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The way to construct O--O- dual amplitudes from the duality scheme in Ref. 1) and the 

most general Veneziano-type amplitudes is discussed generally. A new condition to restrict 

terms for the unitary-symmetry breaking Is proposed m accordance with the required symmetric 

treatment of the two dual chamels 

S I . Introductiom 

Although the Veneziano-type models have no unique way to specify their pole 

structures, the conibination of them and the duality relation based on the quark-model 

hadron spectrum proposed by the authorl) is promising to construct a satisfactory 

Born term of the scattering amplitude. In fact, by the duality relation and a condition 

at s->00, Munakata, Sakamoto and the author2) have been able to determine an 
infinite number of coefficients of the most general lc ~ - Ic + Veneziano-type amplitude 

except for a overall multiplying factor, and have found that the obtained amplitude 

has good properties ; absence of negative-norm state, compatibility with available 

experiments of 2lc decay, and the consistency with the PCAC hypothesis in the limit 

of m*~'O. It is also found that this amplitude takes a simple form when all the spin 

(and unitary-spin) dependent forces between quarks and anti-quarks are neglected 

The purpose of the present paper is to show that the method employed in Ref. 2) 

may be applicable to constract dual amplitudes for other O- - O- processes where 

terms for the unitary-symmetry breaking are needed, differently from the lc ~ - Ic + 

scattenng 

Let us consider the K-Ko~'K-Ko process, where the u-channel is exotic. The 

duality scheme (system of duality relations) 1) with the harmonic-oscillator spectrum 

of SU(6)RO(3)L multiplets is 

~ R(')(t)1 - ~ R(t)(s)1 (1.1) N, N'=0 1 2 ~=N t=~~ - *=~' , 
' b~N' 

where N(N') is the s-(t-) channel resonance family. R(')(t) (R(t)(s)) is the residue of 

the scattering amplitude at the s-(t-) channel resonance a(b) in the narrow-width 
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Table I. 
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Resonance families and their 'members in the s-(t-) channel of the K--KQ 

scattering. The double circles imply that there are two states with different 

quark-orbital angular mo;nenta at their places 
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approxlmation. The s- and t-channel resonance f~milies and their members are 

shown in Table I. 

Here, the oscillator model is adopted for the squared mass, and mass-splitting due 

to spm-orbit and tensor interactions are neglected. And the ideal mixing ' and the 

OZI-decoupling rule are also assumed. The resonances have a degenerate mass for 

each family, and there is no odd daughter in Table I because J takes alternate values 

for a fixed N in the harmonic oscillator model 

Now, we start with the most general Veneziano-type amplitude which has no 

ancester, 

F(s, t)= ~ ~ ~ Ak F(m-ec.) r(n-~t) (1.2) co " ~+. ~'" 
~=1 *=1 k=*^(~,*) F(k - oc* - ~t) ' 

where ~~," are arbitrary constants and 

oc ~ocp_A2(s) =c(s +0co, t~: (1.3) oc occ _r(t) = o(t + ~o-

Here the universal slope is assumed for simplicity 

In S2, the coefiicients h~," of (1.2) is restricted by the duality scheme (1.1) and a 

new condition proposed here in order to restrict terms for the symmetry breaking 

Solutionsof them are also searched. The section 3 is devoted to the summary and the 

discussion of the condition at s -> oo . 

S 2. Souutioms of the schenme (1.1) 

It rs convement to divide the constraints of the scheme (1.1) inta two cohditions as 

{ Iim (J - oc.)F(s, t)}I~,=J･ = { Iim (J' - ~t)F(s, t)}1*.=J, (2.1a) 

***J ~**J' (contribution of each odd daughter) = O. (2.1b) 
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Here, J(J') denotes the spin of the parent belongint to the s-(t-) channel family N(N'). 

It is noted that the linearity between s and oc. (t and ~t) is used to rewrite (1.1) as 

(2.1a, b). 

In the subsection 2.1, particular solutions of (2.1a) are searched, considering the 

linear property of the condition (2.1a) and regarding the most general Veneziano-type 

amplitude (1.2) as the sum of 

~+* F(m - oc*) F(n -~t) 

F (s, t) s ~ ~k (2.2) ~'" ~'" k=***(~, *) F(k - oc* - ~t) ' 

In the subsection, we pay attention also to the symmetric treatment of the two dual 

channels, and find a sum of particular solutions which has just the degree of freedom 

to provide an arbitrary residue at each of parents and their daughters, including odd 

daughters. In the subsection 2.2, we try to determine remaining coefficients ~~," by 

the condition (2.1b). Resultant solutions are found to be significant only in some 

approxnnations. In the subsection 2.3, we give an amplitude which explicitly satisfies 

the conditions (2. Ia, b) in the first-order approximation of the symmetry breaking 

2.1 Solutions under the condition (2.1a) 

Frrst, rt rs examined that which of F~･"(s, t) (m, n = 1, 2,...) of (2.2) satisfy the 

condition (2.1a) non-trivially. In Table II, non-trivial solutions are listed 

Table IL The series of F~,"(s, t)'s which satisfy the condition (2.la) non-trivially. 

F1, 1 

F2, 1 

F1' 2 

F2, 2 

F3, 2 

F2, 3 

F3, 3 

F4, 3 

F3' 4 

F4' 4 

F5, 4 

F4' 5 

F5, 5 

F6, 5 

Fs, 6 

F6, 6 F6, 7 

Other Fm,n(s, t) satisfy (2.1a) when and only when all the parameters ~~,n in them are 

zer09 

~ ~ . . A O. (2. 3) m,n _ m,n _ _ m,n _ m+n~ m+n-1~' ~ max(m,n)~ 

It is noted that some combination of F1,3(s, t) and F3' 1(s, t) and etc. are also non-trivial 

solutions of (2.1a). The roles of such combinations are discussed later in the sub-

section 2.3. 

The sum of the particualr solutions in Table 11 is 

co 2n F(n-ocs) F(n-~t) F(s, t)= ~ ~ ~k F(k-oes~~t) n,n 

n=1 k=n 
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* 2*+1 + ~ ~ {~~,n+1 r(n-oc.) F(n+1-~t) 
*=1 k=~+1 F(k - oe. - ~t) 

+A"+1,~ F(n + I -oc*) F(n -~t) (2.4) }
 

k F(k - oes ~ ~t) ' 

The first term of (2.4) is just the amplitude which is taken in Ref. 2). (This term is 

the most general Veneziano-type amplitude for the lc ~ - Ic + scattering, when ~o = oco') 

It is clear that the second term of (2.4) should be used to express the symmetry breaking 

Therefore A~,"+1 and ~~+1,~ are functions of the diffe"rence between oeo and ~o and are 

odd functions of the difference 

A~'n+1=~~'n+1(A)= -A~'"+1(_A), ~~+1,n A"+1 n(A)= -~~+1,n(_A), (2.5) 

where 

A oeo~~o' (2.6) 
The two dual channels have to be treated symmetrically. We propose a way 

for such symmetrical treatment here. We require that the amplitude (2.4) satisfy the 

new condition 

F(ocs' oco ; ~t' ~o) = F(~t' ~o ; ocs' oco) (2.7) 

Because of the condition for the symmetric treatment, (2.7), ~~' "+1(A) and ~~+1.~(A) 

have to satisfy 

A"+1 ~( _A) =A~'n+1(A) . (2.8) 
In concluding this subsection, we state that the amplitude (2.4) with the requirement 

(2.8) has just the degree of freedom to provide an arbitrary residue at each of the s-

and t-channel parents and their daughters, including odd daughters. In the physical 

sense, this amplitude is a candidate which we should take as the starting point. The 

explicit form of (2.4), obtained after the removal of vanishing. elements under the 

condition (2.1a), is 

co ~+1 F(s, t)= ~ ~ ~ r(n-oe.) F(n-ctt) nk," 

n=1 k=1 F(k - oc* - ~t) 

+ ~ A~･+"I+1 F(n-oc*) r(n+1-~t) _ { F(n+1 oe, oct) 

~-1 - - ~ 
+~~~i," r(n + I - oc*) F(n -~t) (2.9) }

 
F(n + I - oc. - ~t) ' 

In the Appendix, it is shown that (2.9) satisfies (2.1a). It is noted that for~ the It:~ - 7c+ 

scattermg, we have been able to accommodate the first term to the condition (2.1b), 

that is, absence of odd daughters.2) As .will be seen later, the case of K-Ko_>K-Ka 
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scattering is also successful with (2.9) in certain approximations. But, in order to 

avoid odd daughters explicitly, we must prepare the study in the subsection 2.3 using 

the combinations of F1,3(s, t) and F3,1(s, t) and etc, as already stated 

2.2 Approxim.ate solutions under the conditions (2.1a) and (2.1b) 

We impose the condition (2.1b) that odd daughters do not contribute to the 

scattering amplitude. For this purpose we introduce the values of s, t for the s- and 

t-channels in their respective centers of mass 

s-channel 

s=4(q~+/l2), t= 2q2(1 cosOs)' s+t+u 4/12 (2.10) 

t=channel 

t=4(q~+/l2), s= -2q~(1 -cos et)' s + t+u=4ll2. (2.10) 

Here // is the kaon mass. The condition of absence of odd daughter in the s-channel 

upon RJ(xs) (xs E cos es)' the residue of F(s, t) at ecs = J, is written as 

RJ( - X y = ( - 1)JRJ(xs) (2. 12a) 
Similarly, the condition in the t-channel upon RJ,(x = cos 6t)' the residue of F(s, t) at 

~t = J', is 

RJ,(-x~ =(- 1)J R (x ) (2.12b) 
Starting with J = 1, J' = 1, we impose (2.12a, b) upon the amplitude (2.9) to deter-

mine ~"'n An'n and ~"'n+1 (~~~~'n) successively with increasing J and J'. We find, 
n ' n+1 n+1 in the first-order approximation of A , 

' (( 2 , 1' ) ) A1'1_ 1-P A1 1+0 A 

( , ~~'2=-A2 1 1 hl'l A cl' ) = ~ 1+p 2 
A2 A22'- 1-pc ~l'l (1+pc)A~2+0 - 2 'l ' (( )) 2
 

(
 

= ~ (1+pc)(3+fic) ~~~ 3+p A2,2 ( , ' / Ic2' )
 A~,3= -~3 2 Ai'l 2 

~3'3- (1-pc)(1+p.) , AI A1 1+ I +pc ~2 2+0 (2.13) (( 2 , 2' ) ) 3 ~ 2(3+pc)(5+pc) i 5+pc 2 

A43'3- 3(1-Pc)(1+pc) ~l 1_ 2 (( ) )9 , (1 + p.)(2+ pc) ~2,2 +0 A2 
~ ~ 4(5 + pc) 1 5 + pc 2
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1
 3 ) 

A
 ~3 4= -A~,3 - . - ~l'l. 3(1+pc)(3+p.) 1 2
 

2 ~22 ~ +0 ~ 3 ~ 3(3+p.)(5+pc) 2' '( ) (( ) ), 

Here 

Pc=P+~ p=2 oc 2cc 4ll20( ~ 2 oc 20c 4ll20( (2.14) 
,~ ' 

The linear combinations of the Regge alope times /l2 and the zero intercepts, P and 

fi~, are introduced for (2.12a, b) respectively. We have used p 3 2 - 30eo ~ 4m~0( for the 

lz:~ - Ic: + scattering in Ref. 2). It is natural that the coefficients of the main terms, 

~~'" and ~~~"I' are expressed m terms of p., the average of p and p. From (2.13). 

we can inf'e"r the features of ~"･" ~"'" and ~"'"+1 (A~~i･")-
~ ' ,,+1 *+1 

(a) The coefficients of the main terms, ~~'n and A~'+nl' are 

~,~ I + p* ~ = {(n -2)(1 - Pc)A~･ 1 n (n - 1) !(2n - I + pc)(2n - 3 + p.) 

+ (n - 1)(3 + p.)A~,2} , (2. 15a) 

An,' __ (1-P~)A~･1 J n(n-2) _ (n-1)(n-3) } 
n+1~ 2(n-1)! 12n-1+p. 2n-3+pc 

_ (1 + p.)(3+ p.)A~,2 n -2 n 
2(n-2)! c ~ 2n-3+pc ' (2.15b) 2n - I + p 

(b) It rs expected that the terms expressing the syinmetry breadking are not so im-

portant at high energies, as the effect of the breaking itself may be neglected at the 

energies. Therefore the terms with A~,+"I+ I (and A~~i,n) will converge more rapidly with 

n -> oo than those with A~'" which dominate at high energies. In fact such feature are 

observed. 

The amplitude (2.9) with (2.13) and (2.15a, b) avoid contributions from odd 

daugters in a good approximation. .Strictly speaking, the amplitude does not have 

the odd daughters of the J( J') = I , 2 parents and the spin = 2 odd daughters of the 

J( J') = 3 parents in the first-order approximation of A , but it does not avoid the 

spin = O odd daughters of the J( J') = 3 parents explicitly even in the approximation. 

This is due to the fact that the property of the gamma function can not be accommo-

dated to the expressions of both of the main terms and the symmetry-breaking terms 

in one rule. 

2.3 A solution under the conditions (2.1a) and (2.1b) in the first-order approxi-

mation of the symmetry breaking 

In this subsection, we propose a way to avoid odd daughters explicitly in the 



The Construction of Dual Amplitude from the Duality Scheme 43 

first-order approximation of the symmetry bre~king, using the combinations of 
F1,3(s, t) and F3, 1(s, t) and etc. 

In order to avoid the O odd daughters of the 3 parents, we must prepare, for 

example, 

~1,3 F(1 -oc.) F(3 -~t) , +~3 1 F(3 -oc.) r(1 -~t) 

3 F(3 - oc* - ~t) 3 F(3 - oc* - ~t) 

C1,31Al F(1 -oc.) F(3-~t) + F(3-0c.) F(1 -~t) (2.16) 

- . t F(3 oe.-oct) ' F(3 oc-~) - ~ 
which also satisfies the condition (2.1a). We can eliminate the 3, I odd daughters of 

the 4 parents with the terms of ~~,4, ~~,4 and ~~,5(A~,4) and 

C1･41Al F(1 -oc.) F(4-~t) + F(4-20.) F(1 -~,) (2.17) 
F(4 - Qe* - ~t) F(4 - ce* - ~t) ' 

and so on. As we add the terms (2.16), (2.17) and etc. to the amplitude (2.4) with (2.8), 

we must subtract some terms of the amplitude so as to retain the total number of the 

freedoms. From the observation of (2.9), it is clear that what terms have to be sub-

tracted . 

In conclusion, one has to prepare also the explicitly-symmetric terms (2.16), 

(2.17) and etc. of the first order of A . The discrimination of these terms from the main 

ones is possible by the treatment of p. and A as independent parameters. We suppose 

that the terms will converge more rapidly with n~'Qo than the terms with ~~'"･ The 

resultant amplitude takes a form of (terms as similar as for the lc~ - Ic+ scattering) 

plus (ones for the tyrnmetry breaking) 

S 3･ Sunmorary amd comvergemce couditiom at s ~' oo 

It is suggested that one can construct a K- - KO amplitude with the form (terms 

as similar as for the ~~ - 7c+ scattering) plus (ones for the symmetry breaking) at least 

in the first-order approximation of A , starting with the most general Veneziano-type 

amplitude and the duality scheme proposed the author. The n~wly proposed con-

dition (2.7) serves to restrict terms f'or the symmetry breaking. While, the needed 

explicitly-symmetric terms (2.16), (2.17) and etc. can be distinguished from the 

dependence on the symmetry breakmg, A 

Last, we discuss the convergence condition at s~'oo. As all the terms for the 

breaking will converge more rapidly than the terms with ~~'", the condition may be 

written as for the lc~ - Ic+ scattenng, 

_ 1, - P* ~l, 1 

~ 3+P. I ' 



44 Taketoshi INO 

A p pendix 

Derivation of Equation (2.9) 

In the Appendix, we show that the parameters A~'" and A~'"+1(A~+1,~) in the ampli-

tude (2.4) vanish for 2n ~ k ~~ n + 2 and 2n + I ~ k~ n + 2 (2n + I ~ k ~ n +2) under the 

condition (2.1a), respectively. Let us begin with the (J, J') = (1, 1) case. Under the 

condition of this case, we have 

A~,2 = ~~, I (A. 1) 
As A1,2 and ~~, I are the odd functions of A, (A.1) and (2.8) Iead to 

~~,2=A~,1 O (A.2) 
We find, from the (J, J') = (2, 1) case, 

A42,2 + A~2, 3 + A~, 3 = O, (A. 3) 

and do, form the (J, J') =(1, 2) case, 

A42,2 + A43'2 + A~,2 = O. (A.4) 
The (J, J') = (2, 2) case gives 

~~, 3 = A~, 2 (A. 5) 
Because of the odd property of ~~･3, A~,2, ~~,3 and ~~,2 with respect to A, (A.3), (A.4), 

(A.5) and (2.8) Iead to 

~42,2 = O, 

A42, 3 = A~･2 = ~~, 3 = A~,2 = O. (A.6) 
The same manipulation for higher J and J' Ieads the consequence (2.9). 
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