S^{1}-Actions on Vector Bundles over Spheres

Hiromichi Matsunaga
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 3, 1983)

In the previous papers [6], [7] and [8], we studied some group actions on sphere bundles over spheres and proved some non existence theorems. In this paper, we shall study S^{1}-vector bundle structures on vector bundles over spheres. We shall fix a representation of S^{1} on the fiber over the north pole.

Section 1 provides some preliminaries and we shall prove some classification theorems for S^{1}-vector bundles with a designated action on the fibre over the north pole (Theorem 1 and Theorem 2). As a corollary, we shall obtain a non existence theorem.

In section 2, we shall construct two kinds of lifting actions. One of them is a lifting of a linear action on a sphere and the other is a lifting of a quasi linear action.

In the last section, we shall show that some action on a sphere bundle over a sphere can not be derived from an S^{1}-vector bundle with a specified action on the fibre over the north pole.

§1. Preliminaries

We denote the $(n+1)$-dimensional complex number space by C^{n+1} and the real number field by R respectively. We use symbols $\rho_{S^{1}}$ and θ_{R} for the standard representation $S^{1} \rightarrow U(1)$ and the trivial real representation of S^{1}. Consider the action on $S^{2 n+2} \subset C^{n+1} \oplus R$ given by a representation $a \rho_{S^{1}} \oplus(2 n-2 a+3) \theta_{R}, a \leqq n$. Then the upper and lower hemispheres $e_{+}^{2 n+2}$ and $e_{-}^{2 n+2}$, contract equivariantly to the north and south poles O_{+}, O_{-}respectively. Let $C^{k} \rightarrow B \rightarrow S^{2 n+2}$ be a complex S^{1}-vector bundle. By Proposition 1.3 in [9], the portions $B \mid e_{ \pm}^{2 n+2}$ yield equivariant isomorphisms, $\alpha_{ \pm}$: $B \mid e_{ \pm}^{2 n+2} \rightarrow e_{ \pm}^{2 n+2} \times C_{ \pm}^{k}$, where $C_{ \pm}^{k}$ are S^{1}-modules such that

$$
g\left(v_{1}, \ldots, v_{k}\right)=\left(g^{\varepsilon_{1}(\pm)} v_{1}, \ldots, g^{\varepsilon_{k}(\pm)} v_{k}\right)
$$

for $g \in S^{1},\left(v_{1}, \ldots, v_{k}\right) \in C_{ \pm}^{k}$ and $\varepsilon_{1}(\pm), \ldots, \varepsilon_{k}(\pm)$ are some integers. Define an S^{1}-action on $U(k)$ by $(g, A) \rightarrow D_{-}(g) A D_{+}(g)$ for $g \in S^{1}, A \in U(k)$, where $D_{ \pm}(g)=\left(g^{\varepsilon_{1}(\pm)}\right) \times \cdots \times$ ($\left.g^{\varepsilon_{k}(\pm)}\right)$. Consider the commutative diagram

Define a map $\chi: S^{2 n+1} \rightarrow U(k)$ by $\alpha_{-} \alpha_{+}^{-1}(x, v)=(x, \chi(x)(v))$ for $(x, v) \in S^{2 n+1} \times C_{+}^{k}$, then we have $\chi(g x)=D_{-}(g) \chi(x) D_{+}(g)^{-1}$. Therefore the map χ is S^{1}-equivariant. Let
$C^{k} \rightarrow B^{\prime} \rightarrow S^{2 n+2}$ be another S^{1}-vector bundle. We have another diagram (1^{\prime}) similar to (1). If an S^{1}-isomorphism $h: B \rightarrow B^{\prime}$ is given, then we obtain a cubic diagram connecting (1) with (1^{\prime}). Define $h_{ \pm}: e_{ \pm}^{2 n+2} \rightarrow$ Iso ($C_{ \pm}^{k}, C_{ \pm}^{\prime k}$) by $\alpha_{ \pm}^{\prime} \circ h \circ\left(\alpha_{ \pm}\right)^{-1}(x, v)=(x$, $\left.h_{ \pm}(x)(v)\right)$ for $x \in e_{ \pm}^{2 n+2}, v \in C_{ \pm}^{k}$, where $C_{ \pm}^{\prime k}$ are S^{1}-modules which appear in equivariant trivializations $\alpha_{ \pm}^{\prime}: B^{\prime} \mid S^{2 n+1} \underset{\longrightarrow}{\approx} S^{2 n+1} \times C_{ \pm}^{\prime k}$. But we can choose a basis in $C_{ \pm}^{\prime k}$ such that $C_{ \pm}^{\prime k}=C_{ \pm}^{k}$. By the cubic diagram, we obtain

$$
\begin{equation*}
h_{-}(x) \chi(x)=\chi^{\prime}(x) h_{+}(x), \quad x \in S^{2 n+1} \tag{2}
\end{equation*}
$$

The maps $h_{ \pm}: e_{ \pm}^{2 n+2} \rightarrow U(k)$ are equivariantly homotopic to constant maps $h_{ \pm}\left(O_{ \pm}\right)=$ $A_{ \pm}$. By (2), χ^{\prime} is equivariantly homotopic to $A_{-}^{-1} \chi A_{+}$. We can normalize maps $h_{ \pm}$by $\left(A_{ \pm}\right)^{-1} h_{ \pm}$to obtain $\chi^{\prime} \simeq \chi, S^{1}$-homotopic.

Conversely, suppose that there is an equivariant homotopy $H_{t}: S^{2 n+1} \rightarrow U(k)$ such that $H_{0}=\chi$ and $H_{1}=\chi^{\prime}$. Set $h_{-}=H_{0} \circ H_{1}^{-1}$ and $h_{+}=I_{k}$, which is the unit matrix in $U(k)$. Then h_{-}is equivariantly homotopic to the constant map, and we obtain extended maps $h_{ \pm}: e_{ \pm}^{2 n+2} \rightarrow U(k)$. Clearly, $h_{-} \chi^{\prime}=H_{0}=\chi h_{+}$on $S^{2 n+1}$. Let B^{\prime} be an S^{1-} vector bundle with characteristic map χ^{\prime}. Then we obtain an S^{1}-isomorphism $h: B \rightarrow$ B^{\prime} such that $h \mid e_{ \pm}^{2 n+2}=\left(\alpha_{ \pm}^{\prime}\right)^{-1} h_{ \pm} \circ\left(\alpha_{ \pm}\right)$. Set $\left(\varepsilon_{1}(+), \ldots, \varepsilon_{k}(+)\right)=\varepsilon$ and denote S^{1-} equivalence classes of S^{1} - C^{k}-bundles over $S^{2 n+2}$ with the specified action on the fibre over O_{+}by $\operatorname{Vect}_{S_{1}^{1}}^{e}\left(S^{2 n+2}\right)$. Then we have

Theorem 1. The set Vectsis $\left(S^{2 n+2}\right)$ corresponds bijectively to the equivariant homotopy set $\llbracket S^{2 n+1}, U(k) \rrbracket$, where the S^{1}-action on $U(k)$ is given by $(g, A) \rightarrow$ $D_{+}(g) A D_{+}(g)^{-1}$.

Proof. Since $a \leqq n, O_{+}$and O_{-}can be combined by a curve in the fixed point set, there exists $A \in U(k)$ such that $D_{-}(g)=A^{-1} D_{+}(g) A$. From the relation $\chi(g x) D_{+}(g)=$ $D_{-}(g) \chi(x)$, we have $\chi(g x)=A^{-1} D_{+}(g) A \chi(x) D_{+}(g)^{-1}$, and $(A \chi(g x)) D_{+}(g)=D_{+}(g)$. $(A \chi(x))$. The S^{1}-bundle $e_{+}^{2 n+2} \times C_{+}^{k} \cup_{A x} e_{-}^{2 n+2} \times C_{+}^{k}$ is equivariantly isomorphic to $e_{+}^{2 n+2} \times C_{+}^{k} \cup_{x} e^{2 n+2} \times C_{-}^{k}$. Thus we obtain the theorem.

For S^{1}-maps $\gamma, \gamma^{\prime}: S^{2 n+1} \rightarrow U(k)$, we define a product by $\left(\gamma \circ \gamma^{\prime}\right)(x)=\gamma(x) \cdot \gamma^{\prime}(x)$, $x \in S^{2 n+1}$. Then the set $\llbracket S^{2 n+1}, U(k) \rrbracket$ admits a group structure.

Now consider the case $a=1$. Then $S^{2 n+2}$ is an S^{1}-manifold, where the action is given by the representation $\rho_{S^{1}} \oplus(2 n+1) \theta_{R}$. The fixed point set is the $2 n$-sphere $S^{2 n}$ and the orbit space is a $(2 n+1)$-disc $D^{2 n+1}$. We have an equivariant decomposition $S^{2 n+2}=D^{2} \times S^{2 n} \cup S^{1} \times D^{2 n+1}$, where $D^{2} \times S^{2 n}$ is an equivariant tublar neighborhood of the fixed point set. Let $p: S^{1} \times S^{2 n} \rightarrow S^{2 n}$ be the projection onto the second factor and $\pi: S^{2 n+2} \rightarrow D^{2 n+1}$ be the orbit map. $S^{2 n+2}$ is a special S^{1}-manifold ([3]). The image $\pi\left(S^{1} \times S^{2 n}\right)$ is a $2 n$-sphere $S_{\varepsilon}^{2 n}$ in $D^{2 n+1}$ with the same center as the one of $D^{2 n+1}$. Consider the commutative diagram

where p^{\prime} is the map induced from p. For an S^{1}-vector bundle $C^{k} \rightarrow B \rightarrow S^{2 n+2}$, its data (cf. $\S 3$ in [5]) is

$$
B \mid S^{2 n} \xrightarrow{r^{*} p^{*}} r^{*} p^{\prime *}\left(B \mid S^{2 n}\right) \xrightarrow{\alpha} S_{\varepsilon}^{2 n} \times C^{k} \subset D_{\varepsilon}^{2 n+1} \times C^{k},
$$

where r^{*} denotes the forgetful map and α is an isomorphism of vector bundles. We have an S^{1}-isomorphism $B \mid S^{2 n} \cong e_{+}^{2 n} \times C_{+}^{k} \cup_{f} e_{-}^{2 n} \times C^{k}$. Since $S\left(C^{n+1} \oplus R\right) \supset S(C \oplus$ $R) \ni O_{ \pm}$, it follows from Proposition 1.3 in [9], that there exists $A \in U(k)$ such that $D_{-}=A^{-1} D_{+} A$. From the relation $D_{-} f(x) D_{+}^{-1}=f(x)$, we have $D_{+}(A f(x)) D_{+}^{-1}=A f(x)$ for $x \in S^{2 n-1}$. Suppose that $\varepsilon_{1}=\cdots=\varepsilon_{m_{1}}, \varepsilon_{m_{1}+1}=\cdots=\varepsilon_{m_{2}}, \cdots, \varepsilon_{m_{s-1}+1}=\cdots=\varepsilon_{m_{s}}=\varepsilon_{k}$. By the proof of Theorem 1, we can assume that $f: S^{2 n-1} \rightarrow U\left(m_{1}\right) \times \cdots \times U\left(m_{s}\right)$. Let $i_{*}: \pi_{2 n-1}\left(U\left(m_{1}\right) \times \cdots \times U\left(m_{s}\right)\right) \rightarrow \pi_{2 n-1}(U(k))$ be the homomorphism induced from the inclusion map $i: U\left(m_{1}\right) \times \cdots \times U\left(m_{s}\right) \rightarrow U(k)$. By the trivialization $\alpha,[f] \in$ kernel i^{*}. Let $\alpha_{1}: r^{*} p^{\prime *}\left(B \mid S^{2 n}\right) \rightarrow S_{\varepsilon}^{2 n} \times C^{k} \subset D_{\varepsilon}^{2 n+1} \times C^{k}$ be another trivialization. Then $\alpha_{1} \alpha^{-1}$ determines an element of $\pi_{2 n}(U(k))$. Conversely, for a fixed α, each element of $\pi_{2 n}(U(k))$ gives a homotopy class of trivializations. By the theorem 2 in [5], we have

Theorem 2. We have a bijection

$$
S: \operatorname{Vect}_{S^{1}}^{\varepsilon}\left(S^{2 n+2}\right) \longrightarrow\left\{\text { kernel } i^{*} \times \pi_{2 n}(U(k))\right\} /(\sim),
$$

where \sim denotes equivalences of data (Definition 1 in [5]).
Let $\Psi_{\sharp}: \operatorname{Vect}_{S}^{\varepsilon}\left(S^{2 n+2}\right) \rightarrow \operatorname{Vect}^{k}\left(S^{2 n+2}\right)$ be the forgetful homomorphism. Then we have

Corollary. If $k<2 n$, then the image $\Psi_{\#}$ is a finite subgroup of $\operatorname{Vect}^{k}\left(S^{2 n+2}\right)$.
Proof. $\quad \pi_{2 n}(U(k))$ is a finite group, and if $m_{i} \geqq n$, then $m_{j}<n$ for $j \neq i$. Therefore the kernel i_{*} is a finite subgroup of $\pi_{2 n-1}\left(U\left(m_{1}\right) \times \cdots \times U\left(m_{s}\right)\right)$. Thus we have the corollary.

If $n+1 \leqq k<2 n$, then the image $\Psi_{\#}$ is trivial.

§2. Construction of lifting group actions

Consider an S^{1}-action on $S^{2 n+2}$ given by the representation $\rho_{S^{1}} \oplus(2 n+1) \theta_{R}$. Let $C^{k} \rightarrow B \rightarrow S^{2 n+2}$ be an S^{1}-vector bundle. Define $\Psi_{S^{1}}: S^{1} \times\left(B \mid S^{2 n}\right) \rightarrow S^{1} \times$ $\left(r^{*} p^{\prime *}\left(B \mid S^{2 n}\right)\right)$ by $\Psi_{S^{1}}(x, v)=\left(x, x^{-1} v\right)$ for $(x, v) \in S^{1} \times\left(B \mid S^{2 n}\right)$. Then $\Psi_{S^{1}}$ is an equivariant isomorphism. Consider the composite isomorphism

$$
S^{1} \times\left(B \mid S^{2 n}\right) \xrightarrow{\Psi_{s}^{1}} S^{1} \times\left(r^{*} p^{\prime *}\left(B \mid S^{2 n}\right)\right) \xrightarrow{1 s^{1 \times \infty}} S^{1} \times S^{2 n} \times C^{k} .
$$

Set $\quad \Psi_{S^{1}}(x, v)=\left(x, \pi(v), f\left(x^{-1} v\right)\right)$. We can define $\quad \phi: S^{2 n} \rightarrow \operatorname{Hom}\left(S^{1}, U(k)\right)$ by $f\left(x^{-1} v\right)=\phi_{\pi(v)}(x) f(v)$. Now suppose that $k \geqq 2 n$. Then we have a unique homotopy class $[\alpha]$ of a trivialization. Since $B \cong D^{2} \times\left(B \mid S^{2 n}\right) \cup_{\Phi} S^{1} \times D^{2 n+1} \times C^{k}$, where Φ denotes $\left(1_{S^{1}} \times \alpha\right) \circ \Psi_{S^{1}}$, the bundle B is determined by the homotopy class [ϕ] up to S^{1}-isomorphism.

Let Γ be a compact connected Lie group. For $\alpha \in \operatorname{Hom}\left(S^{1}, \Gamma\right), \gamma \in \Gamma$, we define $\alpha^{\nu} \in \operatorname{Hom}\left(S^{1}, \Gamma\right)$ by $\alpha^{\gamma}(x)=\gamma \alpha(x) \gamma^{-1}, x \in S^{1}$, and denote the set $\left\{\alpha^{\gamma} ; \gamma \in \Gamma\right\}$ by α^{Γ}. Then α^{Γ} is included in the connected component $\operatorname{Hom}\left(S^{1}, \Gamma\right)_{\alpha}$ of α. The next proposition is due to H. Toda.

Proposition 1. $\operatorname{Hom}\left(S^{1}, \Gamma\right)_{\alpha}=\alpha^{\Gamma}$.
Proof. Let $\left\{\alpha_{t} \in \operatorname{Hom}\left(S^{1}, \Gamma\right)\right\}$ be a homotopy of $\alpha=\alpha_{0}$. The image $\alpha\left(S^{1}\right)$ is contained in a maximal torus T of Γ and there is $s \in T$ such that $\alpha_{1}\left(S^{1}\right) \subset s T s^{-1}$. The circle group S^{1} is topologically generated by a generator g. Since Γ is connected, there is a curve $c(\tau)$ in Γ such that $c(0)=\alpha_{1}(g)$ and $c(1)=s^{-1} \alpha_{1}(g) s \in T$. The curve $\alpha_{t}(g) \circ c(\tau)$ connects $\alpha_{0}(g)$ with $s^{-1} \alpha_{1}(g) s$. We have $\pi_{1}(\Gamma / T)=0$. Therefore the curve $\alpha_{t}(g) \circ c(\tau)$ is deformable into a curve in T. Thus we have $\alpha_{0}(g)=s^{-1} \alpha_{1}(g) s$ and $\alpha_{1}=$ $s \cdot \alpha \cdot s^{-1}$, which proves the proposition.

Now let Γ be $U(k)$. Then $\operatorname{Hom}\left(S^{1}, U(k)\right)_{\alpha}=\alpha^{U(k)}$. We consider the case $k=2 n$ and $\alpha(x)=D_{n}(x) \times D_{n}(x)^{-1}$, where $D_{n}(x)$ denotes the n-dimensional diagonal matrix with x as diagonal entries. Let C_{α} be the set $\left\{\gamma \in U(2 n) ; \gamma \cdot \alpha(x)=\alpha(x) \cdot \gamma\right.$ for any $\left.x \in S^{1}\right\}$. Then $C_{\alpha}=U(n) \times U(n)$. By the correspondence $\gamma C_{\alpha} \rightarrow\left(\gamma C_{\alpha}\right) \alpha\left(\gamma C_{\alpha}\right)^{-1}$, the space $\alpha^{U(2 n)}$ can be identified with the grassmannian $U(2 n) / C_{\alpha}=G_{2 n, n}$. The composite map $G_{2 n, n} \rightarrow$ $\alpha^{U(2 n)}=\operatorname{Hom}\left(S^{1}, U(2 n)\right)_{\alpha} \subset \Omega_{\alpha} U(2 n)$ is just the Bott map \bar{f} in §8 of [2], where Ω_{α} denotes the component of α in the loop space $\Omega U(2 n)$. By the consideration above, a map $\phi: S^{2 n} \rightarrow \operatorname{Hom}\left(S^{1}, U(2 n)\right)_{\alpha}$ corresponds to a map $\phi^{\prime}: S^{2 n} \rightarrow G_{2 n, n}$. By $\S 8$ in [2], we have $\bar{f}_{*} \pi_{2 n}\left(G_{2 n, n}\right)=2 \pi_{2 n}\left(\Omega_{\alpha}(U(2 n))\right) \cong 2 \pi_{2 n+1}(U(2 n))$. Thus we have proved

Theorem 3. If a $C^{2 n}$-bundle B over $S^{2 n+2}$ has the homotopy class of characteristic maps in $2 \pi_{2 n+1}(U(2 n))$, then the S^{1}-action $\rho_{S^{1}} \oplus(2 n+1) \theta_{R}$ on $S^{2 n+2}$ can be lifted to an action on B.

Next we construct another bundle lifting of a quasi linear action on the sphere $S^{2 n+2}$, where we mean by a quasi linear action a smooth action which is topologically equivalent to a linear action. We refer the construction of difference bundles due to Atiyah-Bott-Shapiro ($\S 9$ in [1]). Let $\gamma_{n}: S^{2 n-1} \rightarrow U(n)$ be a representative for a generator of $\pi_{2 n-1}(U(n))$. Define $\bar{\gamma}_{n}: D^{2 n} \rightarrow M_{n}(C)$, the complex $n \times n$ matrices, by $\bar{\gamma}_{n}(s x)=$ $s \gamma_{n}(x)$ for $(s, x) \in[0,1] \times S^{2 n-1}$. Then we have a complex of vector bundles

$$
\tilde{\gamma}_{n}: D^{2 n} \times C_{1}^{n} \longrightarrow D^{2 n} \times C_{0}^{n},
$$

which is given by $\tilde{\gamma}_{n}(x, v)=\left(x, \bar{\gamma}_{n}(x)(v)\right)$. In the case $n=1, \tilde{\gamma}_{1}$ is given by $\tilde{\gamma}_{1}\left(x, v_{1}\right)=$
($x, x v_{1}$) and its adjoint $\bar{\gamma}_{1}^{*}\left(x, v_{0}\right)=\left(x, \bar{x} v_{0}\right)$. We give an S^{1}-action on the complex $\tilde{\gamma}_{1}$ by

$$
\begin{aligned}
& D^{2} \times C_{1} \ni\left(x, v_{1}\right) \longrightarrow\left(g x, v_{1}\right) \in D^{2} \times C_{1}, \\
& D^{2} \times C_{0} \ni\left(x, v_{0}\right) \longrightarrow\left(g x, g v_{0}\right) \in D^{2} \times C_{0},
\end{aligned}
$$

where $g \in S^{1}$. Then $\tilde{\gamma}_{1}$ is S^{1}-equivariant. We use the same notations as the ones in $\S 9$ of [1]. Thus $\rho_{1}^{*}\left(\phi_{0}^{*}\right)^{-1} d\left(\tilde{\gamma}_{n}\right)$ gives a generator of $K\left(S^{2 n}\right)$ and d is an Euler characteristic (p. 22 ibid.). Now $\tilde{\gamma}_{1}$ gives a complex S^{1}-line bundle and represents a generator of $K\left(S^{2}\right)$. We consider the product of complexes $\tilde{\gamma}_{1}$ and $\tilde{\gamma}_{n}$:

$$
\tilde{\gamma}_{n+1}:\left(D^{2} \times D^{2 n}\right) \times\left(C_{0} \otimes C_{1}^{n} \oplus C_{1} \otimes C_{0}^{n}\right) \longrightarrow\left(D^{2} \times D^{2 n}\right) \times\left(C_{0} \otimes C_{0}^{n} \oplus C_{1} \otimes C_{1}^{n}\right),
$$

where

$$
\bar{\gamma}_{n+1}(x, y)=\left(\begin{array}{cr}
I_{1} \otimes \bar{\gamma}_{n}(y) & \bar{\gamma}_{1}(x) \otimes I_{n} \\
\bar{\gamma}_{1}^{*} \otimes I_{n} & -I_{1} \otimes \bar{\gamma}_{n}^{*}(y)
\end{array}\right)=\left(\begin{array}{cc}
\bar{\gamma}_{n}(y) & x \cdot I_{n} \\
\bar{x} \cdot I_{n} & -\bar{\gamma}_{n}^{*}(y)
\end{array}\right)
$$

and I_{k} denotes the unit matrix of k-dimension. For a boundary point $(x, y) \in \partial\left(D^{2} \times\right.$ $\left.D^{2 n}\right),\left(1 / \sqrt{|x|^{2}+\|y\|^{2}}\right) \bar{\gamma}_{n+1}(x, y) \in U(2 n)$, where $\|\|$ denotes the norm, and we denotes this by $\widetilde{\gamma}_{n+1}(x, y)$. For $g \in S^{1}$, we have

$$
\tilde{\gamma}_{n+1}(g x, y)\left(\begin{array}{cc}
g v_{0} & w_{1} \\
v_{1} & w_{0}
\end{array}\right)=\left(1 / \sqrt{\left.|x|^{2}+\|y\|^{2}\right)}\left(\begin{array}{cc}
\bar{\gamma}_{n}(y) & g x \otimes I_{n} \\
\bar{g} \bar{x} \cdot I_{n} & -\bar{\gamma}_{n}^{*}(y)
\end{array}\right)\binom{g v_{0} \otimes w_{1}}{v_{1} \otimes w_{0}} .\right.
$$

Therefore $\tilde{\gamma}_{n+1}(g x, y)=\left(D_{n}(g) \times I_{n} \tilde{\gamma}_{n+1}(x, y)\left(D_{n}(g) \times I_{n}\right)^{-1}\right.$. We denote the n-fold product of the unit interval $[0,1]$ by I^{n} and its boundary by ∂I^{n}. Define a map Φ_{n} : $\left(I^{n}, \partial I^{n}\right) \rightarrow\left(D^{n}, S^{n-1}\right)$ by $\Phi_{n}(p)=\left(\max \left\{\left|t_{i}\right|, i=1, \ldots, n\right\} /\|p\|\right) \cdot p$, where $p=\left(t_{1}, \ldots, t_{n}\right) \neq$ $(0, \ldots, 0)$ and $\Phi_{n}(0, \ldots, 0)=(0, \ldots, 0)$. Then Φ_{n} is a homeomorphism. Consider the composite map $h=\Phi_{2 n+2^{\circ}}\left(\Phi_{2}^{-1} \times \Phi_{2 n}^{-1}\right): D^{2} \times D^{2 n} \rightarrow I^{2} \times I^{2 n} \rightarrow D^{2 n+2}$. Then the restriction to the boundary $h: \partial\left(D^{2} \times D^{2 n}\right) \rightarrow \partial D^{2 n+2}$ is a homeomorphism. By Theorem M due to Smale ($[10]$, p. 394), there exists a diffeomorphism $\tilde{h}: D^{2} \times D^{2 n} \rightarrow D^{2 n+2}$ with $\tilde{h}\left(\partial\left(D^{2} \times D^{2 n}\right)\right)=S^{2 n+1}$. We define an S^{1}-action on $D^{2 n+2}$ by $g x=\tilde{h} \circ\left(g \tilde{h}^{-1}(x)\right)$ for $g \in S^{1}, x \in D^{2 n+2}$. Hence the map $\hat{\gamma}_{n+1}=\widetilde{\gamma}_{n+1} \tilde{h}^{-1}: S^{2 n+1} \rightarrow \partial\left(D^{2} \times D^{2 n}\right) \rightarrow U(2 n)$ satisfies the relation

$$
\begin{aligned}
\hat{\gamma}_{n+1}(g x) & =\tilde{\gamma}_{n+1} h^{-1}(g x)=\tilde{\gamma}_{n+1} \tilde{h}^{-1} \tilde{h} g \tilde{h}^{-1}(x) \\
& =\tilde{\gamma}_{n+1}\left(g \tilde{h}^{-1}(x)\right)=\left(D_{n}(g) \times I_{n}\right) \tilde{\gamma}_{n+1}\left(\tilde{h}^{-1}(x)\right)\left(D_{n}(g) \times I_{n}\right)^{-1} \\
& =\left(D_{n}(g) \times I_{n}\right) \hat{\gamma}(x)\left(D_{n}(g) \times I_{n}\right)^{-1} .
\end{aligned}
$$

Here we give an S^{1}-action on $U(2 n)$ by $(g, A) \rightarrow\left(D_{n}(g) \times I_{n}\right) A\left(D_{n}(g) \times I_{n}\right)^{-1}$. Then $\hat{\gamma}_{n+1}$ is S^{1}-equivariant. Thus we obtain an $S^{1}-C^{2 n}$-bundle over $S^{2 n+2}$. By the Bott
periodicity, $\hat{\gamma}_{n+1}$ gives a generator of $K\left(S^{2 n+2}\right)$.

§3. Nom lifting actions

The sphere $S^{2 n+2}$ is an $S O(2)$-manifold by the repersentation $\rho_{S O(2)} \oplus(2 n+1) \theta_{R}$. Suppose that $2 n+2 \equiv 0 \bmod 8$. We want to construct a lifting action on $R^{2 n+2}$-bundle over $S^{2 n+2}$, where the action is compatible with the action on the structure group $S O(2 n+2)$ given by $(g, A) \rightarrow\left(D_{2}(g) \times I_{2 n}\right) A\left(D_{2}(g) \times I_{2 n}\right)^{-1}$. Let $R^{2 n+2} \rightarrow E \rightarrow S^{2 n+2}$ be an $S O$ (2)-bundle with the lifting action. Denote the portion of E on the fixed point set by \boldsymbol{B}. Then the data ($\S 3$ in [5]) is given by

$$
B \longrightarrow r^{*} p^{\prime *} B \xrightarrow{\alpha} S_{\varepsilon}^{2 n} \times R^{2 n+2} \subset D_{\varepsilon}^{2 n+1} \times R^{2 n+2} .
$$

Let $\alpha_{1}, \alpha_{2}: r^{*} p^{\prime *} B \rightarrow S_{\varepsilon}^{2 n} \times R^{2 n+2}$ be two trivializations. Then the composite $\alpha_{2} \circ \alpha_{1}^{-1}$ determines an element of $\pi_{2 n}(S O(2 n+2))$, which is trivial by the assumption. We have $\llbracket S_{2 n-1}^{2 n-1}, S O(2 n+2) \rrbracket=\left[S^{2 n-1}, S O(2) \times S O(2 n)\right]$, which is a cyclic group generated by the class $\left\{\tau_{2 n}\right\}$ of the tangent bundle of $S^{2 n}$. Then $B=B\left(k \tau_{2 n}\right) \oplus R^{2}(g)$, where $B\left(k \tau_{2 n}\right)$ denotes the bundle with the class $\left\{k \tau_{2 n}\right\}$ of chracteristic maps and $R^{2}(g)$ denotes the product bundle with the standard S^{1}-action on fibres. Hence the classification theorem ($\S 3$ in [5]) shows that image ($\Psi: \llbracket S_{2 n-1}^{2 n+1}, S O(2 n+2) \rrbracket \rightarrow \pi_{2 n+1}(S O(2 n+2))$) is a subgroup $\left\{k \tau_{2 n+2}\right\}$ generated by the class of the tangent bundle of $S^{2 n+2}$. Denote by σ the one of generators of $\pi_{2 n+1}(S O(2 n+2))$ which gives rise to a generator of the stable group $\pi_{2 n+1}(S O)$. Let $E\left(\tau_{2 n+2}+2 m \sigma\right)$ be the sphere bundle over $S^{2 n+2}$ with the class $\left\{\tau_{2 n+2}+\right.$ $2 m \sigma\}$ of characteristic maps. By $\S 5$ in [4], $E\left(\tau_{2 n+2}+2 m \sigma\right)$ is diffeomorphic to the connected sum $E\left(\tau_{2 n+2}\right) \# m^{2} \Sigma$, where Σ is a homotopy sphere. When m is divided by the order of the group $\theta_{4 n+3}$ of homotopy $4 n+3$ spheres, $E\left(\tau_{2 n+2}+2 m \sigma\right)$ is diffeomorphic to the tangent sphere bundle $E\left(\tau_{2 n+2}\right)$, which admits a lifting action. By our consideration above, the derived action on $E\left(\tau_{2 n+2}+2 m \sigma\right)$ is not a lifting action.

References

[1] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology, 1. Suppl. 1 (1964), 3-38.
[2] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[3] F. Hirzebruch and K. H. Mayer, $O(n)$-Mannigfaltigkeiten, Exotische Sphären und Singularitäten, Lecture Notes in Math. No. 57, Springer, 1968.
[4] A. Kosinski, On the inertia group of π-manifolds, Amer. J. Math. 89 (1967), 227-248.
[5] H. Matsunaga, K_{G}-groups and invariant vector fields on special G-manifolds, Osaka J. Math. 9 (1972), 143-157.
[6] H. Matsunaga, S^{1}-actions on sphere bundles over spheres, Mem. Fac. Sci. Shimane Univ. 15 (1981), 9-16.
[7] H. Matsunaga, Group actions on sphere bundles over spheres, Kodai Math. J. 5 (1982), 495-502.
[8] H. Matsunaga, Classical Lie group actions on π-manifolds, Publ. Res. Inst. Math. Sci. (vol. 20 (1)), to appear.
[9] G. B. Segal, Equivariant K-theory, Publ. Math. IHES (Paris), 34 (1968), 129-151.
[10] S. Smale, Generalized Poincare's conjecture in dimensions greater than four, Ann. of Math. 74 (2), (1961), 391-406.

