
Mem. 
18, pp 

Fac. Sci., Shimane Umv 
13-19 Dec. 20, 1984 

Gawge Colnclitioms and CorrelatiolnS im Stochastic 

QwalatiZatioEl of U(1) Gawge Fielld 

Jiro SAKAMOTO 

Department of Physlcs Shimane Unrversity. Matsue, 690. Japan 

(Received September 3, 1 984) 

Abstract 

Stochastic quantization method is applied to U(1) gauge field 

random traJectories of gauge-dependent quantities is discussed. It is 

stabilization is possible by modifying the correlation of the white noise. 

propagator of the axial gauge condition is derived 

The stabilization of 

shown that such a 

As an example the 

S I . Imtroductiom 

It is known that the stochastic quantization proposed by Parisi and Wul) is 

equivalent to other conventional quantizations for non-gauge theories. For gauge 

theories the equivalence between the stochastic and the other quantizations is proved 

perturbatively by many authors.2)~8) The outstanding point of this method is th~t 

we can quantize the gauge fields without any gauge fixing 

Nevertheless, it is still inconvenient to quantize the gauge fields without the gauge 

fixing because gauge-dependent quantities contain divergent terms while the gauge-

invariant ones are of course calculated unambiguously (see below) 

The outline of this method would be easily understood by showing the application 

to U (1) gauge field 

The starting point of the stochastic quantization is the Langevin equation, 

aA (x t) ~S[A J 
u ' = - u +np(x, t), (1.1) at 5Ap(x, t) 

with the introduction of a fictitious time t. S[Ap] is the classical Euclidean action for 

the gauge field Ap and is grven by 

p j 
1
 = d4xFp~(x)Fp~(x) . (1 .2) S[A J 4 

Thus eq. ( I . 1) is explicitely written as 

e
 A (x t) = - (6p~C] - epa.)A.(x, t) + np(x, t) . 
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The white norse nu(x, t) is supposed to satisfy the stochastic average 

 =0, 

 =26p"~(x - x')8(t- t') , 

 

= 

 

 + other combinations, 

(1.3) 

It can be shown that 

l ~ dAp(x)ep(A ) e s[A]//JH dA e s[A] 

lim  = (1 .4) 
t+" 

where ep(Au(x, t)) is a gauge-invariant f'unction of Au(x, t) with the same time t. The 

right-hand side is the Green function in the Euclidean field theory. If ~(Au) is a gauge-

dependent function, however, the left-hand side of (1.4) never converges. This can be 

easily seen from (1.1'), which gives 

a
 et epAu(x t) apnp(x t) (1.5) 

The longitudinal component of Ap never relaxes on the equilibrium for lack of friction 

terms on the right-hand side of the above equation 

In order to stabilize the random trajectory the friction terms are introduced by 

several authors in some different ways.2),3),6)~8) 

In this paper we discuss another possibility for such a stabilization. It is shown in 

the next section that in U (1) gauge field the modification of the correlation of the 

white noise (1.3) with an adequate choice of the initial condition of the Langevin 

equation (1.1') makes the stochastic average of ep(Ap) converge. As an example we 

derive the propagator for the axial gauge condition by such a modification 

S 2. Mod~ficatiom of the stochastic correlatiom of the white moise 

The equation (1.1') can be written in the momentum space as 

a A~p(k t) = - (8p"k2 - kpk.)A~.(k, t) +n-p(k, t) , 

at 

where the quantity with tilde is the Fourier transform of its correspondent 

equation is solved as 

(2.1) 

The above 
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A~p(k, t)= kpk. kllk. ~v(k, t') J: dt'[(6/t~ ~ )exp {-k2(t t )} + 

-, J 
kllk~ kllkv + {(~pv 2 exp ( k2t)+ jj:v(k, O) (2.2) 
k
 

k
 

Then the stochastic correlation of the product A,t(k, t)Av(P' t) is given by 

 =~(k +p) kpk. 2kpkv t I( 2 611 v {1 exp( 2k2t)}k 2+ 

+ {(~ k,tk;L kpkh ~:h(k, O) exp ( - k2t) + 
p~ k2 k

 

{( exp ( - p2t) + Za(P' O) (2.3) )
 

} , x ~ - P'P. P.P. 
v' p2 p2 where we use 

 = 26pv6(k + p)6(t - t') . (2.4) 

For large t, eq. (2.3) Ieads to 

 -> 6(k+p) 61LV k_kPkv k-2+2kuk. t {( - 2 ) 2 } k
 

+ k/tkAP~P. ~lh(k, O)Z.(p, O) (2.5) 
k2 p2 

Namiki et al . 5) have taken the average with respect to the initial value A~p(k, O) and 

have supposed 

{Ap(k, O)Av(P' O)} - (2.6) . oc6/lv6(k+p) . 
aver ~ 

Then they have obtained 

ave" ~> 6(k+p)k-2{6pv ~(1 -oc) kllk. + 2k/tkvt . (2.7) }
 

k2 

It was shown that the initial value of the field is related to the gauge parameter of the 

propagator In the conventional quantizations. 

The drvergent term m the right-hand side on (2.7) is due to the non-relaxation of 

the longitudinal component of the field as explained before. A direct way to cancel 

such a divergent term is to impose a constraint on the field Ap. For example we 

sup pose 

a/tAll(x, t) = O. (2.8) 
In this case all the components of the white noise nlt are no longer independent of each 

other ; we have 
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apnu(x, t) O (2.9) 

from (1.5). The above equation implies that the correlation (1.3) of n/1 should be 

modified as 

kk ~  =2(6/rv ~ ~2v 1~(k +p)6(t - t') . (2.10) 

The stochastic correlation of the product A/1(k, t)A~(p, t) is 

kllkv {1-exp (-2k2t)}k-2  = ~(k +p) ' (~,1' ~ 2 ) 

k
 

+ exp { -(k2 + p2)t}A/t(k, O)Av(P' O) 

6,1~ k~k, k-2 (2.11) ( .2 ) -> 5(_k + p) -

Conversely the modification (2.10) of the correlation of np means the constraint (2.8) 

by tracing back the above line of reasoning (more precisely we need additionally 

a/lAp(x, O) = O as the initial condition) 

Now, we consider the modification of the correlation of ~p which does not induce 

the constraint on Au. Here we search such a modification that the propagator of the 

axial gauge condition is derived. We put 

 =2~(p + k)~(t- t') 

x {5pv + B6p35v3 + C(~113kv + 5v3kp) + Dk k } (2.12) 

where B. C and D are functions of kp. From (2.2) the correlation of the product 

Ap(k, t)A~(p, t) is given by 

 = 2~(k+p) ' kpk. kuk~ f: dt I(~1lv~ 2 ) exp { -2k2(t - t')} + 

k+k3 +B{(~p3 2 expk2(t'-t)+ ~v3 expk2(t'-t)+ k2 } 2 }{( - ) - ) k2 k
 

k
 

+c{kp(~.3 expk2(t'-t)+ 3 k,tkv+(//k
 - ) k2 k2 

+ {(~pp kpkp kllkp 6.. P.Pp exp ( -p2t) 2 }{( - ) - ) -exp( k2t)+ p2 k2 k
 

p2 } + P~P~ Zp(k, O)~.(p, O). (2.13) 

The condition that the terms of O(t) in the above equation should vanish is 
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k2 + Bk~ + 2Ck2k3 + Dk4 = O. (2. 14) 
Taking the average with respect to the initial value A~p(k, O) and the limit t-> aD , we have 

lim 

 . 
" " '. 

t+ " 

a(k+p) - kpk. 1+ 3k~ B+4k C)+B5p36.3 6p" 

k2 k2 
+ 2(kp53.+k.63p) 2kk2 ( B+C)}k 2 

+ kpkpP~P. {A~p(k, O)j~.(p, O)} (2.15) 
k2 p2 ""'.. 

This should be equal to the axial gauge propagator, 

kpk+ 6(k+p) 6p"- ~ }
 

(kp6+3+k*6p3) + k~ k-2. 

The functions B, C and D and {Ap(k, O)A.(p, O)}aver' should satisfy 

B = O, 

_ l 2C -~ k3 ' 
k p P. ( I +4k3C+ I ~/~ k+ {~1 (k O)~ (p O} .. ¥ k2 k2 k~ / ( P)= ~,er k2p2 P ' " ' 

The combination of the above equations with (2.14) gives 

B = D = O, 

_ 1 C-~ 2k3 ' 
{A~p(k, O)A~~(p, O)} - ( - )5(k +p) . (2.17) 13 12 a

 ' P" k2 k ""'' -

We write the modified correlation of n-p , 

f6 _ 1  =2~(k +p)6(t-t') I p~ 2k3 (~P3k. + ~.3kp)} . (2.18) 

The axial gauge propagator (2.16) can be derived also by imposing the constraint 

A (x, t) =0, (2.19) 
(see Appendix). In this case, however, n3(x, t) becomes a dependent variable. 
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In contrast to this or to the case of the covariant gauge (see (2.10)), eq. (2.18) 

shows that all the components of ~p are independent of each other. The third com-

ponent of the potential, A3 correlates with other components when t is finite 

S 3･ Concluding remark 

In stochastic quantization the Green f'unctions of quantum theories are obtained 

from the correlation functions by taking limit of the fictitious time to intinity. There-

fore, at finite t there may exist several types of the formulations and what we have 

discussed in the previous section and appendix are examples for this fact. This freedom 

of choice may enable us to expand the territory of quantum theory together with that 

in stochastic quantizatior* we need neither the Lagrangian nor the Hamiltonian but 

only the classical equation of motion 

It is inconvenient to apply the procedure discussed here to non-abelian gauge 

fields for the following reason. If the gauge group is non-abelian, the modified cor-

relation such as (2.18) is not invariant even for t-independent gauge transformation 

because it is non-local. Therefore the manifestation of the gauge invariance of the 

theory is lost. 

Ap pemdix 

Imposing (2.19) on (2.1) we have 

O- a A~3(k t) k3klAl(k t)+n (k t) 
- at 

or 

~3(k, t) = - k3klAl(k, t) , (A.1) 
where the Latin index runs from O to 2. The above equation implies that the third 

component of the white noise is not an independent variable. Instead of eqs..(2.1), 

(2.19) and (A.1) we have equivalently 

a A~k(k, t) (5klk2 k kl)Al(k t) +n (k t) (A.2) 
et 

with A3=0. This equation is easily solved as 

kkkl kkkl Ak(k, t)=J: dt'{(6kl- 2 expk2(t'-t) + 2 exp k~(t'-t)}~1(k, t') )
 

k
 

k
 

kkkl kkkl + {(6 exp (-k2t) + 2 exp (-k~t)}Zl(k, O), (A.3) - ) kl 2 k
 

k
 

where k2 = k~ + k~ + k~. Then we have 
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