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We discuss the forward K-p->Kon scattering amplitude at high energies, which is suggested 

by the duality scheme based on the quark-model hadron spectrum. The predicted dip at 
l t I c:: 0.9 (GeVlc)2 seems to have. a corespondence in experiments 

S I . Imtroduaction 

Lately, Munakata, Sakamoto and the authorl) have obtained a uniquely de-

termined lc~7c+_>1c~7c+ dual amplitude. Starting with the most general lr~-1c+ 

Veneziano-type amplitude which has just the degree of freedoms to provide an arbi-

trary residue for each of parents and their daughters, and restricting it by the duality 

scheme2) based on the quark-model hadron spectrum and the convergence condition 

at s ~' oo , they have reached the uniquely determined amplitude. The amplitude has 

good properties ; absence of negative-norm states, compatibility with available experi-

mental data of 27c decay of relevant low-lying resonances, and a consistency with the 

PCAC hypothesis. Moreover, the amplitude well reproduces3) the inverse Mellin 

transform of the imaginary part of the phenomenological scattering amplitude4). The 

transform is what proposed by Froggatt, Nielsen and Petersen5) to examine that can 

the lc-1T scattering amplitude be represented by any Veneziano model 

Another characteristic fe_ature of the uniquely determined amplitude is a new 

factor in the amplitude. The new factor has been found first in the comparisonl) of 

the asymptotic form of the amplitude with that of the Lovelace-Shapiro-Veneziano 

model6). Such a new factor has been rediscovered in the inverse Mellin transform of 

the amplitude.3) The integral of the transform covers the region of s from (2m*)2 

to oo , and so the new factor is considered to be a property of the amplitude at high 

energies (that is, at large s) as well as at s ~' oo . The asymptotic form of the amplitude 

reproduces3) phenomenological p- and f-~~egge contributions4) much better than the 

Lovelace-Shapiro-Veneziano model and the Frampton amplitude7). Unfortunately, 

the experimental status of the lc-1c scattering is, however, not so good as to test the 

details of the new factor. 

In this paper, we discuss the K-p~Kon scattering, in order to make a test of the 

new factor. 
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As for the studies of the K-p~Kon scattering by the Veneziano-type model, 

some authors8,9) have presented some amplitudes with a few Veneziano-like terms 

In S2, taking the t-channel helicity amplitudes (A', B) for the description of the 

K-p~,KOn scattering, we discuss the A' amplitude which dominates in small I tl regions 

of the high-energy scattering. In S 3, the results are compared with experiments and 

some discussrons are made 

S 2. The t-chaEnmell helicity momflip ~:-N amplitude based om the duality scheme 

witln the quark-Enodel hadrom spectrulEm 

Let us describe the K - N scattering by the t-channel helicity amplitudes (A', B), 

where A' is defined by 

A A + v B (2. 1) 1 - 4m2 

with 

_ s-u 

v- 4m ' (2.2) 
Here, A and B , are the invariant amplitudes in the standard notation, and m is the 

nucleon mass. The asymptotic form of the amplitudes should be 

A' --=>~" yA,(t) a(t) (2.3a) ( ~) , 
t :f i**d s 

B =>s*co yB(t) a(t)-1 (2.3b) (~) -
t :f i**d 

Here, oe(t) = oc't+0co is the exchange-degenerate p - co - A2 -f Regge trajectory. While 

the differential cross section in terms of the amplitudes is 

da _ I ( m 2 IA'I2+ 4sq4sin20 IB12 (2.4) 
)
{
 

1 t dt ~ Ics ~ 4q ~ (4m2 - t)2 4m 

where q and O are the c. m, momentum and scattering angle in the s-channel re-

spectively. Therefore, the differential cross section is dominated by A' in small I tl 

region at high energies. Hereafter, we discuss anly A', as we are interested in the 

l tl 

It Is not so easy to construct Veneziano-type amplitudes for the meson-baryon 

scattenng at a satisfactory level, as well known. But, as for the A' amplitude, the 

costruction will be able to be done by the use of the duality , scheme with the quark-

model hadron spectrum, because the t-channel pole structure of the amplitude is very 

similar to that of the O- - O- scattering. Moreover, it is more easy to obtain the 

asymptotic form' of the amplitude 
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In the subsection 2.1, we state the outline of Ref. 1) where the lc~ - Ic+ amplitu:de is 

constructed by the use of the duality scheme and the convergence condition at s -> oo . 

In the subsection 2.2, we shall see that the asymptotic form of the A' amplitude on the 

same constraints is easily suggested from that of the lc ~ - I~: + amplitude in the subsec-

tion 2.1. 

2.1 The outline of the construction of the lc~-1c+ amplitude 

At the starting point, the most general lc ~ - Ic + Veneziano-type amplitude is taken 

* 2. F(n-oc(s)) F(n-ce(t)) 

F(s, t)= ~ ~ Ak (2.5) 
"'" 

~=1 k=~ F(k - oc(s) - oe(t)) ' 

Here, A~ ' " are arbitrary constants and oe(s) is the exchange-degenerate p -f Regge 

trajectory. Because of the crossing symmetry, the amplitude (2.5) has just the degree 

of freedoms to provide an arbitrary residue at each of parents in the s- and t-channels 

and their daughters, including odd daughters 

The duality scheme with the harmonic-oscillator spectrum of SU(6)RO(3)L 
multiplets, by which we restrict A~,", is 

~ R(')(t)1 = ~ R(t)(s)1 N, N'=0, 1,.... (2.6) *~N t=~~. b~N' *=~' , 

Here N(N') is the s-(t-) channel resonance family. The resonance family N is defined 

as the group of the resonances with a fixed total nuniber N of quanta of oscillator 

exitations. R(')(t) (R(t)(s)) is the residue of the scattering amplitude at the s-(t-) 

channel resonance a (b) m the narrow-width approximation. Because J (spin of 

resonances) takes alternate values for a fixed N in the harmonic oscillator model, 

the duality scheme does not involve odd daughters, that is, Eq. (2.6) implies also that 

the residues of odd daughters have to vanish. It is noted that as well known, the 

residue of the resonance with spin J in the s-(t-) channel is proportional to PJ(cos O.(t))' 

the Legendre polynomial of J degree. 

Restricting the arbitrary constants in the amplitude (2.5) by the duality scheme 

(2.6), we have 

~,* I + p A ~ {(n -2)(1 - P)AI 1 " (n - 1) !(2n - I + P)(2n - 3 + p) 

+ (n - 1)(3 + P)h2,2} , . . . . . . , (2.7) 

where 

P s 2 - 30co ~ 4c(m2 (2. 8) 
The terms with coeificients JL~ ' " determines the asmptotic form of F(s, t). Hereafter, 

we call such terms as' main terms. The coefiicients of the non-main terms are omitted 

from Eq. (2.7). 
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We impose also the convergence condition at s~'Qo and at I tl 

the amplitude F(s, t). Then, we have 

_ I - p ~l,1 ~22'2 -
~ 3+p l 

And, the asymptotic form of the amplitude is found as 

F(s t) ~~> ~l,1F(1 -oc(t))e~l~*(t)(oc's)"(t)1(t), 
t : f i**d 

where 

(GeV/c)2 on 

(2.9) 

(2. 10) 

F( 3+ p ~l F(1 +0c(t)) 

I(t)= ¥ 2 / , (3+p>0, 1+0e(t)>0). (2.11) 
F( I + p +0e(t)~ 

~7_ / 
We note that except for the I(t) factor, Eq. (2.10) is just the asymptotic form of the 

Lovelace-Shapiro-Veneziano model 

~1,1 F(1 - oc(s)) F(1 - cc(t)) (2.12) 
1 F(1 - ce(s) - oe(t)) 

and that of the Frampton amplitude which has an infinite number of terms, but has 

only one term as Eq. (2.12) as the main term. The I(t) factor is the new one stated in S 1 

2.2 The A' K-Namplitude 

Now, we discuss the A'K-p~'Kon amplitude on the same conditions as in the 
subsection 2. I . 

We start with 

* 2~ F(n-n(s)) F(n-oc(t)) + (non symmetnc terms) (2 13) A'(s, t)= ~ ~ ~~," 
~=1 k=. F(k - n(s) - oe(t)) 

Here, n(s) = ocY(s) - 1/2, and ocY(s) is the s-channel baryon Regge trajectory based on the 

quark-orbital baryon Regge trajectorylo) oc~(s). We assume the exchange-degeneracy 

of the quark-orbital trajectory for the S(strangeness) = - I components of '56' multiplets 

and that of '70' multiplets, and denote the exchange-degenerate S = - I quark-orbital 

trajectory as oc~(s). After all, n(s) = o(s+n0=(oeY(s) - 1/2 = oc~(s) + 1~ = I represents the 

poles Y~(Jp = 3/2+), ~(1/2+) and A(1/2+), Y~(3/2+) as the parent and ~(1/2+) and 

A(112+) as its daughters. (We note that when the isospin is considered, we must, of 

course, use the words parents and daughters in a different sense.) 

The duality scheme to restrict the arbitrary constants ~~ ･ " of the amplitude (2.13) 

is for the residues of the A' amplitude and is formally the same as Eq. (2.6) 

After the duality scheme is imposed on the amplitude (2.13), it is supposed that the 

coefficients of the main terms are obtained by substituting P for p in Eq. (2.7), where 
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P=2-3~0~20e'(m~+m~), ~o~ oc0+no (2.14) 
- 2 ' 

The reason for the supposition is the following 

(A) The authorll) have discussed the K-Ko~>K-KO amplitude on the same conditions 

as in the present work. The amplitude has the exchange-degenerate p - A2 trajectory 

m the s-schannel and the exchange-degenerate c -f' trajectory in the t-channel. It 

is found that the coefficients of the main terms are reached by substituting (2 - 3~o ~ 

40e'In~, ~o = (oco + oe8)/2, oc8 : zero-intercept of ip -f' trajector) for p in Eq. (2.7), and the 

terms with coefficients proportional to (oco ~ ocg) appear as the non-main terms. 

(B) The residue of the t-channel resonance of spin J of the A' amplitude is also 

proportional to PJ(cos et)' The s-channel resonances which determines the coefiicients 

of the main terms are only the parents, and the residue of the s-channel parent of J 

is proportional to 

P(J 1/2)(cos O ) + (2J-2)(EJ+mN)(MJ-mN) p(J 3/2)(cos es)+ "' "' 
･ (2. 1 5) 

' (2J- 1)(EJ -mN)(MJ +mN) ' ~ 

where MJ is the mass of the parent and EJ is the c. m. nucleon energy at s = M~ 

Aft.er all, the constraints on the coefficients of the main terms from the s-channel poles 

through the duality scheme is the same as those from the t-channel poles 

(C) The coefficients of the non-symmetric terms in the amplitude (2.13) are pro-

portional to (c)co ~ no) (see (A)) or (mN - mK), as easily understood. The terms with 

the coefficients proportional ot (mN - mK) are not the main terms, that is, the terms 

vanish at s-> oo , bccause the mass difference should disapper at s~' oo 

The convergence condition on A' can be imposed in the same way as in the lc~ - Ic+ 

case. Finally, we conjecture that 

A'(s, t) -=>s*" Ai:~･ F(1 oc(t))e '""(t)(ce s)"(t)IA (t) (2.16) 
t : f i*ed 

where 

IA (t)= ~F( 3+2 P) F(1 +0e(t)) , (3+P>0 1+0c(t)>0) (2.17) 

F( 1+~ +0c t ~l 

¥ 2 ()/ 
The expression (2.16) implies that the new factor IA.(t) should be multiplied to the 

asymptotic form of the single-term Veneziano-type model 

Ai:i, F(~(In(s}jsr) (1c~(toc,_);t)) (2.18) 

or models with only the term (2.18) as the main term 
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S 3･ Comparisom with experimemts amd some discussioms 

It is possible to compare the amplitude with experiments, if there exist data at 

very high energies. But, we do not know data above PL = 12.3GeV/c. , So, we take 

an existing model with only the term (2.18) as the main term, and multiply it by the 

factor (2.17) to compare the present model with experiments: As stated in S 1, the 

factor (2.17) is the property of the present model at large s 'as well as at s->00. 

We choose the model presented by Berger and Fox9) as the ground one. The 

model has been constructed on the basis of the foregoing models8) and detailed pheno-

menological analyses. " But, in order to take it as the ground model, a translation is 

needed, as it is written in terms of the trajectories in the Chew-Frautschi plot. Such a 

translation, in a simplified way, is to take no in Eq. (2.14) as 

n0= n~+n~ + 1 
2 ' n~ O 90 ~A 1 24 (2.19) 2
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Fig. I . 

O 0.4 0.8 1 2 0.4 0.8 1 2 . O -t CGeVlc)2 

Two predictions for the do/dt(K-p-Kon) and experimental 

data for the comparison. The dashed curve is the Berger-Fox 

model and the solid curve the present model 
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In Fig. 1, two predictions for the da/dt(K-p->~on), that is, the Berger-Fox model 

and the (Berger-Fox model) x I C x IA.(t)/IA.(O)12 model are shown together with 

experimental data.12) Here, a constant C is introduced to retain the fit at the near 

Itl =0 region, and it is taken to be IC12 = 1.40. 

As seen in Fig. 1, the dip at I tl ~: 0.9 (GeV/c)2 predicted by the new factor IA.(t) 

seems to have a correspondence in experiments 

We make some discussions about the results 

(1) When the B amplitude is also constructed. on the same conditions as here, the 

fit to data will be much improved. We suppose that in the region of I tl -> I .2 (GeV/c)2 

the p - A2 Regge contribution calculated here will be weakened by the Regge cuts 

(II) The duality sheme used here is promising also between the baryon exchange and 

the baryon exchange. Thus, it will predict a dip in the backward scattering of the 

t-channel-exotic processes. In fact, the backward data of the K-p->K+ -~ - . processl3) 
~ 

seems to have a dip. 
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