)$ such that $\left(c, \delta_{1}\right)(a, \gamma)=(b, \delta)$ and $\left(d, \delta_{2}\right)(b, \delta)=(a, \gamma)$. This implies $\delta_{1} \gamma=\delta$ and $\delta_{2} \delta=\gamma$, and hence $\gamma \mathscr{L} \delta$. Similarly, we have $\delta \mathscr{R} \gamma$, where \mathscr{R} is Green's R-relation. That is, $r \mathscr{H} \delta$. Since Γ is H -degenerate, $\delta=\gamma$. Conversely assume that $\gamma=\delta$. Next, we shall show $(a, \gamma) \mathscr{H}(b, \delta)$. For any $c \in S_{\gamma^{*} \gamma}(a, \gamma)\left(c, \gamma^{*} \gamma\right)=\left(a c^{\bar{\gamma}} C\left(\gamma, \gamma^{*} \gamma\right), \gamma \gamma^{*} \gamma\right)=\left(a c^{\bar{\gamma}} e_{\gamma \gamma^{*}}, \gamma\right)=\left(a c^{\bar{\gamma}}, \gamma\right)$. Since $\bar{\gamma}$ maps $S_{\gamma^{*} \gamma}$ onto $S_{\gamma \gamma^{*},}$, there exists c such that $c^{\bar{\gamma}}=a^{-1} b, a^{-1} \in S_{\gamma \gamma^{* *}}$. Hence, $\left(a c^{\bar{\gamma}}, \gamma\right)=(b, \gamma)$. Therefore, $(a, \gamma)\left(c, \gamma^{*} \gamma\right)=(b, \gamma)$. Similarly, there exists $\left(t, \gamma^{*} \gamma\right)$ such that $(b, \gamma)\left(t, \gamma^{*} \gamma\right)=$ (a, γ). Hence, $(a, \gamma) \mathscr{R}(b, \gamma)$. Next, for $c \in S_{\gamma \gamma^{*},}\left(c, \gamma \gamma^{*}\right)(a, \gamma)=\left(c a^{\left.\overline{\gamma \gamma^{*}} C\left(\gamma \gamma^{*}, \gamma\right), \gamma\right)=}\right.$ $\left(c a^{\overline{\gamma \gamma^{*}}} e_{\gamma \gamma^{*}}, \gamma\right)=\left(c a^{\overline{\gamma \gamma^{*}}}, \gamma\right)=\left(c e_{\gamma \gamma^{*}} a e_{\gamma \gamma^{*}}, \gamma\right)=(c a, \gamma)$. The element $b a^{-1}$ is contained in $S_{\gamma \gamma^{* *}}$ If we take $c=b a^{-1},(c a, \gamma)=(b, \gamma)$. Hence, $\left(c, \gamma \gamma^{*}\right)(a, \gamma)=(b, \gamma)$. Similarly, there exists $\left(d, \gamma \gamma^{*}\right)$ such that $\left(d, \gamma \gamma^{*}\right)(b, \gamma)=(a, \gamma)$. Hence, $(a, \gamma) \mathscr{L}(b, \gamma)$. Consequently, $(a, \gamma) \mathscr{H}(b, \gamma)$. Therefore, \mathscr{H} is a congruence. Hence, $N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$ is H -compatible.

The latter half: Let ($S, \#$) be an H-compatible regular $*$-semigroup. Since $S / \mathscr{H}=$ Γ is an H -degenerate regular $*$-semigroup with respect to the $*$-operation defined by $(x \mathscr{H})^{*}=x^{\sharp} \mathscr{H}$, it follows from Lemma 3.1 of [2] that S is $*$-isomorphic to $N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$, where $M=\Sigma\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}\left(S_{\gamma}=\gamma f^{-1}\right.$, where f is the natural homomorphism of S onto $S / \mathscr{H}), N_{M}\left(F_{\Gamma}\right)=\Sigma\left\{S_{\tau}: \tau \in F_{\Gamma}\right\}$, and Δ a factor set belonging to $\left\{N_{M}\left(F_{\Gamma}\right), \Gamma\right\}$. In particular, if $(S, \#)$ above is strongly H-compatible, then it is easy to see that $S / \mathscr{H}=\Gamma$ is an H-degenerate orthodox *-semigroup and $S \cong N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$.

Remark. If $\left(\Gamma,{ }^{*}\right)$ is a fundamental orthodox $*$-semigroup, and M is a band E_{Γ} of groups $\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ satisfying (C.0) of [2], then $N_{M}\left(F_{\Gamma}\right) \otimes \underset{\Delta}{ } \Gamma$ above is orthodox if and only if it satisfies the following condition:

$$
\begin{equation*}
e_{\lambda \lambda^{*} e_{\delta \delta^{*}}^{\pi}} C(\lambda, \delta)=e_{\lambda \delta(\lambda \delta)^{*}} \quad \text { for any } \quad \lambda, \delta \in E_{\Gamma} . \tag{C.2}
\end{equation*}
$$

In fact, let $\left(e_{\lambda \lambda^{*}}, \lambda\right),\left(e_{\delta \delta^{*}}, \delta\right)$ be two idempotents of $N_{M}\left(F_{\Gamma}\right) \otimes \Gamma$. Then, it is easy to see that $\left(e_{\lambda \lambda^{*}}, \lambda\right)\left(e_{\delta \delta^{*}}, \delta\right)=\left(e_{\lambda \delta(\lambda \delta)^{*}}, \lambda \delta\right)$ if and only if $e_{\lambda \lambda^{*}}{ }_{\partial \delta^{*}}^{\bar{\pi}} C(\lambda, \delta)=e_{\lambda \delta(\lambda \delta)^{* *}}$. Hence, we have the following result:
$N_{M}\left(F_{\Gamma}\right) \otimes \underset{A}{\otimes}$, where $\left(\Gamma,{ }^{*}\right)$ is a fundamental orthodox $*$-semigroup and M is a band E_{Γ} of groups $\left\{S_{\lambda}: \lambda \in E_{\Gamma}\right\}$ satisfying (C.0) of [2], is an orthodox $*$-semigroup if and only if the factor set Δ satisfies (C.2). Further, every orthodox $*$-semigroup can be obtained in this way.

References

[1] Yamada, M., On the structure of fundamental regular *-semigroups, Studia Sci. Math. Hungarica 16 (1981), 281-288.
[2] -, Note on the construction of regular *-semigroups, Mem. Fac. Sci., Shimane Univ. 15 (1981), 17-22.

[^0]: 1) A semigroup Γ is called H-degenerate if every H-class of Γ consists of a single element. A regular $*$-semigroup is called an orthodox $*$-semigroup if it is orthodox.
[^1]: 2) A regular $*$-semigroup Γ with an involution $*$ is sometimes denoted by $(\Gamma, *)$.
 3) A regular semigroup S is said to be H-compatible [strongly H-compatible] if the Green's H-relation on S is a congruence [if the maximal subgroups of S form a band of groups].
