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A simplified treatment of the Kepler problem is developed in momentum space by the use 

of the Runge-Lenz vector. The vector is a constant of motion for the inverse square central 

force. The meaning and the construction method in momentum space is considered, and as 

examples of this method familiar results are derived easily without integration of differential 

equatton 

S 1. Introductiom 

After the success of SU(3) in particle physics, attempts were made to reveal the 

symmetry in the classical three-dimensional Keplerian and isotropic oscillator systems 

It has long been known that the above familiar systems in classical mechanics possess 

invariance under groups O(4) and SU(3) respectively. Fradkin [1] developed a 

general procedure to show that all dynamical problems involving central potentials 

non-relativistically and relativistically, inherently possess both O(4) and SU(3) sym-

metry. As a consequence of an internal symmetry associated with non-relativistical 

Kepler problem, there exists a conserved quantity, the so-called Runge-Lenz vector 

In the harmonic oscillator, there is a covserved symmetric tensor, which has some 

properties analogous to the Runge-Lenz vector. 

The original classical discussion of the vector is due to Runge and Lenz [2] 

The energy levels of the hydrogen atom were determined algebraically by Pauli [3] 

using this vector earlier, independently and simultaneously with Schr6dinger's treat-

ment [4] on the basis of the wave equation. Such a vector has been known for a long 

time. In recent years several authors have treated this vector in the papers, for example, 

Dahl [5] has found the Runge-Lenz vector to be a vector quantity and completely 

understood m the framework of special relativity. Redmond [6] has obtained the 

generalization of this vector in the presence of a uniform electric field. 

In this article a construction of the Runge-Lenz vector in the Kepler problem is 

presented in momentum space instructionally and geometrically. It. is based on the 

recognition that hodographs in velocity space for the Qrbit of conic sections are always 

c. ircles, 
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S 2. Coustructiom of the Runge-Leaz Vector im Momentum Space 

The system of a particle of mass In in the central force field possess rotational 

symmetry and the orbital angular momentum L = r xp is a constant of motion 

Thus the orbit in the Keplerian system has a constant orientation to the angular 

momentum L. If the central force is an inverse square force 1(:/r2 and attractive with 

force constant lc 

like atom). The motion is bounded and periodic and the orbit of the particle is closed. 

There exists, therefore, two vectors with fixed direction in the plane, which are the 

constants of motion. As one of these, the Runge-Lenz vector K is defined and the 

other is K x L. The vector K starts at the center of the force and points to a certain 

direction in the plane of the orbit. Since the plane is perpendicular to L 

The Hamiltonian of the system 

H= P2 + Ic (2) 2m r 
is also a constant of motion. 

In order to determine the Runge-Lenz vector, one recall that in momentum space 

the terminal of the momentum vector draws a circle whose radius p' is mllcl/L and the 

center of the circle is shifted from the origin by an amount po = mll(:Ie/L, where e is the 

eccentricity. (In velocity space, the locus of the velocity vector corresponding to the 

path in the coordinate space is called a hodograph) 

The elliptical orbit and the corresponding path in momentum space are shown in 

Fig. 1(a) and (b). 

In the figure the angular momentum L points out of paper. From the figure 

Pmax 

Pmin 

Fig. I . (a) Elliptical orbiit (b) C1!rcular path in mQmentum space 
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As the particle moves around the orbit, momentum vector p changes in direction and 

magnitude in momentum space, and the end point of p draws a circle of radius p', but 

the vector po does not change. Thus po is a fixed vector and hence the constant of 

motion. This is related to the Runge-Lenz vector. The cross product K=po X L is 

also a constant of motion and is reduced to the relation 

K=po X L = (p -p') x L =p x L + mlcr 

= mt x L + mlc~ (4) 
where ~ =r/r the unit vector along 1'. This is the definition of the Runge-Lenz vector. 

To show that K is a constant of motion explicitly, we need to prove 

dt~ 
We perform the differentiation 

dK dp xL+px dL d + nac dt ~ 

dt~dt dt 
Now 

dp = 1(:2~ = L=r xp=mr x v 

dt =0 r3r, ' dt r 
and 

dr dO dr '( e^) = r r'v- dt ~+r dt dt r 

where ~, e are the unit vectors along r and O axis respectively. 

Theref ore 

dK 1(; = r x L+nac J v I l r I r r (v r)rf dt 3 ~3 ' 
Jr2v - (v'r)rl nacr x (r x v) +mlc 

r2v - (v 'r)r 

= ' 2 { r3 } mK {(r v)r-/' v} + mlc 

=0 

The magnitude of K is m I Kle by the definition K=po X L and the vector 

e=PXL +t 
nelc 

( 6) 

(7) 

(8) 

(9) 

(10) 
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is a dunensionless vector of magnitude e and points to the aphelion along the major 

axis of e]liptical orbit. If e = O the Runge-Lenz vector is indefinite 

S 3･ Equation of Orbit and Emergy 

The orbit equation for the Kepler problem is obtained conventionally in terms 

of the variable u = 1/r and a constant of motion L=1nr26 and by performing the in-

tegration of the differential equation for 1'. The labor of solving differential equation 

may be avoided by the use of eccentricity vector e . Taking e to be the fixed direction 

and the azimuthal angle e is measured from the direction of - e 

From the definition of e (Eq. (10)) 

e r er cos (7c e) 1 = (p x L) ･r +r 
m K 

1
 = (r xp) 'L + r 

/ n K 

_ I L2+ 
~ lnlc 

or 

L2 L2 r(1 +e cos e) = - mlc ~ mllcl (1 1) 

which is just the equation of conic section and thus e lies along the major axis of 

elliptical orbit and points aphelion. This is the reason why e is called the eccentricity 

vector. 

The energy of a particle at perihelion or aphelion where f = O and 

K L2 E- I mr2e2+ = + 1c (12) ~ -' r 2mr2 r 
This grve the equation 

2 . L2 _ K 

r E / - 2mE ~O (13) 
and could be solved for the both turning points for r. Thus leads to 

l
c
 ~ ~ 2E (1 + e) / ~** -

( 1 4) 

l
c
 ~ ~ 2E (1,- e) r~i* -

For the el]iptical Qrbit of semi-major axis a 
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and L2=-mlca(1 e ) 
2a 

and thus 

' =a(1 + e) = - L2lmlc 

/ max I - e ( 1 6) 

L2lmlc 
lmin~a(1 e)=- 1+e 

From Eq. (16) the eccentricity e is given by 

2EL2 ~ (.17) e=(1+ 2 ) 
mlc 

which for E 

0
To verify the conservation of energy geometrically, we apply the cosine formula of 

trigonometry to the triangle in momentum space 

p2 = p~ + p'2 + 2poP' cos (7c - O) 

= p~ + p'2 - 2poP' cos O (.1 8) 
We remind po = mIKle/L and the orbit equation 1'=L2/InIKI(.1+e cos O)-1, the fol. 

lowing relation is obtained 

na( = + Llr 

Substituting Eq. (19) in Eq. (18), we obtam 

p (e2 - 1) 'nac 2= ) ~~r (
 
L2 

and hence' 

( 2 2 ~= ) E- I p + 1( mK (21) (e2 - 1) = const. 

~ _7m L 
The relation between the magnitude of K, E and L rs 

K2 = 2EL2 + m2lc2 (-'2) 

S 4. Scattering in the Repulsive Inverse Square Central Force Fleld 

Next we cQnsider the scattering of a particle due tQ the inverse square repulsrve 
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force. Now lc = ZZ'e2 > O. 

Key point to this problem is to obtain the relation between the collision parameter 

b and the angle of scattering ep. The angle of scattering is easily obtained for the 

hyperbolic orbit considering the corresponding path in momentum space. Path of 

the end point of momentum vector draws a circular arc of radius p'=mlc/L also in 

the repulsive case. Hyperbolic orbit and part of a circle are shown in Fig. 2(a), 
(b). 
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Fig. 2. (a) Hyperbolic Orbit 
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incommg and outgomg particle at infinity by p - * and p*, both tangent to the circle 

and p- - p. from Frg 2(b) tan ~ = p'/p- and using the relations 
'-

_ nac l E= ~ mv_ P'- L ' 2 = 2 mp~, L bp* (-~3) 
the following result is obtained 

tan ep = P = mlc _ mK 1( (24) -' p* Lp* ~ bp~ ~ 2bE 

o i 

_ Ic cot 
(P ~2E _ 7 mv2 tan . 

The same result can also be found by the conservation of the Runge-Lenz vector for 

the incident and scattered particles : Ki = K. 

where 

K p * XL +ml(:~,, K.=p* xL~+mKf~ (26) 
and 

L bp* 2 = L. (27) 
2 rs a unit vector which points out of page. The angle between the direction fi and ~. 

and the angle between the vector p - * x Li and p * x L. are both the angle of scattering 

The particle having a collision parameter between b and b + db will be scattered 

through an angle between q) and q) + dep. 

From Eq. (25) 

db lc dep 2mv2 sin2 ep 
2
 

Thus, the expression for the differential cross section of the particles incident on the 

area da = 21Tbdb are scattered in the solid angle dQ = 27c sin epdq, is immediately written 

as 

d oi lc 2 
4m2v4 sin4 q) 

2
 

which is the famous Rutherford scattering formula 

S 5. Comcluding Remarks 

The Runge-Lenz vector is a useful tool to deal with the Kepler problem in classical 
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mechanics and its elementary derivation is obtained by considering momentum space 

However, it has a deep implication concerning the dynamical symmetry in central force 

field. In order to treat the hydrogen atom quantum-mechanically by this operator, it 

must be symmetralized to the form 

K= p x L-L x p + mlc f (29) 

Constants of motion may be shown from the commutation relation for r and p, and 

the following relations can then be shown [7] after a considerable amount of com= 

putation, 

[K, H]=0 L･K=K･L=0 

K2 = _,H(L2 + h2) + m2K2 (30) 
These are the quantum-mechanical analogues of the constancy of K and of Eqs(1) and 
(22) . 

Hydrogen atom in the presence of uniform electric and magnetic field s will be treated 

by this operator. 
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