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It is shown that when the imagmary part of the f-Regge contribution calculated from a 

uniquely determined 7T-It amplitudei) is taken as input for the damping equation, the ob-

tained differaction amplitude well reproduces the t dependence of phenomenological Pomeron 

in small I t I region 

S I . Imtroductiom 

Lately, Munakata, Sakamoto and the authorl) have obtained a uniquely deter-

mined lc-1c scattering amplitude in the narrow-width approximation. Starting with 

the most general Veneziano-type amplitude having just the degree of freedom to 

provide an arbitrary residue at each of parents and their daughters, we have restricted 

it by the following two conditions : (i) The duality constraints proposed by the 

author2) which involve the SU (6)RO (3)L hadron spectrum of the quark model. (ii) 

The convergence condition at s->00. This amplitude possesses good properties ; 

absence of negative-norm states, compatibility with available experimental data of 27c 

decay of the relevant resonances, and a consistency with the PCAC hypothesis. More-

over, the amplitude reproduces3) the inverse Mellin transform of the imaginary part of 

the phenomenological scattering amplitude4). The transform is what prospsed by 

Froggatt, Nielsen and Petersen5) to examine that can the ~-~ scattering amplitude be 

represented by any Veneziano model. Therefore, we suppose that the amplitude is 

promising as the Born amplitude of the strong interactions 

In this paper, we discuss the diffaction scattering on the basis of the amplitude and 

the multi-channel K-matrix formalization for the unitarity requirements. In S2, first 

the partial elastic amplitude in the N-channel K-matrix formalization is presented 

Next, the integral equation for the full amplitude is constructed. The solution of the 

equation is also presented, with some parametolized Born amplitude as input. In S3, 

the parameters in the mput amplitude are fixed so as to express the amplitude in Ref. 

1). The resultant diffraction amplitude is compared with the phenomenological 

Pomeron, taking the viewpoint that the Pomeron is the diffraction. The section 4 is 

devoted to the discussion of results 
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S 2. The dfiffractioEa amplitude im the K-matrix formalizatiom 

2.1 The partial-wave ampliiudefor the diffraction 

In the present discussion, the spin effects are neglected. 

The S-matrix for the l-wave, Sl, in the N-channel K-matrix formalization, which 

satisfies the unitanty requrrements, rs written as 

Sl= I +iKl L. i, j= 1, 2,..., N. Kl=(cefj), oc,J ocJ,, (2.1) 1 -iKl ' 

Here, oeij is the real K-matrix element, that is, the Born amplitude for the transition 

from the state i to the state j. 

We define the partial-wave scattering amplitudes for elastic and inelastic processes 

by 

f ; j = (S: j - I )/(2i) . (2.2) 
Then, from Eq. (2.1), we have the amplitude fii corresponding to the transitlon from 

'1' to 'i' (i=1, 2,..., N) as 

f ii = bii(1 + if i 1) ' (2.3) 
where 

b{i=0cii+i ~ ocl .ocl ~ ~ ocl .ocl ccl 
j=2 IJ ji-j=2k=2 IJ jk ki 

-i ~ ~ ~ oeijocJl.kcc~~oc~i+･･･ . (2.4) 
j=2 k=2 ~=2 

Now, we pay our attention only to the elastic amplitude f~l hereafter ; 

f ~ I = bil(1 + if i 1) ' (2.5) 
where 

bil=0e~l+i ~ c(1 .oel ~ ~ ocl .oel ocl 
j=2 IJ jl-j=2k=2 IJ jk kl 

NNN -i ~ ~ ~ oeijceJl.koek~oc~l+"' ' (2.6) 
j=2 k=2 ~=2 

The elastic amplitude fi i is expressed by the 'irreducible ' term bil and the self-damping 

of it, as found from Eq. (2.5), 

Ll 
fil= I -ib~l ul I . (2. 5') 



A Feature of the Diffraction Scattering Based on the K-matrix Formalization 3 1 

The diffraction scattering, that is, the imaginary part of f~l at high energies is obtained 

from Eq. (2.5) as 

Imfll Im bil + {(Re bil) (Refil)~(Im b~l)(Imfil)} ' (2.7) 

The domination of the diffraction scattering observed at high energies is quali-

tatively understandable by Eqs. (2.6) and (2.7). The second term of Eq. (2.6) will be 

very large at high energies, because the contributions from all j's, c!eijQeJl. I = (oclj2, are 

constructive. And, the largeness of the term will lead to the dominance of the diffrac-

tion in the elastic scattering. Therefore, from both of the phenomena and the present 

model, one finds inequalities 

llm f il I >> IRe f i ll, llm b~ I I >> IRe b~l I . (2.8) 

Finally, from Eqs. (2.7) and (2.8), we have the expression for the diffraction 

amplitude as 

Imfll Im bii-(Im bil)(.Im,fil)' (2.9) 
or, 

T~ l Im f ~ I - l-' bl I (2.9') ~ l+1mbil 

2.2 Thefull diffraction amplitude 

We define the full amplitude Im B I l(s, t) corresponding to the partial-wave 

amplitude Im bil = Im bil(s) and its parametolization as 

= ~ (21+1){Imbil(s)}Pl(1+ t Im B11(s t) 2p2 " 2p ) s
 

l=0 

= sy. exp (P.t), y. = y.(s), P. = P.(s) . (2.10) 

Here, s and t are the Mandelstam variables and p is the . c,m. momentum in the s-

channel. Then, from Eq. (2.9), it is found that the full amplitude Im F11(s, t) corre-

sponding to Imf~l satisfies the following integral equation 

Im Fll(s, t)=1m B11(s, t) 

- ) J: Ji ( I dtl dt2{Im Fll(s, ti)} {Im B11(s, t2)}1(t, tl' t2) ' 
2lcs 

" " 
(2. 1 1) 

where 

e( - t2 - t~ - t~ + 2ttl + 2tt2 + 2tlt2) 
T(t, tl, t2) ~ - t2 - t~ - t~ +2ttl +2tt2 +2tlt2 (2.12) 

Here, it is assumed that s >> I tl. And the solution of eq. (2.11) is 
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" (-1)"-1 V' ( " Im F11(s, t) = 2sp. ~"*-~I n 2p. exp (p.t/n) 

For obServable quantities, the amplitude predicts 

at't=16lcp.(s)In {1+ y.(s) } , 
2 p.(s) 

adirr=16lcp.(s)[In {1+ y.(s) _ y.(s) 
2p.(s) 2p.(s) + y.(s) ' 

[ { )/( )} J b(s) e dadirr dadiff ~ = (( In 

et dt dt /t=0 t=0 
*~"I (~~)"~1 y (s) ( " )" 

_ = 2 2p.(s) - 2 p. (s) y. (s) 
In {1 + } ' 

2 p.(s) 

(2.1 3) 

(2. 14) 

(2.15) 

(2. 1 6) 

S 3. A umfiqwely determrimed at - t~ almplitude and a featwre of the diffractiom 

scatterimg hased om it 

A uniquely deternilned lc ~ - 7c + scattering amplitude in the narrow-width approxi-

mation, which is obtamed in Ref. 1), is 

" f(s, t) = -~(1 -w2) ~~1 (n - 1) !(2n - I +w)(2n -3+w) 

x I F(n -oc(s)) F(n -oc(t)) + (1 -w)F(n -oc(s)) F(n -oc(t)) J . (3 1) 

r(n - cc(s) - c((t)) ' 
2F(n + I - c((s) - oe(t)) 

Here, Qc(s) = o(s + oco is the exchange-degenerate p -f Regge trajectory, and w denotes 

w E 2 - 30c~ - 40(m2. (3.2) 
We know a candidate of the Born amplitude for the lc~1c+ ~, 7c~1c+ process, that is, the 

I~･1 process. 

We do not know the Born amplitudes for the I -> i processes explicitly. One may, 

however, expect that at very high energies where some mass differences and spin 

effects will be able to be neglected, almost all of the inelastic processes I -> i dominated 

by the f Regge exchange will have amplitudes with the t-dependence as in the I ~ 1 

amplitude. So, it might be possible to predict some fe"ature of the t dedendence of the 

diffraction amplitude by the amplitude (3.1) 

Now, m order to prepare the explicit input for the equation (2.11), we examine 

the f-Regge contribution to the ~mplitude (3.1). The asymptotic form of Eq. (3.1) is 

f(s, t) --=>s~" ~F(1 -cc(t)) [exp { - i7coe(t)}]ce(s)"(t)1(t) , (3.3) 
t :f i*'d 
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where 

F( 3 + w ) F(1 +0c(t)) 

I(t)= 2 , Re {1 +cc(t)} >0. (3.4) F( 1+w +0c(t)) 

¥2 
The separation of the asymptotic form (3.3) into the f and p Regge contributions is 

f(s, t) ~~~ Af(s, t) + Ap(s, t) , (3.5) t =f i**d 

Af(s, t) Ar(1-0c(t)) I + exp { - ilcoe(t)} oc(s)"(t)1(t) 

2
 

~yf(t)( s )"(t) (3.6) { i7cQe(t) } 

exp -

Ap(s, t) =~r(1 - oc(t)) ~ I + exp { -ilcoc(t)} oc(s)"(t)1(t) 

2
 

s "(t) ilcoe(t) 5 typ(t)( s. ) exp (3.7) - } 2
 

where 

yf(t) hF(1 oc(t)) (oc s )"(t)1(t) cos lcoc(t) (3.8) 

2 ' 
y (t) ~r(1 oc(t)) (oc s )"(t)1(t) sin lcoc(t) (3.9) 

2 ' 
and s. is introduced to make the residue functions yf(t) and yp(t) dimensionless and 

the unity in GeV2. The numerical values of the f residue function in small I tl region is 

yf(t)~: - 1.55 exp(0.586t), for Itl ~0.5. (3.10) 

Here' ~ is determined by observed decay width of p ->2lc,6) and oc(t) is taken to be 

oc(t) = 0.88 1 t + 0.483. (3. 1 1) 

We can make two models for the fiffraction scattering on the basis of the Af(s, t) 

amplitude (3 . 6). One is the model where this amplitude is regarded as the Born-1ike 

amplitude and the Regge cut for it is taken as the input for the equation (2.11) after 

being multiplied by the number of open channels. The other is the one in which the 

unaginary part of the amplitude Af(s, t) is taken as the input for Eq. (2.11). Some 

remarks are made about the latter model 

(a) The imaginary part of Af(s, t) is 
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ImAf(s, t)=-yf(t)( s )"(t) . Icoc(t) 

sm 

s. 2 
( s Y(t) (3.12) c~l.07 s. / exp (1.97t) (Itl 

And amplitudes for inelastic processes will have imaginary parts as Eq. (3.12) except 

for the normalization 

(b) As for the s dependence, the model will have to be modified. There is the idea of 

the identity of Pomeron and f.7) ' 
(c) The ratios (Re Af(s, t)/Im Af(s, t)) and (R~ Ap(s, t)/Im Ap(s, t)) reproduce ex-

periments well at least in small I tl region 

(d) The integral equation (2.11) is valid independently from the choice of the irre-

ducible term Im B11(s, t). 

We start with the latter model. The input, that is, the amplitude (3.12) with some 

modification for s dependence is parametolized as 

Im B1 1(s, t) = s{2P.(s)}C(s) exp { P.(s)t} , (3. 13) 

where 

=. ( . ' ) p (s) 1 97+0c In s (3.14) s. 

From Eqs. (2.14) - (2.16), the predictions of the solution of~ the equation (2.11) 

are found to be 

at't = 16lcfi.(s) In {1 + C(s)} , (3. 15) 

adirr=16lcP.(s)[In {1+C(s)} - C(s) (3.16) J
 

1+C(s) ' 

[ a {In (Im F11(s, t)/Im F11(s, O))}Jt=0 

et 

_ b(s) 

-2 
=fi (s) ic(.) In (1+t) dt (lC(s)1 ~1). (3.17) 

o t " In {1 + C(s)} ' ~ 
When the unknown quantity C(s) is estimated from Eq. (3.15) and experimental 
at't'4) the quantity b(s)/2 in Eq. (3.17) can be explicitly predicted. In Table I, the 

predictions are compared with experimental b(s)/2.4) 

In Table I, a consistency with experiments is seen. 

It is clear that the model with the Regge cut of Af(s, t) as input fails. 
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Table I. The prediction for slope parameter of lr~-1r+ diffraction scattering 

and phenomenological values4) for comparison 
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s(GeV2) P.(s) (GeV-2) o,'.**p mb ( ) C(s) 
b(s)/2(GeV-2) 

prediction ex p . 

3.0 

4.0 

5.0 

6.0 

7.0 

2.94 

3.19 

3.39 

3.55 

3.68 

15 

15 -
15-

,15 

15 

0.298 

0.27 1 

0.254 

0.241 

0.231 

3.14 

3.39 

3 . 60 

3.75 

3.88 

3.3 

3.4 

3.5 

3.5 

3.6 

S 4. Discussiom of results 

When the imaginary part of the f-Regge contribution from the asymptotic form of 

the uniquely determined amplitude is taken as input for the damping equation, the 

obtained diffraction amplitude well reproduces slopes of phenomenological Pomeron 

in small I tl region. It is noted that the I(t) factor in the asymptotic form (1(t) c~: 0.89 

exp (0.32t), (Itl ~ 0.5)) plays a role not negligible. The model can not, however, 

explain the s dependence of the phenomenological Pomeron. 
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