Mem. Fac. Sci., Shimane Univ., 17, pp. 15–21 Dec. 20, 1983

S¹-Actions on Vector Bundles over Spheres

Hiromichi MATSUNAGA

Department of Mathematics, Shimane University, Matsue, Japan (Received September 3, 1983)

In the previous papers [6], [7] and [8], we studied some group actions on sphere bundles over spheres and proved some non existence theorems. In this paper, we shall study S^1 -vector bundle structures on vector bundles over spheres. We shall fix a representation of S^1 on the fiber over the north pole.

Section 1 provides some preliminaries and we shall prove some classification theorems for S^1 -vector bundles with a designated action on the fibre over the north pole (Theorem 1 and Theorem 2). As a corollary, we shall obtain a non existence theorem.

In section 2, we shall construct two kinds of lifting actions. One of them is a lifting of a linear action on a sphere and the other is a lifting of a quasi linear action.

In the last section, we shall show that some action on a sphere bundle over a sphere can not be derived from an S^1 -vector bundle with a specified action on the fibre over the north pole.

§1. Preliminaries

We denote the (n+1)-dimensional complex number space by C^{n+1} and the real number field by R respectively. We use symbols ρ_{S^1} and θ_R for the standard representation $S^1 \rightarrow U(1)$ and the trivial real representation of S^1 . Consider the action on $S^{2n+2} \subset C^{n+1} \oplus R$ given by a representation $a\rho_{S^1} \oplus (2n-2a+3)\theta_R$, $a \leq n$. Then the upper and lower hemispheres e_{\pm}^{2n+2} and e_{\pm}^{2n+2} , contract equivariantly to the north and south poles O_+ , O_- respectively. Let $C^k \rightarrow B \rightarrow S^{2n+2}$ be a complex S^1 -vector bundle. By Proposition 1.3 in [9], the portions $B \mid e_{\pm}^{2n+2}$ yield equivariant isomorphisms, α_{\pm} : $B \mid e_{\pm}^{2n+2} \rightarrow e_{\pm}^{2n+2} \times C_{\pm}^k$, where C_{\pm}^k are S^1 -modules such that

$$g(v_1,...,v_k) = (g^{\varepsilon_1(\pm)}v_1,...,g^{\varepsilon_k(\pm)}v_k),$$

for $g \in S^1$, $(v_1, \ldots, v_k) \in C_{\pm}^k$ and $\varepsilon_1(\pm), \ldots, \varepsilon_k(\pm)$ are some integers. Define an S^1 -action on U(k) by $(g, A) \to D_-(g)AD_+(g)$ for $g \in S^1$, $A \in U(k)$, where $D_{\pm}(g) = (g^{\varepsilon_1(\pm)}) \times \cdots \times (g^{\varepsilon_k(\pm)})$. Consider the commutative diagram

Define a map $\chi: S^{2n+1} \to U(k)$ by $\alpha_{-} \circ \alpha_{+}^{-1}(x, v) = (x, \chi(x)(v))$ for $(x, v) \in S^{2n+1} \times C_{+}^{k}$, then we have $\chi(gx) = D_{-}(g)\chi(x)D_{+}(g)^{-1}$. Therefore the map χ is S¹-equivariant. Let $C^k \rightarrow B' \rightarrow S^{2n+2}$ be another S^1 -vector bundle. We have another diagram (1') similar to (1). If an S^1 -isomorphism $h: B \rightarrow B'$ is given, then we obtain a cubic diagram connecting (1) with (1'). Define $h_{\pm}: e_{\pm}^{2n+2} \rightarrow \text{Iso}$ $(C_{\pm}^k, C_{\pm}'^k)$ by $\alpha'_{\pm} \circ h \circ (\alpha_{\pm})^{-1}(x, v) = (x, h_{\pm}(x)(v))$ for $x \in e_{\pm}^{2n+2}, v \in C_{\pm}^k$, where C'_{\pm}^k are S^1 -modules which appear in equivariant trivializations $\alpha'_{\pm}: B' \mid S^{2n+1} \xrightarrow{\sim} S^{2n+1} \times C'_{\pm}^k$. But we can choose a basis in C'_{\pm}^k such that $C'_{\pm}^k = C_{\pm}^k$. By the cubic diagram, we obtain

$$h_{-}(x)\chi(x) = \chi'(x)h_{+}(x), \qquad x \in S^{2n+1} \qquad \cdots (2)$$

The maps $h_{\pm}: e_{\pm}^{2n+2} \to U(k)$ are equivariantly homotopic to constant maps $h_{\pm}(O_{\pm}) = A_{\pm}$. By (2), χ' is equivariantly homotopic to $A_{\pm}^{-1}\chi A_{\pm}$. We can normalize maps h_{\pm} by $(A_{\pm})^{-1}h_{\pm}$ to obtain $\chi' \simeq \chi$, S¹-homotopic.

Conversely, suppose that there is an equivariant homotopy $H_t: S^{2n+1} \to U(k)$ such that $H_0 = \chi$ and $H_1 = \chi'$. Set $h_- = H_0 \circ H_1^{-1}$ and $h_+ = I_k$, which is the unit matrix in U(k). Then h_- is equivariantly homotopic to the constant map, and we obtain extended maps $h_{\pm}: e_{\pm}^{2n+2} \to U(k)$. Clearly, $h_-\chi' = H_0 = \chi h_+$ on S^{2n+1} . Let B' be an S^{1-1} vector bundle with characteristic map χ' . Then we obtain an S^{1-1} isomorphism $h: B \to B'$ such that $h \mid e_{\pm}^{2n+2} = (\alpha'_{\pm})^{-1} \circ h_{\pm} \circ (\alpha_{\pm})$. Set $(\varepsilon_1(+), \ldots, \varepsilon_k(+)) = \varepsilon$ and denote S^{1-1} equivalence classes of S^{1-Ck} -bundles over S^{2n+2} with the specified action on the fibre over O_+ by $Vect_{\xi_1}^{\varepsilon_1}(S^{2n+2})$. Then we have

THEOREM 1. The set $Vect_{S^1}^{\varepsilon}(S^{2n+2})$ corresponds bijectively to the equivariant homotopy set $[S^{2n+1}, U(k)]$, where the S¹-action on U(k) is given by $(g, A) \rightarrow D_+(g)AD_+(g)^{-1}$.

PROOF. Since $a \le n$, O_+ and O_- can be combined by a curve in the fixed point set, there exists $A \in U(k)$ such that $D_-(g) = A^{-1}D_+(g)A$. From the relation $\chi(gx)D_+(g) = D_-(g)\chi(x)$, we have $\chi(gx) = A^{-1}D_+(g)A\chi(x)D_+(g)^{-1}$, and $(A\chi(gx))D_+(g) = D_+(g) \cdot (A\chi(x))$. The S¹-bundle $e_+^{2n+2} \times C_+^k \cup_A e_-^{2n+2} \times C_+^k$ is equivariantly isomorphic to $e_+^{2n+2} \times C_+^k \cup_X e_-^{2n+2} \times C_+^k$. Thus we obtain the theorem.

For S^{1} -maps $\gamma, \gamma': S^{2n+1} \rightarrow U(k)$, we define a product by $(\gamma \circ \gamma')(x) = \gamma(x) \cdot \gamma'(x)$, $x \in S^{2n+1}$. Then the set $[S^{2n+1}, U(k)]$ admits a group structure.

Now consider the case a=1. Then S^{2n+2} is an S^1 -manifold, where the action is given by the representation $\rho_{S^1} \oplus (2n+1)\theta_R$. The fixed point set is the 2*n*-sphere S^{2n} and the orbit space is a (2n+1)-disc D^{2n+1} . We have an equivariant decomposition $S^{2n+2}=D^2 \times S^{2n} \cup S^1 \times D^{2n+1}$, where $D^2 \times S^{2n}$ is an equivariant tublar neighborhood of the fixed point set. Let $p: S^1 \times S^{2n} \to S^{2n}$ be the projection onto the second factor and $\pi: S^{2n+2} \to D^{2n+1}$ be the orbit map. S^{2n+2} is a special S^1 -manifold ([3]). The image $\pi(S^1 \times S^{2n})$ is a 2*n*-sphere S_{ε}^{2n} in D^{2n+1} with the same center as the one of D^{2n+1} . Consider the commutative diagram

$$S^{1} \times S^{2n} \xrightarrow{p} S^{2n}$$

$$\downarrow^{\pi} \qquad \downarrow \qquad \text{the identity map}$$

$$S^{2n}_{\varepsilon} \xrightarrow{p'} S^{2n},$$

where p' is the map induced from p. For an S¹-vector bundle $C^k \rightarrow B \rightarrow S^{2n+2}$, its data (cf. §3 in [5]) is

$$B \mid S^{2n} \xrightarrow{r^* p'^*} r^* p'^* (B \mid S^{2n}) \xrightarrow{\alpha} S^{2n}_{\varepsilon} \times C^k \subset D^{2n+1}_{\varepsilon} \times C^k,$$

where r^* denotes the forgetful map and α is an isomorphism of vector bundles. We have an S^1 -isomorphism $B | S^{2n} \cong e_{+}^{2n} \times C_{+}^k \cup_f e_{-}^{2n} \times C^k$. Since $S(C^{n+1} \oplus R) \supset S(C \oplus R) \ni O_{\pm}$, it follows from Proposition 1.3 in [9], that there exists $A \in U(k)$ such that $D_{-} = A^{-1}D_{+}A$. From the relation $D_{-}f(x)D_{+}^{-1}=f(x)$, we have $D_{+}(Af(x))D_{+}^{-1}=Af(x)$ for $x \in S^{2n-1}$. Suppose that $\varepsilon_1 = \cdots = \varepsilon_{m_1}, \varepsilon_{m_1+1} = \cdots = \varepsilon_{m_2}, \cdots, \varepsilon_{m_{s-1}+1} = \cdots = \varepsilon_{m_s} = \varepsilon_k$. By the proof of Theorem 1, we can assume that $f: S^{2n-1} \to U(m_1) \times \cdots \times U(m_s)$. Let $i_*: \pi_{2n-1}(U(m_1) \times \cdots \times U(m_s)) \to \pi_{2n-1}(U(k))$ be the homomorphism induced from the inclusion map $i: U(m_1) \times \cdots \times U(m_s) \to U(k)$. By the trivialization α , $[f] \in \text{kernel } i^*$. Let $\alpha_1: r^*p'^*(B | S^{2n}) \to S_{\epsilon}^{2n} \times C^k \subset D_{\epsilon}^{2n+1} \times C^k$ be another trivialization. Then $\alpha_1 \circ \alpha^{-1}$ determines an element of $\pi_{2n}(U(k))$. Conversely, for a fixed α , each element of $\pi_{2n}(U(k))$ gives a homotopy class of trivializations. By the theorem 2 in [5], we have

THEOREM 2. We have a bijection

I = 100 (200)

S: Vect^{$$\varepsilon$$}_{S¹}(S²ⁿ⁺²) \longrightarrow {kernel $i^* \times \pi_{2n}(U(k))$ }/(~),

where \sim denotes equivalences of data (Definition 1 in [5]).

Let $\Psi_*: Vect^{\epsilon}_{S^1}(S^{2n+2}) \rightarrow Vect^k(S^{2n+2})$ be the forgetful homomorphism. Then we have

COROLLARY. If k < 2n, then the image Ψ_* is a finite subgroup of $Vect^k(S^{2n+2})$.

PROOF. $\pi_{2n}(U(k))$ is a finite group, and if $m_i \ge n$, then $m_j < n$ for $j \ne i$. Therefore the kernel i_* is a finite subgroup of $\pi_{2n-1}(U(m_1) \times \cdots \times U(m_s))$. Thus we have the corollary.

If $n+1 \leq k < 2n$, then the image Ψ_* is trivial.

§2. Construction of lifting group actions

Consider an S¹-action on S²ⁿ⁺² given by the representation $\rho_{S^1} \oplus (2n+1)\theta_R$. Let $C^k \to B \to S^{2n+2}$ be an S¹-vector bundle. Define $\Psi_{S^1}: S^1 \times (B | S^{2n}) \to S^1 \times (r^*p'^*(B | S^{2n}))$ by $\Psi_{S^1}(x, v) = (x, x^{-1}v)$ for $(x, v) \in S^1 \times (B | S^{2n})$. Then Ψ_{S^1} is an equivariant isomorphism. Consider the composite isomorphism

$$S^1 \times (B \mid S^{2n}) \xrightarrow{\Psi_{S^1}} S^1 \times (r^* p'^* (B \mid S^{2n})) \xrightarrow{1s^{1 \times \alpha}} S^1 \times S^{2n} \times C^k.$$

Hiromichi MATSUNAGA

Set $\Psi_{S^1}(x, v) = (x, \pi(v), f(x^{-1}v))$. We can define $\phi: S^{2n} \to \text{Hom}(S^1, U(k))$ by $f(x^{-1}v) = \phi_{\pi(v)}(x)f(v)$. Now suppose that $k \ge 2n$. Then we have a unique homotopy class $[\alpha]$ of a trivialization. Since $B \cong D^2 \times (B | S^{2n}) \cup_{\phi} S^1 \times D^{2n+1} \times C^k$, where Φ denotes $(1_{S^1} \times \alpha) \circ \Psi_{S^1}$, the bundle B is determined by the homotopy class $[\phi]$ up to S^1 -isomorphism.

Let Γ be a compact connected Lie group. For $\alpha \in \text{Hom}(S^1, \Gamma)$, $\gamma \in \Gamma$, we define $\alpha^{\gamma} \in \text{Hom}(S^1, \Gamma)$ by $\alpha^{\gamma}(x) = \gamma \alpha(x) \gamma^{-1}$, $x \in S^1$, and denote the set $\{\alpha^{\gamma}; \gamma \in \Gamma\}$ by α^{Γ} . Then α^{Γ} is included in the connected component Hom $(S^1, \Gamma)_{\alpha}$ of α . The next proposition is due to H. Toda.

PROPOSITION 1. Hom $(S^1, \Gamma)_{\alpha} = \alpha^{\Gamma}$.

PROOF. Let $\{\alpha_t \in \text{Hom}(S^1, \Gamma)\}$ be a homotopy of $\alpha = \alpha_0$. The image $\alpha(S^1)$ is contained in a maximal torus T of Γ and there is $s \in T$ such that $\alpha_1(S^1) \subset sTs^{-1}$. The circle group S^1 is topologically generated by a generator g. Since Γ is connected, there is a curve $c(\tau)$ in Γ such that $c(0) = \alpha_1(g)$ and $c(1) = s^{-1}\alpha_1(g)s \in T$. The curve $\alpha_t(g) \circ c(\tau)$ connects $\alpha_0(g)$ with $s^{-1}\alpha_1(g)s$. We have $\pi_1(\Gamma/T) = 0$. Therefore the curve $\alpha_t(g) \circ c(\tau)$ is deformable into a curve in T. Thus we have $\alpha_0(g) = s^{-1}\alpha_1(g)s$ and $\alpha_1 = s \cdot \alpha \cdot s^{-1}$, which proves the proposition.

Now let Γ be U(k). Then Hom $(S^1, U(k))_{\alpha} = \alpha^{U(k)}$. We consider the case k = 2nand $\alpha(x) = D_n(x) \times D_n(x)^{-1}$, where $D_n(x)$ denotes the *n*-dimensional diagonal matrix with x as diagonal entries. Let C_{α} be the set $\{\gamma \in U(2n); \gamma \cdot \alpha(x) = \alpha(x) \cdot \gamma \text{ for any } x \in S^1\}$. Then $C_{\alpha} = U(n) \times U(n)$. By the correspondence $\gamma C_{\alpha} \to (\gamma C_{\alpha}) \alpha(\gamma C_{\alpha})^{-1}$, the space $\alpha^{U(2n)}$ can be identified with the grassmannian $U(2n)/C_{\alpha} = G_{2n,n}$. The composite map $G_{2n,n} \to \alpha^{U(2n)} = \text{Hom } (S^1, U(2n))_{\alpha} \subset \Omega_{\alpha} U(2n)$ is just the Bott map \vec{f} in §8 of [2], where Ω_{α} denotes the component of α in the loop space $\Omega U(2n)$. By the consideration above, a map $\phi: S^{2n} \to \text{Hom } (S^1, U(2n))_{\alpha} \subset \alpha_{\alpha} (U(2n))) \cong 2\pi_{2n+1} (U(2n))$. Thus we have proved

THEOREM 3. If a C^{2n} -bundle B over S^{2n+2} has the homotopy class of characteristic maps in $2\pi_{2n+1}(U(2n))$, then the S^1 -action $\rho_{S^1} \oplus (2n+1)\theta_R$ on S^{2n+2} can be lifted to an action on B.

Next we construct another bundle lifting of a quasi linear action on the sphere S^{2n+2} , where we mean by a quasi linear action a smooth action which is topologically equivalent to a linear action. We refer the construction of difference bundles due to Atiyah-Bott-Shapiro (§9 in [1]). Let $\gamma_n: S^{2n-1} \to U(n)$ be a representative for a generator of $\pi_{2n-1}(U(n))$. Define $\overline{\gamma_n}: D^{2n} \to M_n(C)$, the complex $n \times n$ matrices, by $\overline{\gamma_n}(sx) = s\gamma_n(x)$ for $(s, x) \in [0, 1] \times S^{2n-1}$. Then we have a complex of vector bundles

$$\tilde{\gamma}_n: D^{2n} \times C_1^n \longrightarrow D^{2n} \times C_0^n$$
,

which is given by $\tilde{\gamma}_n(x, v) = (x, \bar{\gamma}_n(x)(v))$. In the case $n = 1, \tilde{\gamma}_1$ is given by $\tilde{\gamma}_1(x, v_1) =$

 (x, xv_1) and its adjoint $\bar{\gamma}_1^*(x, v_0) = (x, \bar{x}v_0)$. We give an S¹-action on the complex $\tilde{\gamma}_1$ by

$$D^2 \times C_1 \ni (x, v_1) \longrightarrow (gx, v_1) \in D^2 \times C_1,$$

$$D^2 \times C_0 \ni (x, v_0) \longrightarrow (gx, gv_0) \in D^2 \times C_0,$$

where $g \in S^1$. Then $\tilde{\gamma}_1$ is S^1 -equivariant. We use the same notations as the ones in §9 of [1]. Thus $\rho_1^*(\phi_0^*)^{-1}d(\tilde{\gamma}_n)$ gives a generator of $K(S^{2n})$ and d is an Euler characteristic (p. 22 ibid.). Now $\tilde{\gamma}_1$ gives a complex S^1 -line bundle and represents a generator of $K(S^2)$. We consider the product of complexes $\tilde{\gamma}_1$ and $\tilde{\gamma}_n$:

$$\tilde{\gamma}_{n+1}: (D^2 \times D^{2n}) \times (C_0 \otimes C_1^n \oplus C_1 \otimes C_0^n) \longrightarrow (D^2 \times D^{2n}) \times (C_0 \otimes C_0^n \oplus C_1 \otimes C_1^n),$$

where

$$\bar{\gamma}_{n+1}(x, y) = \begin{pmatrix} I_1 \otimes \bar{\gamma}_n(y) & \bar{\gamma}_1(x) \otimes I_n \\ \bar{\gamma}_1^* \otimes I_n & -I_1 \otimes \bar{\gamma}_n^*(y) \end{pmatrix} = \begin{pmatrix} \bar{\gamma}_n(y) & x \cdot I_n \\ \bar{x} \cdot I_n & -\bar{\gamma}_n^*(y) \end{pmatrix}$$

and I_k denotes the unit matrix of k-dimension. For a boundary point $(x, y) \in \partial(D^2 \times D^{2n})$, $(1/\sqrt{|x|^2 + ||y||^2})\bar{\gamma}_{n+1}(x, y) \in U(2n)$, where || || denotes the norm, and we denotes this by $\tilde{\gamma}_{n+1}(x, y)$. For $g \in S^1$, we have

$$\widetilde{\widetilde{\gamma}}_{n+1}(gx, y)\begin{pmatrix} gv_0 & w_1 \\ v_1 & w_0 \end{pmatrix} = (1/\sqrt{|x|^2 + \|y\|^2})\begin{pmatrix} \overline{\widetilde{\gamma}}_n(y) & gx \otimes I_n \\ \overline{g}\overline{x} \cdot I_n & -\overline{\widetilde{\gamma}}_n^*(y) \end{pmatrix}\begin{pmatrix} gv_0 \otimes w_1 \\ v_1 \otimes w_0 \end{pmatrix}.$$

Therefore $\tilde{\gamma}_{n+1}(gx, y) = (D_n(g) \times I_n)\tilde{\gamma}_{n+1}(x, y)(D_n(g) \times I_n)^{-1}$. We denote the *n*-fold product of the unit interval [0, 1] by I^n and its boundary by ∂I^n . Define a map Φ_n : $(I^n, \partial I^n) \to (D^n, S^{n-1})$ by $\Phi_n(p) = (\max \{|t_i|, i=1,...,n\}/||p||) \cdot p$, where $p = (t_1,...,t_n) \neq (0,..., 0)$ and $\Phi_n(0,..., 0) = (0,..., 0)$. Then Φ_n is a homeomorphism. Consider the composite map $h = \Phi_{2n+2} \circ (\Phi_2^{-1} \times \Phi_{2n}^{-1}) : D^2 \times D^{2n} \to I^2 \times I^{2n} \to D^{2n+2}$. Then the restriction to the boundary $h: \partial (D^2 \times D^{2n}) \to \partial D^{2n+2}$ is a homeomorphism. By Theorem M due to Smale ([10], p. 394), there exists a diffeomorphism $\tilde{h}: D^2 \times D^{2n} \to D^{2n+2}$ with $\tilde{h}(\partial (D^2 \times D^{2n})) = S^{2n+1}$. We define an S^1 -action on D^{2n+2} by $gx = \tilde{h} \circ (g\tilde{h}^{-1}(x))$ for $g \in S^1, x \in D^{2n+2}$. Hence the map $\hat{\gamma}_{n+1} = \tilde{\gamma}_{n+1}\tilde{h}^{-1}: S^{2n+1} \to \partial (D^2 \times D^{2n}) \to U(2n)$ satisfies the relation

$$\begin{split} \hat{\gamma}_{n+1}(gx) &= \tilde{\gamma}_{n+1}h^{-1}(gx) = \tilde{\gamma}_{n+1}\tilde{h}^{-1}\tilde{h}g\tilde{h}^{-1}(x) \\ &= \tilde{\gamma}_{n+1}(g\tilde{h}^{-1}(x)) = (D_n(g) \times I_n)\tilde{\gamma}_{n+1}(\tilde{h}^{-1}(x))(D_n(g) \times I_n)^{-1} \\ &= (D_n(g) \times I_n)\hat{\gamma}(x)(D_n(g) \times I_n)^{-1}. \end{split}$$

Here we give an S¹-action on U(2n) by $(g, A) \rightarrow (D_n(g) \times I_n)A(D_n(g) \times I_n)^{-1}$. Then $\hat{\gamma}_{n+1}$ is S¹-equivariant. Thus we obtain an S¹-C²ⁿ-bundle over S²ⁿ⁺². By the Bott

periodicity, $\hat{\gamma}_{n+1}$ gives a generator of $K(S^{2n+2})$.

§3. Non lifting actions

The sphere S^{2n+2} is an SO(2)-manifold by the repersentation $\rho_{SO(2)} \oplus (2n+1)\theta_R$. Suppose that $2n+2\equiv 0 \mod 8$. We want to construct a lifting action on R^{2n+2} -bundle over S^{2n+2} , where the action is compatible with the action on the structure group SO(2n+2) given by $(g, A) \rightarrow (D_2(g) \times I_{2n})A(D_2(g) \times I_{2n})^{-1}$. Let $R^{2n+2} \rightarrow E \rightarrow S^{2n+2}$ be an SO(2)-bundle with the lifting action. Denote the portion of E on the fixed point set by B. Then the data (§3 in [5]) is given by

$$B \longrightarrow r^* p'^* B \xrightarrow{\alpha} S_s^{2n} \times R^{2n+2} \subset D_s^{2n+1} \times R^{2n+2}.$$

Let $\alpha_1, \alpha_2: r^*p'^*B \rightarrow S_{\epsilon}^{2n} \times R^{2n+2}$ be two trivializations. Then the composite $\alpha_2 \circ \alpha_1^{-1}$ determines an element of $\pi_{2n}(SO(2n+2))$, which is trivial by the assumption. We have $[S_{2n}^{2n-1}, SO(2n+2)] = [S^{2n-1}, SO(2) \times SO(2n)]$, which is a cyclic group generated by the class $\{\tau_{2n}\}$ of the tangent bundle of S^{2n} . Then $B = B(k\tau_{2n}) \oplus R^2(g)$, where $B(k\tau_{2n})$ denotes the bundle with the class $\{k\tau_{2n}\}$ of chracteristic maps and $R^2(g)$ denotes the product bundle with the standard S^1 -action on fibres. Hence the classification theorem (§3 in [5]) shows that image $(\Psi: [S_{2n-1}^{2n+1}, SO(2n+2)] \rightarrow \pi_{2n+1}(SO(2n+2)))$ is a subgroup $\{k\tau_{2n+2}\}$ generated by the class of the tangent bundle of S^{2n+2} . Denote by σ the one of generators of $\pi_{2n+1}(SO(2n+2))$ which gives rise to a generator of the stable group $\pi_{2n+1}(SO)$. Let $E(\tau_{2n+2}+2m\sigma)$ be the sphere bundle over S^{2n+2} with the class $\{\tau_{2n+2}+2m\sigma\}$ of characteristic maps. By §5 in [4], $E(\tau_{2n+2}+2m\sigma)$ is diffeomorphic to the connected sum $E(\tau_{2n+2}) \#m^2\Sigma$, where Σ is a homotopy sphere. When m is divided by the order of the group θ_{4n+3} of homotopy 4n+3 spheres, $E(\tau_{2n+2}+2m\sigma)$ is diffeomorphic to the tangent sphere bundle $E(\tau_{2n+2})$, which admits a lifting action. By our consideration above, the derived action on $E(\tau_{2n+2}+2m\sigma)$ is not a lifting action.

References

- [1] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology, 1. Suppl. 1 (1964), 3–38.
- [2] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35–61.
- [3] F. Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, Exotische Sphären und Singularitäten, Lecture Notes in Math. No. 57, Springer, 1968.
- [4] A. Kosinski, On the inertia group of π -manifolds, Amer. J. Math. 89 (1967), 227–248.
- [5] H. Matsunaga, K_{G} -groups and invariant vector fields on special G-manifolds, Osaka J. Math. 9 (1972), 143–157.
- [6] H. Matsunaga, S¹-actions on sphere bundles over spheres, Mem. Fac. Sci. Shimane Univ. 15 (1981), 9–16.
- [7] H. Matsunaga, Group actions on sphere bundles over spheres, Kodai Math. J. 5 (1982), 495-502.

- [8] H. Matsunaga, Classical Lie group actions on π -manifolds, Publ. Res. Inst. Math. Sci. (vol. 20 (1)), to appear.
- [9] G. B. Segal, Equivariant K-theory, Publ. Math. IHES (Paris), 34 (1968), 129-151.
- [10] S. Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. 74 (2), (1961), 391–406.