Mem. Fac. Sci., Shimane Univ., 18, pp. 9–12 Dec. 20, 1984

Supplement to the Paper "Construction of Regular *-Semigroups"

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan (Received September 3, 1984)

This is a continuation of the previous paper "Note on Construction of Regular *-Semigroups, Mem. Fac. Sci., Shimane Univ. 15 (1981), 17–22". In this paper, we shall investigate the structure of completely regular [H-compatible regular, strongly H-compatible regular] *-semigroups.

§1. Preliminary

In the previous paper [2], the author has shown a way of constructing every general regular *-semigroup by means of a fundamental regular *-semigroup. This paper is a continuation of [2]. Every terminology and notation should be referred to [2], unless otherwise stated. In the previous paper [2], the following has been shown: Let Γ be a fundamental regular *-semigroup, and E_{Γ} and F_{Γ} the set of idempotents of Γ and the set of projections of Γ respectively. Let $M = \Sigma\{S_{\lambda} : \lambda \in E_{\Gamma}\}$ a partial groupoid which is a disjoint sum of groups $\{S_{\lambda} : \lambda \in E_{\Gamma}\}$ and satisfies the condition (C.0) of [2]. Put $N_M(F_{\Gamma}) = \Sigma\{S_{\tau} : \tau \in F_{\Gamma}\}$, and let $\Delta = \{\bar{\gamma}, C(\delta, \tau)\}_{\delta, \tau, \gamma \in \Gamma}$ a factor set belonging to $\{N_M(F_{\Gamma}), \Gamma\}$ (see [2]). Then, the *-regular product $N_M(F_{\Gamma}) \otimes \Gamma$ (see [2]) of $N_M(F_{\Gamma})$ and Γ becomes a regular *-semigroup, and coversely every regular *-semigroup can be obtained in this way. In this case, the multiplication and the special involution (*-operation) * are given by

$$N_{M}(F_{\Gamma}) \bigotimes_{A} \Gamma = \{(a, \gamma): a \in S_{\gamma\gamma^{*}}, \gamma \in \Gamma\},\$$

(a, γ)(b, δ)=($ab^{\overline{\gamma}}C(\gamma, \delta), \gamma\delta$),
(a, γ)*=(t, γ^{*}), where t is given by $t^{\overline{\gamma}} = a^{-1}C(\gamma, \gamma^{*})^{-1}$.

In this paper, we investigate the following two special cases:

Case I. Γ is a fundamental completely regular *-semigroup.

Case II. Γ is an *H*-degenerate regular [orthodox] *-semigroup,¹) and *M* is a partial groupoid [semigroup] which is a disjoint union [a band E_{Γ}] of groups $\{S_{\lambda}: \lambda \in E_{\Gamma}\}$.

¹⁾ A semigroup Γ is called H-degenerate if every H-class of Γ consists of a single element. A regular *-semigroup is called an orthodox *-semigroup if it is orthodox.

§2. Case I

Let Γ be a fundamental completely regular *-semigroup, and $\Delta = \{\bar{\gamma}, C(\delta, \eta)\}_{\gamma,\delta,\eta\in\Gamma}$ a factor set belonging to $\{N_M(F_{\Gamma}), \Gamma\}$, and assume that Δ satisfies the following condition:

(C.1) For any $\gamma \in \Gamma$, $C(\gamma, \gamma\gamma^{-1}) = C(\gamma\gamma^{-1}, \gamma) = e_{\gamma\gamma^*}$, where $e_{\gamma\gamma^*}$ is the identity of $S_{\gamma\gamma^*}$.

Then, the following result can be obtained:

THEOREM 1. The *-regular product $N_M(F_{\Gamma}) \bigotimes_{\Delta} \Gamma$ is a completely regular *semigroup. Further, every completely regular *-semigroup can be obtained in this fashion.

PROOF. The first part: We need only to show that $N_M(F_{\Gamma}) \bigotimes_{A} \Gamma$ is a union of groups. Let $(a, \gamma), (b, \gamma^{-1}) \in N_M(F_\Gamma) \otimes \Gamma$. Then, $(a, \gamma)(b, \gamma^{-1}) = \stackrel{4}{(ab^{\overline{\gamma}}C(\gamma, \gamma^{-1}), \lambda)},$ where $\lambda = \gamma \gamma^{-1} \in E_r$. Now, let *c* be an arbitrary element of $S_{\lambda\lambda^*}$. Then, $(ab^{\overline{\gamma}}C(\gamma,\gamma^{-1}),\lambda)(c,\lambda) = (ab^{\overline{\gamma}}C(\gamma,\gamma^{-1})c^{\overline{\lambda}}C(\lambda,\lambda),\lambda)$. We can easily see that for any (x, λ) , where $x \in S_{\lambda\lambda^*}$ and $\lambda \in E_{\Gamma}$, $x^{\bar{\lambda}} = x$. In fact: Let $\lambda = \eta\delta$, where $\eta, \delta \in F_{\Gamma}$ (such elements η and δ exist). Now, $x^{\overline{\delta}\overline{\eta}} = x^{\overline{\delta\eta C(\eta, \delta)}} = C(\eta, \delta) x^{\overline{\eta}\overline{\delta}} C(\eta, \delta) = e_{\lambda\lambda^*} x^{\overline{\lambda}} e_{\lambda\lambda^*} = x^{\overline{\lambda}}$. $x^{\bar{\lambda}} = e_{\eta} e_{\delta} x e_{\delta} e_{\eta} = e_{\eta\delta} e_{\eta\delta\eta} x e_{\eta\delta\eta} e_{\delta\eta} \quad (\text{since} \quad e_{\eta\delta\eta} x = x e_{\eta\delta\eta} = x) = e_{\eta\delta\eta} x e_{\eta\delta\eta} \quad (\text{since} \quad e_{\eta\delta\eta} x = x e_{\eta\delta\eta} = x) = e_{\eta\delta\eta} x e_{\eta\delta\eta} = x e_{\eta\delta\eta} x e_{\eta\delta\eta} x e_{\eta\delta\eta} = x e_{\eta\delta\eta} x e_{\eta\delta\eta} = x e_{\eta\delta\eta} x e_{\eta\delta\eta} x e_{\eta\delta\eta} x e_{\eta\delta\eta} x e_{\eta\delta\eta} = x e_{\eta\delta\eta} x e_{\eta\delta$ Therefore, $\eta \delta \mathcal{R} \eta \delta \eta$ and $\eta \delta \eta \mathscr{L} \delta \eta$, where \mathcal{R} and \mathscr{L} are Green's R- and L-relations, it follows from (3) of (C.0) of [2] that $e_{\eta\delta}e_{\eta\delta\eta} = e_{\eta\delta\eta}$ and $e_{\eta\delta\eta}e_{\delta\eta} = e_{\eta\delta\eta}$) = x. Therefore, $(ab^{\overline{\gamma}}C(\gamma, \gamma^{-1})c^{\overline{\lambda}}C(\lambda, \lambda), \lambda) = (ab^{\overline{\gamma}}C(\gamma, \gamma^{-1})c, \lambda)$ (since $C(\lambda, \lambda) = e_{\lambda\lambda^*}$). Since c is an arbitrary element of $S_{\lambda\lambda^*}$, there exists $c' \in S_{\lambda\lambda^*}$ such that $(a, \gamma)(b, \gamma^{-1})(c', \lambda) = (e_{\lambda\lambda^*}, \lambda)$. Let $(b, \gamma^{-1})(c', \lambda) = (d, \gamma^{-1})$. Then, $(a, \gamma)(d, \gamma^{-1}) = (e_{\lambda\lambda^*}, \lambda)$. Similarly, there exists (e, γ^{-1}) such that $(e, \gamma^{-1})(a, \gamma) = (e_{\lambda\lambda^*}, \lambda)$. Now, $(a, \gamma)(e_{\lambda\lambda^*}, \lambda) = (ae_{\lambda\lambda^*}^{\bar{\gamma}}C(\gamma, \lambda), \gamma) =$ (a, γ) (by (C.1)), and $(e_{\lambda\lambda^*}, \lambda)(a, \gamma) = (e_{\lambda\lambda^*}a^{\bar{\lambda}}C(\lambda, \gamma^{-1}\gamma) = (a, \gamma)$ (since $C(\lambda, \gamma) = e_{\gamma\gamma^*}$ and $a^{\overline{\gamma}} = a$). Further, $(d, \gamma^{-1})(e_{\lambda\lambda^*}, \lambda) = (de_{\lambda\lambda^*}C(\gamma^{-1}, \lambda), \gamma^{-1}) = (de_{\gamma^{-1}(\gamma^{-1})^*}e_{\gamma^{-1}(\gamma^{-1})^*}, \gamma^{-1})$ $=(d, \gamma^{-1}).$ Similarly, $(e, \gamma^{-1})(e_{\lambda\lambda^*}, \lambda) = (e, \gamma^{-1}).$ Now, $(e, \gamma^{-1})(a, \gamma)(d, \gamma^{-1}) =$ $(e, \gamma^{-1})(e_{\lambda\lambda^*}, \lambda) = (e, \gamma^{-1}).$ Therefore, $(e_{\lambda\lambda^*}, \lambda)(d, \gamma^{-1}) = (e, \gamma^{-1}).$ Then, $(a, \gamma)(e_{\lambda\lambda^*}, \lambda)$. $(d, \gamma^{-1})(e_{\lambda\lambda^*}, \lambda) = (e_{\lambda\lambda^*}, \lambda) \text{ and } (e_{\lambda\lambda^*}, \lambda)(d, \gamma^{-1})(e_{\lambda\lambda^*}, \lambda)(a, \gamma) = (e, \gamma^{-1})(a, \gamma) = (e_{\lambda\lambda^*}, \lambda).$ Thus, (a, γ) is contained in the maximal subgroup $G_{(e_{\lambda\lambda}*,\lambda)}$ (of $N_M(F_{\Gamma}) \bigotimes \Gamma$) containing $(e_{\lambda\lambda^*}, \lambda)$. Accordingly, $N_M(F_{\Gamma}) \bigotimes_{4} \Gamma$ is a union of groups.

The latter half: Let S be a completely regular *-semigroup. Let μ be the maximum idempotent separating congruence on S. Then, $\Gamma = S/\mu$ is a fundamental regular *-semigroup (of course, Γ is also a completely regular *-semigroup), and the natural homomorphism $\xi: S \to S/\mu$ is a *-homomorphism (see [1]). Hence, a *-peration * in Γ can be defined by $(a\xi)^* = a^*\xi$, where \sharp is the *-operation in S. Further, it is obvious that $\lambda\xi^{-1} = S_{\lambda}$ is a subgroup of S for each $\lambda \in E_{\Gamma}$ (where E_{Γ} is the set of idem-

potents of Γ). Hence, $M = \Sigma\{S_{\lambda}: \lambda \in E_{\Gamma}\}$ is a partial subgroupoid of S and satisfies (C.0) of [2]. Let $N_{M}(F_{\Gamma}) = \Sigma\{S_{\lambda}: \lambda \in F_{\lambda}\}$, where F_{Γ} is the set of projections of Γ , that is, $F_{\Gamma} = \{\tau \in E_{\Gamma}: \tau^{*} = \tau\}$. For any $\gamma \in \Gamma$, let $\gamma\xi^{-1} = S_{\gamma}$. Let x_{γ} be a representative of S_{γ} for each $\gamma \in \Gamma$, and especially $x_{\lambda} = e_{\lambda}$ for each $\lambda \in E_{\Gamma}$ (where e_{λ} is the identity of S_{λ}). Since $S_{\gamma\gamma^{*}}x_{\gamma} = S_{\gamma}$ (see [2]), for any x_{γ}, x_{δ} there exists $C(\gamma, \delta) \in S_{\gamma\delta(\gamma\delta)^{*}}$ such that $x_{\gamma}x_{\delta} = C(\gamma, \delta)x_{\gamma\delta}$. Then, $ux_{\gamma}vx_{\delta} = uv^{\overline{\gamma}}C(\gamma, \delta)x_{\gamma\delta}$ for $u \in S_{\gamma\gamma^{*}}, v \in S_{\delta\delta^{*}}$, where $v^{\overline{\gamma}} = x_{\gamma}vx_{\gamma}^{*}$. Now, it follows from [2] that $\Delta = \{\overline{\gamma}, C(\eta, \delta)\}_{\gamma,\delta,\eta\in\Gamma}$ satisfies (C.3) of [2] and $N_{M}(F_{\Gamma}) \bigotimes \Gamma$ is *-isomorphic to S. Therefore, to complete the proof, it is need only to show that $\{C(\eta, \delta); \eta, \delta \in \Gamma\}$ satisfies (C.1). Let $\gamma\gamma^{-1} = \lambda$. Then, $x_{\lambda}x_{\gamma} = C(\lambda, \gamma)x_{\gamma}$. Now, $e_{\lambda}x_{\gamma}x_{\gamma^{*}} = C(\lambda, \gamma)x_{\gamma}x_{\gamma^{*}}$, and hence $e_{\lambda}e_{\gamma\gamma^{*}}C(\gamma, \gamma^{*}) = C(\lambda, \gamma)e_{\gamma\gamma^{*}}C(\gamma, \gamma^{*})$. Therefore, $e_{\gamma\gamma^{*}}C(\gamma, \gamma^{*}) = C(\lambda, \gamma)C(\gamma, \gamma^{*})$, and $e_{\gamma\gamma^{*}} = C(\lambda, \gamma)e_{\gamma\gamma^{*}}$. Hence, $e_{\gamma\gamma^{*}} = C(\lambda, \gamma)$. Similarly, we have $C(\gamma, \lambda) = e_{\gamma\gamma^{*}}$. Thus, $\{C(\eta, \delta): \eta, \delta \in \Gamma\}$ satisfies (C.1).

§3. Case II

In this section, we shall prove the following result:

THEOREM 2. Let $(\Gamma, *)^{2}$ be an H-degenerate regular [otrhodox] *-semigroup, and $M = \Sigma\{S_{\lambda}: \lambda \in E_{\Gamma}\}$ a partial groupoid [semigroup] which is a disjoint union [a band] of groups $\{S_{\lambda}: \lambda \in E_{\Gamma}\}$ and satisfies (C.0) of [2]. Let F_{Γ} be the set of projections of $(\Gamma, *)$, and put $N_{M}(F_{\Gamma}) = \Sigma\{S_{\lambda}: \lambda \in F_{\Gamma}\}$. Let $\Delta = \{\bar{\gamma}, C(\delta, \eta)\}_{\gamma,\delta,\eta \in \Gamma}$ be a factor set belonging to $\{N_{M}(F_{\Gamma}), \Gamma\}$. Then, the *-regular product $N_{M}(F_{\Gamma}) \otimes \Gamma$ is an H-compatible [strongly H-compatible]³) regular *-semigroup. Further, every H-compatible [strongly H-compatible] regular *-semigroup can be constructed in this fashion.

PROOF. The first half: We first consider the part []. It is need only to show that if $(\Gamma, *)$ is orthodox and if M is a band E_{Γ} of groups $\{S_{\lambda} : \lambda \in E_{\Gamma}\}$ which satisfies (C.0) of [2] then the maximal subgroups of $N_M(F_{\Gamma}) \otimes \Gamma$ form a band of groups. Now, the set of idempotents of $N_M(F_{\Gamma}) \otimes \Gamma$ is $E = \{(e_{\lambda\lambda^*}, \lambda) : \lambda \in E_{\Gamma}\}$, where e_{τ} is the identity of S_{τ} for each $\tau \in E_{\Gamma}$ (see Theorem 2.1 of [2]). It is also easy to see that the H-class containing $(e_{\lambda\lambda^*}, \lambda)$ is $\{(a, \lambda) : a \in S_{\lambda\lambda^*}\} = \underline{S}_{\lambda}$. Let $\lambda, \delta \in E_{\Gamma}$. Then, $(a, \lambda)(b, \delta) =$ $(ab^{\overline{\lambda}}C(\lambda, \delta), \lambda\delta)$ and $\lambda\delta \in E_{\Gamma}$ since E_{Γ} is a band. Therefore, the maximal subgroups of $N_M(F_{\Gamma}) \otimes \Gamma$ form a band E_{Γ} of the groups $\{\underline{S}_{\lambda} : \lambda \in E_{\Gamma}\}$.

Next consider the case where $(\Gamma, *)$ is an H-degenerate regular semigroup and M is a partial groupoid which is a disjoint union of groups $\{S_{\lambda} : \lambda \in E_{\Gamma}\}$ and satisfies (C.0) of [2]. Now, $(a, \gamma) \mathcal{H}(b, \delta)$ implies $(a, \gamma) \mathcal{L}(b, \delta)$, where \mathcal{H} and \mathcal{L} are Green's H- and

²⁾ A regular *-semigroup Γ with an involution * is sometimes denoted by $(\Gamma, *)$.

³⁾ A regular semigroup S is said to be H-compatible [strongly H-compatible] if the Green's H-relation on S is a congruence [if the maximal subgroups of S form a band of groups].

Miyuki Yamada

L-relations respectively. Hence, there exist $(c, \delta_1), (d, \delta_2)$ such that $(c, \delta_1)(a, \gamma) = (b, \delta)$ and $(d, \delta_2)(b, \delta) = (a, \gamma)$. This implies $\delta_1 \gamma = \delta$ and $\delta_2 \delta = \gamma$, and hence $\gamma \mathscr{L} \delta$. Similarly, we have $\delta \mathscr{R} \gamma$, where \mathscr{R} is Green's R-relation. That is, $r\mathscr{H} \delta$. Since Γ is H-degenerate, $\delta = \gamma$. Conversely assume that $\gamma = \delta$. Next, we shall show $(a, \gamma)\mathscr{H}(b, \delta)$. For any $c \in S_{\gamma^* \gamma}, (a, \gamma)(c, \gamma^* \gamma) = (ac^{\overline{\gamma}}C(\gamma, \gamma^* \gamma), \gamma\gamma^* \gamma) = (ac^{\overline{\gamma}}e_{\gamma\gamma^*}, \gamma) = (ac^{\overline{\gamma}}, \gamma)$. Since $\overline{\gamma}$ maps $S_{\gamma^* \gamma}$ onto $S_{\gamma\gamma^*}$, there exists c such that $c^{\overline{\gamma}} = a^{-1}b, a^{-1} \in S_{\gamma\gamma^*}$. Hence, $(ac^{\overline{\gamma}}, \gamma) = (b, \gamma)$. Therefore, $(a, \gamma)(c, \gamma^* \gamma) = (b, \gamma)$. Similarly, there exists $(t, \gamma^* \gamma)$ such that $(b, \gamma)(t, \gamma^* \gamma) =$ (a, γ) . Hence, $(a, \gamma)\mathscr{R}(b, \gamma)$. Next, for $c \in S_{\gamma\gamma^*}, (c, \gamma\gamma^*)(a, \gamma) = (ca^{\overline{\gamma\gamma^*}}C(\gamma\gamma^*, \gamma), \gamma) =$ $(ca^{\overline{\gamma\gamma^*}}e_{\gamma\gamma^*}, \gamma) = (ca^{\overline{\gamma\gamma^*}}, \gamma) = (ce_{\gamma\gamma^*}ae_{\gamma\gamma^*}, \gamma) = (ca, \gamma)$. The element ba^{-1} is contained in $S_{\gamma\gamma^*}$. If we take $c = ba^{-1}, (ca, \gamma) = (b, \gamma)$. Hence, $(c, \gamma\gamma^*)(a, \gamma) = (b, \gamma)$. Similarly, there exists $(d, \gamma\gamma^*)$ such that $(d, \gamma\gamma^*)(b, \gamma) = (a, \gamma)$. Hence, $(a, \gamma)\mathscr{L}(b, \gamma)$. Consequently, $(a, \gamma)\mathscr{H}(b, \gamma)$. Therefore, \mathscr{H} is a congruence. Hence, $N_M(F_T) \otimes \Gamma$ is H-compatible.

The latter half: Let (S, *) be an H-compatible regular *-semigroup. Since $S/\mathscr{H} = \Gamma$ is an H-degenerate regular *-semigroup with respect to the *-operation defined by $(x\mathscr{H})^* = x^*\mathscr{H}$, it follows from Lemma 3.1 of [2] that S is *-isomorphic to $N_M(F_\Gamma) \bigotimes_{\Delta} \Gamma$, where $M = \Sigma\{S_{\lambda}: \lambda \in E_{\Gamma}\}$ $(S_{\gamma} = \gamma f^{-1})$, where f is the natural homomorphism of S onto S/\mathscr{H} , $N_M(F_{\Gamma}) = \Sigma\{S_{\tau}: \tau \in F_{\Gamma}\}$, and Δ a factor set belonging to $\{N_M(F_{\Gamma}), \Gamma\}$. In particular, if (S, *) above is strongly H-compatible, then it is easy to see that $S/\mathscr{H} = \Gamma$ is an H-degenerate orthodox *-semigroup and $S \cong N_M(F_{\Gamma}) \otimes \Gamma$.

Remark. If $(\Gamma, *)$ is a fundamental orthodox *-semigroup, and M is a band E_{Γ} of groups $\{S_{\lambda}: \lambda \in E_{\Gamma}\}$ satisfying (C.0) of [2], then $N_{M}(F_{\Gamma}) \bigotimes_{\Delta} \Gamma$ above is orthodox if and only if it satisfies the following condition:

(C.2)
$$e_{\lambda\lambda^*}e^{\bar{\lambda}}_{\delta\delta^*}C(\lambda,\delta) = e_{\lambda\delta(\lambda\delta)^*}$$
 for any $\lambda, \delta \in E_r$.

In fact, let $(e_{\lambda\lambda^*}, \lambda)$, $(e_{\delta\delta^*}, \delta)$ be two idempotents of $N_M(F_{\Gamma}) \otimes \Gamma$. Then, it is easy to see that $(e_{\lambda\lambda^*}, \lambda)(e_{\delta\delta^*}, \delta) = (e_{\lambda\delta(\lambda\delta)^*}, \lambda\delta)$ if and only if $e_{\lambda\lambda^*}e_{\delta\delta^*}^{\bar{\lambda}}C(\lambda, \delta) = e_{\lambda\delta(\lambda\delta)^*}$. Hence, we have the following result:

 $N_M(F_\Gamma) \bigotimes_{\Delta} \Gamma$, where $(\Gamma, *)$ is a fundamental orthodox *-semigroup and M is a band E_{Γ} of groups $\{S_{\lambda}: \lambda \in E_{\Gamma}\}$ satisfying (C.0) of [2], is an orthodox *-semigroup if and only if the factor set Δ satisfies (C.2). Further, every orthodox *-semigroup can be obtained in this way.

References

- [1] Yamada, M., On the structure of fundamental regular *-semigroups, Studia Sci. Math. Hungarica 16 (1981), 281-288.
- [2] —, Note on the construction of regular *-semigroups, Mem. Fac. Sci., Shimane Univ. 15 (1981), 17–22.