Note on Special Involutions in a Generalized Inverse Semigroup

Miyuki Yamada
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 3, 1983)

Abstract

A unary operation $*: S \rightarrow S$ on a semigroup S is called a special involution if it satisfies (1) $\left(x^{*}\right)^{*}=x$, (2) $(x y)^{*}=y^{*} x^{*}$ and (3) $x x^{*} x=x$ for all $x, y \in S$. It has been shown by [5] that every special involution in a regular semigroup S is determined by the p-system in S. In this paper, we shall determine all the p-systems in a generalized inverse semigroup S, and accordingly all the special involutions in S. Further, we shall investigate the cardinality of the set of p-systems in S.

§1. Preliminary

A regular semigroup S equipped with a unary operation $*: S \rightarrow S$ is called a special *-regular semigroup if it satisfies (1) $\left(x^{*}\right)^{*}=x$, (2) $(x y)^{*}=y^{*} x^{*}$ and (3) $x x^{*} x=x$ for all $x, y \in S$. The unary operation $*$ is called a special involution in S. If a regular semigroup S admits at least one special involution, then S is called specially involutive. We sometimes denote by $(S, \#)$ a special $*$-regular semigroup S equipped with a special involution \#. In the previous paper [5], the concept of a p-system in a regular semigroup S has been introduced. A subset P of the set $E(S)$ of idempotents of S is called a p-system in S if P satisfies the following (1)-(3):
(C.1) (1) For any $x \in S$, there exists a unique $x^{\#} \in V(x)$ (the set of inverses of x) such that $x x^{\#}, x^{\#} x \in P$.
(2) For the operation \# defined above, $x^{\sharp} P x \subset P$ for any $x \in S$.
(3) $P^{2} \subset E(S)$.

It has been shown by [5] that in this case ($S, \#$) is a special *-regular semigroup. Further, it has been proved that a regular semigroup admits a special involution if and only if it has at least one p-system. The operation \# above is called the special involution determined by P, and denoted by $*_{\mathrm{p}}$. Conversely, if $\left(S,^{*}\right)$ is a special *-regular semigroup then the set of projections of $\left(S,{ }^{*}\right)$, that is, the set $P=\left\{e \in E(S): e^{*}=e\right\}$ is a p-system in S (see [5]). We denote this P by P_{*}. Now, it is easy to see that the set of projections of a special *-regular semigroup ($S, *_{\mathrm{P}}$), where P is a p-system in S, is P, and the special involution in S determined by P_{*}, where $*$ is a special involution in S, is *. Let $\mathscr{P}(S)$ be the set of all p-systems in a regular semigroup S, and $\mathscr{F}(S)$ the set of all possible special involutions in S. It is obvious that $\mathscr{P}(S)=\square$ if and only if
$\mathscr{I}(S)=\square$. Let $f: \mathscr{P}(S) \rightarrow \mathscr{I}(S)$ and $g: \mathscr{I}(S) \rightarrow \mathscr{P}(S)$ be the mappings defined by $P f=$ $*_{\mathrm{p}}$ and $* g=P_{*}$ respectively. Then, since $P f g=P$ and $* g f=*, f g$ and $g f$ are the identity mappings on $\mathscr{P}(S)$ and $\mathscr{I}(S)$ respectively. Hence, $|\mathscr{P}(S)|=|\mathscr{G}(S)|$ (|| means cardinality). In [5], it has been shown that for a generalized inverse semigroup S, P is a p-system in S if and only if P is a p-system in the normal band $E(S)$. Therefore, in this case $|\mathscr{P}(S)|=|\mathscr{P}(E(S))|=|\mathscr{\mathscr { O }}(E(S))|=|\mathscr{I}(S)|$. In the following sections, we shall investigate the cardinality of $\mathscr{P}(S)$ of a normal band S (hence, a generalized inverse semigroup S).

Remark. Let S be a generalized inverse semigroup, and $*$, \# special involutions in S. It has been proved by [2] and [5] that ($S,{ }^{*}$) and ($S, \#$) are $*$-isomorphic, that is, there exists an isomorphism $f: S \rightarrow S$ such that $x^{*} f=(x f)^{*}$ for all $x \in S$.

§2. Normal bands with special involution

Let S be a normal band. By Scheiblich [2] and the author [5], S admits a special involution if and only if S is isomorphic to the spined product $L \otimes L^{d}$ of a left normal band L and its dual semigroup L^{d}.

Note. That is, $L^{d}=L$ as set, and for any $x, y \in L^{d}, x \circ y=y x$ (the product of x, y in L), where \circ means the multiplication in L^{d}.

Let Y be a semilattice, and A, B bands which are semilattice Y of rectangular bands $\left\{A_{\alpha}: \alpha \in Y\right\}$ and a semilattice Y of rectangular bands $\left\{B_{\alpha}: \alpha \in Y\right\}$ respectively (in this case, we say that A, B have the structure decompositions $A \sim \Sigma\left\{A_{\alpha}: \alpha \in Y\right\}$ and $B \sim$ $\Sigma\left\{B_{\alpha}: \alpha \in Y\right\}$ respectively). Then, $C=\Sigma\left\{A_{\alpha} \times B_{\alpha}: \alpha \in Y\right\}$, where \times means "direct product" and Σ means "disjoint sum", becomes a subsemigroup of $A \times B$. This C is called the spined product of A and B, and denoted by $A \otimes B$.

From the above, if a normal band S admits a special involution then we can assume that $S=L \otimes L^{d}$, where L is a left normal band and L^{d} its dual semigroup. If L is a semilattice Y of left zero semigroups $\left\{L_{\alpha}: \alpha \in Y\right\}$, that is, if L has the structure decomposition $L \sim \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$, then L^{d} is a right normal band and has the structure decomposition $L^{d} \sim \Sigma\left\{L_{\alpha}^{d}: \alpha \in Y\right\}$, where L_{α}^{d} is the dual semigroup of L_{α}, and $L \otimes L^{d}$ is a semilattice Y of square bands (see [5]) $\left\{L_{\alpha} \times L_{\alpha}^{d}: \alpha \in Y\right\}$, that is, $L \otimes L^{d}$ has the structure decomposition $L \otimes L^{d} \sim \Sigma\left\{L_{\alpha} \times L_{\alpha}^{d}: \alpha \in Y\right\}$. Hereafter, the notion "a band $B \equiv \Sigma\left\{B_{\gamma}\right.$: $\left.\gamma \in Y_{1}\right\}$ " means that B is a band which is a semilattice Y_{1} of rectangular bands $\left\{B_{\gamma}\right.$: $\left.\gamma \in Y_{1}\right\}$. Of course, each L_{α} and L_{α}^{d} above are a left zero semigroup and a right zero semigroup respectively. Now, let $L \otimes L^{d} \equiv \Sigma\left\{L_{\alpha} \times L_{\alpha}^{d}: \alpha \in Y\right\}$ be a normal band which admits a special involution, where L is a left normal band. Let - and \circ be the multiplications in L and L^{d} respectively. Then, of course $x \cdot y=y \circ x$ for all $x, y \in L$ (hence, for $\left.x, y \in L^{d}\right)$. Now, it is easy to see that $P=\left\{(i, i) \in L_{\alpha} \times L_{\alpha}^{d}: \alpha \in Y\right\}$ is a p-system in $L \otimes L^{d}$. In general, if F is a p-system in $L \otimes L^{d}$ then F is the set of projections in $\left(L \otimes L^{d}, *_{F}\right)$. Hence, each L-class [each R-class] contains a unique element of F.

Therefore, there exists a bijection $\tau: L \rightarrow L$ such that $L_{\alpha} \tau=L_{\alpha}$ for all $\alpha \in Y$ and $F=\{(i$, $i \tau$): $\left.i \in L_{\alpha}, \alpha \in Y\right\}$ (see also [5]). It is easily seen that $*_{F}$ is defined by τ as follows: $(i, j)^{*} F=\left(j \tau^{-1}, i \tau\right)$. Since F satisfies (C.1), (2), $(i, j)(u, u \tau)\left(j \tau^{-1}, i \tau\right) \in F$ (where $\left.(u, u \tau) \in L_{\beta} \times L_{\beta}^{d} \cap F\right)$. Hence, $(i \cdot u) \tau=i \tau \cdot u \tau$, that is, τ is an automorphism. Thus, we have the following:

Theorem 1. Let $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ be a left normal band, and $S=L \otimes L^{d}$ the spined product of L and its dual semigroup L^{d}. Let $\tau: L \rightarrow L$ be an automorphism of L such that $L_{\alpha} \tau=L_{\alpha}$ for all $\alpha \in Y$. Then, S is a normal band which admits a special involution, and $F=\left\{(i, i \tau): i \in L_{\alpha}, \alpha \in Y\right\}$ is a p-system in S. Further, every p-system in S is obtained in this way.

Proof. The latter half was seen above. The first half: Let τ be an automorphism of L such that $L_{\alpha} \tau=L_{\alpha}$ for all $\alpha \in Y$. We need only to show that $F=\{(i, i \tau)$: $\left.i \in L_{\alpha}, \alpha \in Y\right\}$ satisfies (C.1), (1), (2). For all elements $(i, j) \in L_{\alpha} \times L_{\alpha}^{d}(\alpha \in Y)$, let $(i, j)^{\sharp}=$ $\left(j \tau^{-1}, i \tau\right)$. Then, $\quad(i, j)\left(j \tau^{-1}, i \tau\right)=(i, i \tau) \in F \quad$ and $\quad\left(j \tau^{-1}, i \tau\right)(i, j)=\left(j \tau^{-1}, j\right) \in F$. Hence, $(i, j)(i, j)^{\#},(i, j)^{\sharp}(i, j) \in F$ and $(i, j)^{\#} \in V((i, j))$. If there exists $(u, v) \in V((i, j))$ such that $(u, v)(i, j),(i, j)(u, v) \in F$, then $j=u \tau$ and $v=i \tau$. Hence $(u, v)=\left(j \tau^{-1}, i \tau\right)$. Thus, (C.1), (1) is satisfied. (C.1), (2): For any ($i, j) \in L_{\alpha} \times L_{\alpha}^{d}(\alpha \in Y)$ and for any $(u, u \tau) \in L_{\beta} \times L_{\beta}^{d}(\beta \in Y),(i, j)(u, u \tau)\left(j \tau^{-1}, i \tau\right)=\left(i \cdot u \cdot j \tau^{-1}, j \circ u \tau \circ i \tau\right)=(i \cdot u, i \tau \cdot u \tau)=(i$. $u,(i \cdot u) \tau) \in F$.

From the result above, the problem of determining all p-systems in $S=L \otimes L^{d}$ is reduced to that of determining all automorphisms $f: L \rightarrow L$ satisfying
(C.2) $L_{\alpha} f=L_{\alpha}$ for every $\alpha \in Y$.

An automorphism f of L satisfying (C.2) is called a Y-restricted automorphism or more simply a restricted automorphism on $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$. The set of all restricted automorphisms on $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ is clearly a group with respect to the usual resultant composition. We denote it by G_{L}, and call it the group of restricted automorphisms on $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$.

§3. The restricted automorphisms G_{L}

Let $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ be a left normal band. Then, it is well known that L is a strong semilattice Y of $\left\{L_{\alpha}: \alpha \in Y\right\}$. Hence, there exists a family of homomorphisms ($\left.\phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\right\}$, where each ϕ_{β}^{α} is a homomorphism of L_{α} into L_{β} (this is just a mapping), such that
(C.3) (1) $\phi_{\alpha}^{\alpha}=$ the identity mapping on L_{α} for all $\alpha \in Y$,
(2) $\phi_{\beta}^{\alpha} \phi_{\gamma}^{\beta}=\phi_{\gamma}^{\alpha}$ for $\alpha \geq \beta \geq \gamma, \alpha, \beta, \gamma \in Y$,
and (3) the multiplication \cdot in L is given by

$$
x \cdot y=\left(x \phi \xi_{\xi \delta}^{\xi}\right) \cdot\left(y \phi_{\xi \delta}^{\delta}\right)=x \phi_{\bar{\xi} \delta}^{\xi} \quad \text { for } \quad x \in L_{\xi}, y \in L_{\delta}
$$

Hereafter, we shall call $\left\{\phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\right\}$ the characteristic family of homomorphisms for $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$.

Now,
Lemma 2. $G_{L} \ni \tau$ if and only if τ is a bijection on L such that
(1) $L_{\alpha} \tau=L_{\alpha}$ for all $\alpha \in Y$, and
(2) $\tau \phi_{\beta}^{\alpha}=\phi_{\beta}^{\alpha} \tau$ for all $\alpha, \beta \in Y$ with $\alpha \geq \beta$.

Proof. To prove "if" part, it is need only to show that τ is a homomorphism. Let $x \in L_{\alpha}, y \in L_{\beta}$. Then, $(x \cdot y) \tau=\left(x \phi_{\alpha \beta}^{\alpha}\right) \tau=x \phi_{\alpha \beta}^{\alpha} \tau=x \tau \phi_{\alpha \beta}^{\alpha}=x \tau \phi_{\alpha \beta}^{\alpha} \cdot y \tau \phi_{\alpha \beta}^{\beta}=x \tau \cdot y \tau$. Hence, τ is a homomorphism. The "only if" part: For $x \in L_{\alpha}$ and $y \in L_{\beta},(x \cdot y) \tau=$ $x \tau \cdot y \tau$. Hence, $\left(x \phi_{\alpha \beta}^{\alpha} \cdot y \phi_{\alpha \beta}^{\beta}\right) \tau=x \tau \phi_{\alpha \beta}^{\alpha} \cdot y \tau \phi_{\alpha \beta}^{\beta}$, and accordingly $x \phi_{\alpha \beta}^{\alpha} \tau=x \tau \phi_{\alpha \beta}^{\alpha}$. Therefore, $\phi_{\alpha \beta}^{\alpha} \tau=\tau \phi_{\alpha \beta}^{\alpha}$.

If a bijection τ on L satisfies (1) of Lemma 2 , then τ is called a restricted bijection on $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$. If τ further satisfies (2) of Lemma 2, then τ is said to be compatible with $\Phi=\left\{\phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\right\}$.

Now, we have the following:
Theorem 3. Let $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ be a left normal band, and let $S=L \otimes L^{d}$. Let $\Phi=\left\{\phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\right\}$ be the characteristic family of homomorphisms for $L \equiv$ $\Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$, and G_{L} the set of all restricted bijections on $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ which are compatible with Φ. Then, G_{L} is a group, and $|\mathscr{P}(S)|=\left|G_{L}\right|$.

Examples. 1. If L is a left zero semigroup, G_{L} is the group of all bijections on L, that is, G_{L} is the symmetric group on L. Therefore, $S=L \otimes L^{d}\left(=L \times L^{d}\right)$ is a square band (see [5]), and $\mathscr{P}(S)$ coincides with the cardinality of the symmetric group on the set L.
2. Let Y be a semilattice consisting of α, β and 0 such that $\alpha \beta=0$ and 0 is a zero element. Let L be a left normal band whose structure decomposition is $L \sim \Sigma\left\{L_{\xi}\right.$: $\xi \in Y\}$, where $L_{\alpha}=\{a\}, L_{\beta}=\{b\}$ and $L_{0}=\{e, f\}$. Let $\left\{\phi_{\eta}^{\xi}: \xi \geq \eta, \xi, \eta \in Y\right\}$ be the characteristic family of homomorphisms for $L \equiv \Sigma\left\{L_{\xi}: \xi \in Y\right\}$, where $L_{\alpha} \phi_{0}^{\alpha}=e$ and $L_{\beta} \phi_{0}^{\beta}=f$. Then, in this case $G_{L}=1$, and hence $L \otimes L^{d}$ has a unique p-system.

Corollary 4. Let $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ be a left normal band. Then, the following two conditions are equivalent.
(1) A restricted automorphism on $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ is unique (hence, it is the identity mapping on L),
(2) A restricted bijection on L which is compatible with the characteristic family of homomorphisms for $L \equiv \Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ is unique (hence, it is the identity mapping on L).
In this case, $L \otimes L^{d}$ has a unique p-system.

§4. The group of restricted bijections

Let $S=\left\{S_{i}: i \in I\right\}$ be a collection of sets $S_{i}, i \in I$, and $S=\Sigma\left\{S_{i}: i \in I\right\}$ the disjoint sum of all S_{i}. If a bijection $f: S \rightarrow S$ satisfies $S_{i} f=S_{i}$ for all $i \in I$, then f is called a I-restricted bijection or more simply a restricted bijection on $S=\Sigma\left\{S_{i}: i \in I\right\}$. The set $G(S)$ of all restricted bijections on $S=\Sigma\left\{S_{i}: i \in I\right\}$ forms a group with respect to the usual resultant composition. Now, let Y be a semilattice, and L_{α} a left zero semigroup for each $\alpha \in Y$. Let $\mathscr{L}=\left\{L_{\alpha}: \alpha \in Y\right\}$. For each pair $(\alpha, \beta) \in Y \times Y$ with $\alpha \geq \beta$, let ϕ_{β}^{α} be a mapping (hence, a homomorphism) of L_{α} into L_{β}. If the collection $\Phi=\left\{\phi_{\beta}^{\alpha}: \alpha \geq \beta\right.$, $\alpha, \beta \in Y\}$ satisfies the conditions (C.3), (1) and (2), then it is well known that $L=\Sigma\left\{L_{\alpha}\right.$: $\alpha \in Y\}$ (disjoint sum) becomes a left normal band under the multiplication. defined by

$$
x \cdot y=x \phi_{\beta}^{\alpha} \quad \text { for } \quad x \in L_{\alpha}, y \in L_{\beta} .
$$

Of course, $L(\cdot)$ is a strong semilattice Y of $\left\{L_{\alpha}: \alpha \in Y\right\}$ and has $\left\{\phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\right\}$ as its characteristic family. This $L(\cdot)$ is called the left normal s-composition of $\left\{\mathcal{L}_{\alpha}\right.$: $\alpha \in Y\}$ determined by Φ, and denoted by $L(\Phi)$. The system Φ above is called a transitive system of homomorphisms for $\mathscr{L}=\left\{L_{\alpha}: \alpha \in Y\right\}$. Let $T(\mathscr{L})$ be the set of all transitive systems of homomorphisms for $\mathscr{L}=\left\{L_{\alpha}: \alpha \in Y\right\}$. For any $\tau \in G(\mathscr{L})$ and any $\Phi \in T(\mathscr{L})$, where $\Phi=\left\{\Phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\right\}$, let $\Phi^{\tau}=\left\{\tau^{-1} \phi_{\beta}^{\alpha} \tau: \alpha \geq \beta, \alpha, \beta \in Y\right\}$ (where $x \tau^{-1} \phi_{\beta}^{\alpha} \tau=x\left(\tau \mid L_{\alpha}\right)^{-1} \phi_{\beta}^{\alpha}\left(\tau \mid L_{\beta}\right)\left(\tau \mid L_{\xi}\right.$ means the restriction of τ to $\left.\left.L_{\xi}\right)\right)$.

Theorem 5. Let Y be a semilattice, and $\mathscr{L}=\left\{L_{\alpha}: \alpha \in Y\right\}$ a collection of left zero semigroups L_{α}. Let $\Phi=\left\{\phi_{\beta}^{\alpha}: \alpha \geq \beta, \alpha, \beta \in Y\right\}$ be a transitive system of homomorphisms for \mathscr{L}, and τ a restricted bijection on $L=\Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ such that $\Phi^{\tau}=\Phi$, then L becomes a left normal band under the multiplication.defined by $x \cdot y=x \phi_{\alpha \beta}^{\alpha}$ for $x \in L_{\alpha}, y \in L_{\alpha}$, and $L \otimes L^{d}$ is a special $*$-regular semigroup with respect to the operation * defined by $(i, j)^{*}=\left(j \tau^{-1}, i \tau\right)$. Further, every specially involutive normal band $L \otimes L^{d}$ and every special involution $*$ in $L \otimes L^{d}$ can be obtained in this way.

Proof. Obvious from the discussion above.
For any $\tau \in G(\mathscr{L})$ above and for any $\Phi \in T(\mathscr{L})$,
Lemma 6. Φ^{τ} is a transitive system of homomorphisms for $\left\{L_{\alpha}: \alpha \in Y\right\}$.
Proof. For any $x \in L_{\alpha}, x\left(\tau^{-1} \phi_{\alpha}^{\alpha} \tau\right)=\left(x \tau^{-1}\right) \tau=x$. Hence, $\tau^{-1} \phi_{\alpha}^{\alpha} \tau$ is the identity mapping on L_{α}. Next, for any $\alpha, \beta, \gamma \in Y$ with $\alpha \geq \beta \geq \gamma$ and for any $x \in L_{\alpha}$, $x\left(\tau^{-1} \phi_{\beta}^{\alpha} \tau\right)\left(\tau^{-1} \phi_{\gamma}^{\beta} \tau\right)=x \tau^{-1} \phi_{\beta}^{\alpha} \phi_{\gamma}^{\beta} \tau=x\left(\tau^{-1} \phi_{\gamma}^{\alpha} \tau\right)$. Hence, $\quad\left(\tau^{-1} \phi_{\gamma}^{\alpha} \tau\right)\left(\tau^{-1} \phi_{\gamma}^{\beta} \tau\right)=\tau^{-1} \phi_{\gamma}^{\alpha} \tau$. Thus $\Phi^{\tau}=\left\{\tau^{-1} \phi_{\beta}^{\alpha} \tau: \alpha \geq \beta, \alpha, \beta \in Y\right\}$ is a transitive system of homomorphisms for $\left\{L_{\alpha}: \alpha \in Y\right\}$. For some $\tau \in G(\mathscr{L})$, we have $\Phi^{\tau}=\Phi$ for all $\Phi \in T(\mathscr{L})$. (Of course, if τ is the identity mapping on L then $\tau \in G(\mathscr{L})$ and $\left.\Phi^{\tau}=\Phi\right) . \quad \mathrm{H}(\mathscr{L})=\left\{\tau \in G(\mathscr{L}): \Phi^{\tau}=\Phi\right.$ for all $\Phi \in T(\mathscr{L})\}$ is a subgroup of $G(\mathscr{L})$.

Lemma 7. $H(\mathscr{L})$ is a normal subgroup of $G(\mathscr{L})$.
Proof. Let $\eta \in H(\mathscr{L})$ and $\tau \in G(\mathscr{L})$. For any $\Phi \in T(\mathscr{L}), \Phi^{\tau^{-1} \eta \tau}=\left(\left(\Phi^{\tau-1}\right)^{\eta}\right)^{\tau}=$ $\Phi^{\tau^{-1} \tau}=\Phi$. Hence, $\tau^{-1} \eta \tau \in H(\mathscr{L})$. Therefore, we can consider the factor group $\overline{G(\mathscr{L})}=G(\mathscr{L}) / H(\mathscr{L})$. We shall denote the coset containing $\tau \in G(\mathscr{L})$ by $\bar{\tau}$. For $\Phi \in T(\mathscr{L})$, we define $\Phi^{\bar{\imath}}$ by $\Phi^{\bar{\imath}}=\Phi^{\imath}$. It is obvious that this is well defined. If $\Phi^{\bar{\imath}}=$ $\Phi^{\bar{\delta}}$ for all $\Phi \in T(\mathscr{L})$, then $\bar{\tau}=\bar{\delta}$. Therefore, we can regard $\overline{G(\mathscr{L})}$ as a permutation group on $T(\mathscr{L})$. For any $\Phi \in T(\mathscr{L})$, let $\overline{F_{\Phi}(\mathscr{L})}$ be the fixed group of Φ. Hereafter, let Y be a semilattice, $\mathscr{L}=\left\{L_{\alpha}: \alpha \in Y\right\}$ a collection of left zero semigroups and $L=$ $\Sigma\left\{L_{\alpha}: \alpha \in Y\right\}$ (disjoint sum).

Obviously,
Theorem 8. If $|H(\mathscr{L})|>1$, then $L \otimes L^{d}$ has at least two p-systems for any left normal s-composition L of $\left\{L_{\alpha}: \alpha \in Y\right\}$.

Corollary 9. If $|H(\mathscr{L})|\left|\overline{F_{\bar{\Phi}}(\mathscr{L})}\right|>1$, then $L(\Phi) \otimes L(\Phi)^{d}$ has at least two p systems. In this case, $\left.\left|\mathscr{P}\left(L(\Phi) \otimes L(\Phi)^{d}\right)\right|=|H(\mathscr{L})| \mid \overline{F_{\Phi}(\mathscr{L}}\right) \mid$.

Hereafter, we consider the case $|\overline{G(\mathscr{L})}|<\infty$ and $|T(\mathscr{L})|<\infty$. Decompose $T(\mathscr{L})$ into the systems of transitivity with respect to $\overline{G(\mathscr{L})}: T(\mathscr{L})=\Delta_{1}+\Delta_{2}+\cdots+\Delta_{r}$, where each Δ_{i} is a system of transitivity and + denotes "disjoint sum". Hence, if $\Phi_{i} \in \Delta_{i}$, then $\Delta_{i}=\left\{\Phi_{i}^{\bar{i}}: \bar{\tau} \in \overline{G(\mathscr{L})}\right\}$. The length ℓ_{i} of Δ_{i} is given by $\ell_{i}=\left|\Delta_{i}\right|=\left|\overline{G(\mathscr{L})}: \overline{F_{\Phi_{i}}(\mathscr{L})}\right|$ (the index of $\overline{F_{\Phi_{i}}(\mathscr{L})}$ in $\left.\overline{G(\mathscr{L})}\right)$. Hence, $\iota_{i}| | \overline{G(\mathscr{L})} \mid$ for all $i=1,2, \ldots, r$. If $\iota_{i}=|\overline{G(\mathscr{L})}|$ for all i, then $r|\overline{G(\mathscr{L})}|=|T(\mathscr{L})|$. Therefore, $|\overline{G(\mathscr{L})}|||T(\mathscr{L})|$. Hence, we have the following:

Theorem 10. If $|G(\mathscr{L})| X|T(\mathscr{L})|$, then there exists $\Phi \in T(\mathscr{L})$ such that $L(\Phi) \otimes$ $L(\Phi)^{d}$ has at least two p-systems.

Proof. If $|H(\mathscr{L})|>1$, then this theorem follows from Theorem 8. Suppose that $|H(\mathscr{L})|=1$. Then, $\overline{G(\mathscr{L})}=G(\mathscr{L})$. Hence, $\left|\overline{F_{\Phi_{i}}(\mathscr{L})}\right|>1$ for some $\Phi_{i} \in \Delta_{i}$. Therefore, $L\left(\Phi_{i}\right) \otimes L\left(\Phi_{i}\right)^{d}$ has at least two p-systems.

In particular, let us consider the case $|T(\mathscr{L})|<|G(\mathscr{L})|$. In this case, for any $\Phi \in T(\mathscr{L})$ there exist at least two-different $\tau_{1}, \tau_{2} \in G(\mathscr{L})$ such that $\Phi^{\tau_{1}}=\Phi^{\tau_{2}}$. Then, $\Phi^{\tau_{1} \tau_{2}^{-1}}=\Phi$ and $\tau_{1} \tau_{2}^{-1} \neq 1$ (the identity of $G(\mathscr{L})$). Therefore, $L(\Phi) \otimes L(\Phi)^{d}$ has at least two p -systems. Thus, we have the following results:

Corollary 11. If $|T(\mathscr{L})|<|G(\mathscr{L})|$, then $L(\Phi) \otimes L(\Phi)^{d}$ has at least two p-systems for any $\Phi \in T(\mathscr{L})$.

Corollary 12. If $L(\Phi) \otimes L(\Phi)^{d}$ has a unique p-system for every $\Phi \in T(\mathscr{L})$, then $|G(\mathscr{L})|||T(\mathscr{L})|$.

Corollary 13. If $|G(\mathscr{L})|||T(\mathscr{L})|,|H(\mathscr{L})|=1$ and $G(\mathscr{L})$ is a transitive group, then $L(\Phi) \otimes L(\Phi)^{d}$ has a unique p-system for every $\Phi \in T(\mathscr{L})$.

Remark. It is obvious that $|G(\mathscr{L})|$ can be evaluated as follows: Let $\left|L_{\alpha}\right|=n_{\alpha}$ for $\alpha \in Y$. Then, $|G(\mathscr{L})|=\prod_{\alpha \in Y}\left(n_{\alpha}!\right)$.

Examples. Let $Y=\{\alpha, \beta, 0\}$ be a semilattice such that $\alpha \beta=\beta \alpha=0$ and 0 is the zero element.

1. Let $L_{\alpha}=\{a, b\}, L_{\beta}=\{c, d\}$ and $L_{0}=\{e, f\}$ be left zero semigroups. Put $\mathscr{L}=$ $\left\{L_{\xi}: \xi \in Y\right\}$, and $L=\Sigma\left\{L_{\xi}: \xi \in Y\right\}$. In this case, $|T(\mathscr{L})|=16$ and $|G(\mathscr{L})|=8$. Hence $|G(\mathscr{L})|\left||T(\mathscr{L})|\right.$. Now, consider the transitive system $\Phi=\left\{\phi_{\alpha}^{\alpha}, \phi_{\beta}^{\beta}, \phi_{0}^{0}, \phi_{0}^{\alpha}, \phi_{0}^{\beta}\right\}$ such that $\phi_{0}^{\alpha}:\{a, b\} \rightarrow e, \phi_{0}^{\beta}:\{c, d\} \rightarrow e$. Then, for $\tau \in G(\mathscr{L})$ such that $a \tau=b, b \tau=a, c \tau=d$, $d \tau=c, e \tau=e$ and $f \tau=f, \Phi^{\tau}=\Phi$. The bijection τ is clearly not an identity mapping. Hence, $L(\Phi) \otimes L(\Phi)^{d}$ has at least two p-systems.
2. Let $L_{\alpha}=\{a\}, L_{\beta}=\{b\}$ and $L_{0}=\{e, f\}$ be left zero semigroups. Put $\mathscr{L}=\left\{L_{\alpha}\right.$, $\left.L_{\beta}, L_{0}\right\}$, and $L=\Sigma\left\{L_{\xi}: \xi \in Y\right\}$. Then, $|T(\mathscr{L})|=4$ and $|G(\mathscr{L})|=2$. Hence, $|G(\mathscr{L})| \mid$ $|T(\mathscr{L})|$. In this case, it is easy to see that $\tau \in G(\mathscr{L})$ and $\Phi^{\tau}=\Phi$ for $\Phi \in T(\mathscr{L})$ imply $\tau=1$ (the identity of $G(\mathscr{L})$). Therefore, $L(\Phi) \otimes L(\Phi)^{d}$ has a unique p-system for every $\Phi \in T(\mathscr{L})$.
3. Let $L_{\alpha}=\{a, b\}, L_{\beta}=\{c\}$ and $L_{0}=\{e, f\}$ be left zero semigroups. Put $\mathscr{L}=$ $\left\{L_{\alpha}, L_{\beta}, L_{0}\right\}$, and $L=\Sigma\left\{L_{\xi}: \xi \in Y\right\}$. Then, $|T(\mathscr{L})|=8$ and $|G(\mathscr{L})|=4$. Hence, $|G(\mathscr{L})|\left||T(\mathscr{L})|\right.$. Now, consider the transitive system $\Phi_{1}=\left\{\phi_{\alpha}^{\alpha}, \phi_{\beta}^{\beta}, \phi_{0}^{0}, \phi_{0}^{\alpha}, \phi_{0}^{\beta}\right\}$ such that $a \phi_{0}^{\alpha}=e, b \phi_{0}^{\alpha}=f$ and $c \phi_{0}^{\beta}=e$. Then, $L\left(\Phi_{1}\right) \otimes L\left(\Phi_{2}\right)$ has a unique p-system. On the other hand, consider the transitive system $\Phi_{2}=\left\{\psi_{\alpha}^{\alpha}, \psi_{\beta}^{\beta}, \psi_{0}^{0}, \psi_{0}^{\alpha}, \psi_{0}^{\beta}\right\}$ such that $\mathrm{a} \psi_{0}^{\alpha}=e, b \psi_{0}^{\alpha}=e$ and $c \psi_{0}^{\beta}=e$. Take the bijection $\tau \in G(\mathscr{L})$ such that $a \tau=b, b \tau=a, e \tau=e$ and $f \tau=f$. Then, $\Phi_{2}^{\tau}=\Phi_{2}$ and τ is not the identity mapping on L. Therefore, $L\left(\Phi_{2}\right) \otimes$ $L\left(\Phi_{2}\right)^{d}$ has at least two p-systems.

As was seen in the examples above, in case where $|G(\mathscr{L})|||T(\mathscr{L})|$, there exist the following both cases:

1. For some $\Phi \in T(\mathscr{L})$, there exists $\tau \in G(\mathscr{L})$ such that $\tau \neq 1$ and $\Phi^{\tau}=\Phi$.
2. $\Phi^{\tau}=\Phi, \tau \in G(\mathscr{L}), \Phi \in T(\mathscr{L})$ imply $\tau=1$.

Now, we easily obtain the following from the group theory:
Theorem 14. Let $|G(\mathscr{L})|\left||T(\mathscr{L})|\right.$, and $T_{\Phi}(\mathscr{L})$ the system of transitivity (of $T(\mathscr{L})$ with respect to $\overline{G(\mathscr{L})})$ which contains Φ. Then, $H(\mathscr{L})=1$ and $\left|T_{\Phi}(\mathscr{L})\right|=|G(\mathscr{L})|$ for all $\Phi \in T(\mathscr{L})$ if and only if $L(\Phi) \otimes L(\Phi)^{d}$ has a unique p-system for all $\Phi \in T(\mathscr{L})$.

Further,
Theorem 15. If $\Phi_{1}^{\tau}=\Phi_{2}$ for $\Phi_{1}, \Phi_{2} \in T(\mathscr{L})$ and for $\tau \in G(\mathscr{L}), L\left(\Phi_{1}\right) \otimes L\left(\Phi_{1}\right)^{d}$ and $L\left(\Phi_{2}\right) \otimes L\left(\Phi_{2}\right)^{d}$ have the same number of p-systems.

Proof. Both Φ_{1} and Φ_{2} are contained in the same system of transitivity. Hence, $T_{\Phi_{1}}(\mathscr{L})=T_{\Phi_{2}}(\mathscr{L})$. Therefore, $\left|T_{\Phi_{1}}(\mathscr{L})\right|=\left|\overline{G(\mathscr{L})}: \overline{F_{\Phi_{1}}(\mathscr{L})}\right|=\mid \overline{G(\mathscr{L})}: \overline{F_{\Phi_{2}}(\mathscr{L})\left|=\left|T_{\Phi_{2}}(\mathscr{L})\right| .\right.}$ Thus, $\left|\overline{F_{\Phi_{1}}(\mathscr{L}) \mid}=\left|\overline{\boldsymbol{F}_{\Phi_{2}}(\mathscr{L})}\right| . \quad\right.$ Let \mathscr{P}_{1} and \mathscr{P}_{2} be the sets of p-systems in $L\left(\Phi_{1}\right) \otimes L\left(\Phi_{1}\right)^{d}$
and in $L\left(\Phi_{2}\right) \otimes L\left(\Phi_{2}\right)^{d}$ respectively. Then, it follows from Theorem 8 that $\left|\mathscr{P}_{1}\right|=$ $\left.|H(\mathscr{L})| \mid \overline{F_{\Phi_{1}}(\mathscr{L}}\right)|=|H(\mathscr{L})|| \overline{F_{\Phi_{2}}(\mathscr{L})}\left|=\left|\mathscr{P}_{2}\right|\right.$.

References

[1] Nordahl, T. E. and H. E. Scheiblich, Regular * semigroups, Semigroup Forum 16 (1978), 369-377.
[2] Scheiblich, H. E., Generalized inverse semigroups with involution, Rocky Mountain J. Math. 12 (1982), 205-211.
[3] Yamada, M., Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392.
[4] , On a regular semigroup in which the idempotents form a band, Pacific J. Math. 33 (1970), 261-272.
[5] $\longrightarrow P$-systems in regular semigroups, Semigroup Forum 24 (1982), 173-187.

