AN INJECTIVE CPS-TRANSLATION FOR THE EXTENSIONAL λ-CALCULUS

KEN-ETSU FUJITA

(Received: January 31, 2003)

Abstract

We give a syntactical proof to the statement that a novel CPStranslation with surjective pairing is injective for the extensional λ-calculus. The result itself might be preliminary, since the source language (the extensional λ calculus) of the translation is a sublanguage of the target language (λ-calculus with surjective pairing). However this paper shows that there exists a nontrivial injection from the extensional λ-calculus into the λ-calculus with surjective pairing. In this sense our result can be regarded as an extension of Plotkin, i.e., a call-by-value simulation of call-by-name λ-calculus with η-rule (extensionality). Moreover, the method presented here can be naturally extended to the case of the extensional $\lambda \mu$-calculus which is defined from the extensional λ-calculus together with control operators.

1. Introduction

Parigot $[13,14]$ introduced the $\lambda \mu$-calculus from the viewpoint of classical logic, and established an extension of the Curry-Howard isomorphism [10, 7, 12]. From the motivation of a universally computational point of view, we investigate type free $\lambda \mu$-calculus [2, 5].

In terms of a category of continuations, it is proved that for any $\lambda \mu$-theory a continuation semantics of $\lambda \mu$-calculus is sound and complete by Hofmann and Streicher [9]. Selinger [16] proposed the control category to establish an isomorphism between call-by-name and call-by-value $\lambda \mu$-calculi with conjunction and disjunction types. In Streicher and Reus [17], the category of negated domains is applied for a model of type free $\lambda \mu$-calculus. They remarked that the traditional CPStranslation ${ }^{1}$ naïvely based on Plotkin [15] cannot validate η-rule. All of the work [$9,16,17]$ introduced a novel CPS-translation which requires, at least, products as a primitive notion, so that η-rule can be validated by the use of surjective pairing, as observed in [4].

[^0]Towards a model theoretical investigation of type free $\lambda \mu$-calculus, as a preliminary step we show that the novel CPS-translation with surjective pairing is injective. It is syntactically proved that the CPS-translation is sound and complete for the extensional λ-calculus. Here the extensionality means that the λ-calculus has not only β-rule but also η-rule.

As a corollary the injective CPS-translation reveals a Church-Rosser fragment of the λ-calculus with surjective pairing, which is not Church-Rosser as proved by Klop [1]. Along the line of Plotkin [15], this work can also be regarded as a call-by-value simulation of call-by-name λ-calculus with η-rule (extensionality). It is remarked that the completeness in [15] has been proved by the essential use of the Church-Rosser property of the target calculus (call-by-value λ-calculus). However our target calculus is not Church-Rosser as stated above. In order to define an inverse translation and prove the completeness, we introduce a contextfree grammar which describes the image of the CPS-translation.

Although this paper handles only type free λ-calculus, our main theorem is still valid under typed λ-calculus. Moreover, the syntactical method presented in this paper can be naturally extended to the case of the extensional $\lambda \mu$-calculus [13, 14] which is defined from the extensional λ-calculus together with control operators.

2. CPS-Translation of λ-calculus into λ-Calculus with surjective PAIRING

We show a preliminary result that the novel CPS-translation is sound and complete for the extensional λ-calculus. The definitions of terms and reduction rules are respectively given to the extensional λ-calculus denoted by Λ and the extensional λ-calculus with surjective pairing denoted by $\Lambda^{\langle \rangle}$.
Definition 1 (λ-calculus Λ).

$$
\Lambda \ni M::=x|\lambda x . M| M M
$$

$$
\begin{aligned}
& (\beta):\left(\lambda x . M_{1}\right) M_{2} \rightarrow M_{1}\left[x:=M_{2}\right] \\
& (\eta): \lambda x . M x \rightarrow M \text { if } x \notin F V(M)
\end{aligned}
$$

Definition 2 (λ-calculus with surjective pairing $\Lambda^{(\rangle}$).

$$
\Lambda^{\langle \rangle} \ni M::=x|\lambda x . M| M M|\langle M, M\rangle| \pi_{1}(M) \mid \pi_{2}(M)
$$

$(\beta):\left(\lambda x \cdot M_{1}\right) M_{2} \rightarrow M_{1}\left[x:=M_{2}\right]$
(η): $\lambda x \cdot M x \rightarrow M$ if $x \notin F V(M)$
$(\pi): \pi_{i}\left\langle M_{1}, M_{2}\right\rangle \rightarrow M_{i}(i=1,2)$
$(\mathrm{sp}):\left\langle\pi_{1}(M), \pi_{2}(M)\right\rangle \rightarrow M$
The term $M_{1}\left[x:=M_{2}\right]$ denotes the result of substituting M_{2} for the free occurrences of x in $M_{1} . F V(M)$ stands for the set of free variables in M. The one step reduction relation is denoted by \rightarrow_{R} where R consists of $(\beta),(\eta),(\beta)+(\eta)$, $\lambda^{\Delta\rangle}(=(\beta)+(\eta)+(\pi)+(\mathrm{sp}))$, etc. We write \rightarrow_{R}^{+}and \rightarrow_{R}^{*} to denote the transitive closure and the reflexive and transitive closure of \rightarrow_{R}, respectively. We employ the notation $=_{R}$ to indicate the symmetric, reflexive and transitive closure of \rightarrow_{R}. The binary relation \equiv denotes the syntactic identity under renaming of bound variables.

It is noted that the rule of (η) implies the extensional equality of functions, i.e., $f={ }_{\beta \eta} g$ if $f M={ }_{\beta \eta} g M$ for any $M \in \Lambda$. Suppse $f M={ }_{\beta \eta} g M$ for any $M \in \Lambda$. Then we have $f x={ }_{\beta \eta} g x$ for a fresh variable x, and we also have $\lambda x . f x={ }_{\beta \eta} \lambda x . g x$. Hence, an application of (η) gives $f={ }_{\beta \eta} g$.

For a CPS-translation, we assume that $\Lambda^{\langle \rangle}$has two kinds of variables denoted by x and a.

Definition 3 (CPS-translation : $\Lambda \rightarrow \Lambda^{(\rangle)}$.
(i): $\llbracket x \rrbracket=x$
(ii): $\llbracket \lambda x \cdot M \rrbracket=\lambda a .(\lambda x . \llbracket M \rrbracket)\left(\pi_{1} a\right)\left(\pi_{2} a\right)$
(iii): $\llbracket M_{1} M_{2} \rrbracket=\lambda a \cdot \llbracket M_{1} \rrbracket\left\langle\llbracket M_{2} \rrbracket, a\right\rangle$

Example 1. It is instructive to calculate the following where $m, n \geq 0$:

$$
\begin{aligned}
\llbracket \lambda x_{1} \ldots x_{m} \cdot x M_{1} \cdots M_{n} \rrbracket \rightarrow_{\beta}^{+} \quad & \lambda a \cdot x\left\langle\llbracket M_{1} \rrbracket, \ldots,\left\langle\llbracket M_{n} \rrbracket, \pi_{2}^{m} a\right\rangle \ldots\right\rangle \\
& \quad\left[x_{1}:=\pi_{1} a, x_{2}:=\pi_{1}\left(\pi_{2} a\right), \ldots, x_{m}:=\pi_{1}\left(\pi_{2}^{m-1} a\right)\right]
\end{aligned}
$$

Proposition 1 (Soundness). Let $M_{1}, M_{2} \in \Lambda$. If we have $M_{1} \rightarrow_{\beta \eta} M_{2}$ then $\llbracket M_{1} \rrbracket \rightarrow_{\lambda^{(\prime}}^{+} \llbracket M_{2} \rrbracket$.
Proof. By induction on the derivation of $M_{1} \rightarrow_{\beta \eta} M_{2}$. We show some of the base cases.

Case of: (β)

$$
\begin{aligned}
\llbracket\left(\lambda x \cdot M_{1}\right) M_{2} \rrbracket & =\lambda a \cdot \llbracket \lambda x \cdot M_{1} \rrbracket\left\langle\llbracket M_{2} \rrbracket, a\right\rangle \\
& =\lambda a \cdot\left(\lambda a^{\prime} \cdot\left(\lambda x \cdot \llbracket M_{1} \rrbracket\right)\left(\pi_{1} a^{\prime}\right)\left(\pi_{2} a^{\prime}\right)\right)\left\langle\llbracket M_{2} \rrbracket, a\right\rangle \\
& \rightarrow_{\beta} \quad \lambda a \cdot\left(\lambda x \cdot \llbracket M_{1} \rrbracket\right)\left(\pi_{1}\left\langle\llbracket M_{2} \rrbracket, a\right\rangle\right)\left(\pi_{2}\left\langle\llbracket M_{2} \rrbracket, a\right\rangle\right) \\
& \rightarrow_{\pi}^{+} \quad \lambda a \cdot\left(\lambda x \cdot \llbracket M_{1} \rrbracket\right) \llbracket M_{2} \rrbracket a \\
& \left.\rightarrow_{\beta} \quad \lambda a \cdot \llbracket M_{1} \rrbracket x:=\llbracket M_{2} \rrbracket\right] a=\lambda a \cdot \llbracket M_{1}\left[x:=M_{2} \rrbracket \rrbracket a\right. \\
& \rightarrow_{\eta} \llbracket M_{1}\left[x:=M_{2} \rrbracket \rrbracket\right.
\end{aligned}
$$

Case of: (η) where $x \notin F V(M)$

$$
\begin{aligned}
\llbracket \lambda x \cdot M x \rrbracket & =\lambda a \cdot(\lambda x \cdot \llbracket M x \rrbracket)\left(\pi_{1} a\right)\left(\pi_{2} a\right) \\
& =\lambda a \cdot\left(\lambda x \cdot \lambda a^{\prime} \llbracket M \rrbracket\left\langle x, a^{\prime}\right\rangle\right)\left(\pi_{1} a\right)\left(\pi_{2} a\right) \\
& \rightarrow_{\beta}^{+} \quad \lambda a \cdot \llbracket M \rrbracket\left\langle\pi_{1} a, \pi_{2} a\right\rangle \\
& \rightarrow_{\mathrm{sp}} \lambda a \cdot \llbracket M \rrbracket a \\
& { }_{\eta} \llbracket M \rrbracket
\end{aligned}
$$

It is remarked that Proposition 1 holds true even under the restricted form V, i.e., the call-by-value computation as follows:

$$
V::=x|\lambda x \cdot M|\langle V, V\rangle\left|\pi_{1}(V)\right| \pi_{2}(V)
$$

$$
\left(\beta_{v}\right):(\lambda x . M) V \rightarrow M[x:=V]
$$

$$
\begin{aligned}
& \left(\eta_{v}\right): \lambda x \cdot V x \rightarrow V \\
& \left(\pi_{v}\right): \pi_{i}\left\langle V_{1}, V_{2}\right\rangle \rightarrow V_{i}(i=1,2) \\
& \left(\operatorname{sp}_{v}\right):\left\langle\pi_{1} V, \pi_{2} V\right\rangle \rightarrow V
\end{aligned}
$$

Hence this work can be regarded as a call-by-value simulation of call-by-name λ calculus with η-rule.
2.1. Universe of the translation. We will give a definition of the inverse translation to each element of the universe of the CPS-translation:

$$
\operatorname{Univ}_{\lambda} \stackrel{\text { def }}{=}\left\{P \in \Lambda^{\wedge\rangle} \mid \llbracket M \rrbracket \rightarrow_{\lambda^{\prime}}^{*} P \text { for some } M \in \Lambda\right\}
$$

Every element in the universe will be generated by the following context-free grammar:

$$
\begin{aligned}
\mathcal{R} & ::=x\left|\pi_{1} \mathcal{K}\right|(\lambda x . \mathcal{R}) \mathcal{R} \mid \lambda a . \mathcal{R K} \\
\mathcal{K} & ::=a\left|\pi_{2} \mathcal{K}\right|\langle\mathcal{R}, \mathcal{K}\rangle
\end{aligned}
$$

Lemma 1 (Subject reduction property). The categories \mathcal{R} and \mathcal{K} are closed under the following reductions:

$$
\begin{aligned}
& \left(\beta_{x}\right):\left(\lambda x \cdot R_{1}\right) R_{2} \rightarrow R_{1}\left[x:=R_{2}\right] \\
& \left(\beta_{a}\right):\left(\lambda a . R K_{1}\right) K_{2} \rightarrow R K_{1}\left[a:=K_{2}\right] \\
& \left(\eta_{a}\right): \lambda a \cdot R a \rightarrow R \text { if } a \notin F V(R) \\
& \left(\pi_{R, K}\right): \pi_{1}\langle R, K\rangle \rightarrow R \text { and } \pi_{2}\langle R, K\rangle \rightarrow K \\
& \left(\operatorname{sp}_{K}\right):\left\langle\pi_{1}(K), \pi_{2}(K)\right\rangle \rightarrow K
\end{aligned}
$$

Proof. Because we have that $R_{1}\left[x:=R_{2}\right] \in \mathcal{R}, K[x:=R] \in \mathcal{K}$ by simultaneous induction on the structures of R_{1} and K; and that $R[a:=K] \in \mathcal{R}, K_{1}\left[a:=K_{2}\right] \in \mathcal{K}$ similarly.

Proposition 2. Univ $\subseteq \mathcal{R}$, i.e., Univ v_{λ} is generated by \mathcal{R}.
Proof. From definition 3, we have $\llbracket M \rrbracket \in \mathcal{R}$ for any $M \in \Lambda$. Moreover, from Lemma $1, \mathcal{R}$ and \mathcal{K} are closed under the reductions, and hence $\operatorname{Univ}_{\lambda} \subseteq \mathcal{R}$ is obtained.

There uniquely exists a projection normal form by the sole use of $\left(\pi_{R, K}\right)$, and the projection normal form of K is in the following form $K_{n f}$:

$$
K_{n f}::=\pi_{2}^{n} a \mid\left\langle R_{n f}, K_{n f}\right\rangle
$$

where $n \geq 0$. For a technical reason, an occurrence of a single variable $a \in \mathcal{K}$, i.e., $\pi_{2}^{n} a$ where $n=0$ is handled as an $\left(\operatorname{sp}_{K}\right)$-expansion form; $\left\langle\pi_{1} a, \pi_{2} a\right\rangle$. Under this consideration, K can be supposed to be in the form of $\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle$ with $m \geq 0, n \geq 1$.

Lemma 2 (π-normal form). Let $m \geq 0$ and $n \geq 1$. Then every element in the universe Univ ${ }_{\lambda}$ is one of the following forms up to $\left(\pi_{R, K}\right)$-reductions and $\left(\mathrm{sp}_{K}\right)$ expansions:
(1): x
(2): $\pi_{1}\left(\pi_{2}^{i} a\right)$ for some $i \geq 0$
(3): $(\lambda x . R) R_{1}$
(4): $\lambda a . R\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle$ for some $m \geq 0$ and $n \geq 1$ where R and $R_{i}(1 \leq i \leq m)$ are in the form of (1), (2), (3), or (4) above. We call the occurrence of $\left(\pi_{2}^{n} a\right)$ in the case of (4) above a tail with the variable a. Moreover, the following property is satisfied under renaming of bound variables:
(i): For each λa, there exists a unique occurrence of the corresponding tail π_{2}^{n} a for some $n \geq 1$;
(ii): If we have $\pi_{1}\left(\pi_{2}^{i} a\right)$ as a proper subterm where $i \geq 0$, then there exists the least $n \geq 1$ such that the condition $i+1 \leq n$ holds for the tail π_{2}^{n} a with the variable a.

Proof. First obtain a projection normal form only by the use of $\left(\pi_{R, K}\right)$-reductions, and then check whether the form has the condition (ii). The application of $\left(\mathrm{sp}_{K}\right)$ expansion guarantees that (ii) holds true.
2.2. Inverse translation. π-normal forms above play a role of representatives of the image Univ under the translation 【-】. We give the definition of the inverse translation \downarrow to every element in

$$
\pi-\operatorname{nf}\left(U n i v_{\lambda}\right) \stackrel{\text { def }}{=}\left\{\pi \text {-normal }(P) \in \Lambda^{\curlywedge\rangle} \mid \llbracket M \rrbracket \rightarrow_{\lambda}^{*} P \text { for some } M \in \Lambda\right\} .
$$

That is, $P^{\natural}=(\pi \text {-normal }(P))^{\natural}$ for any $P \in U_{n i v}^{\lambda}$.
Definition 4 (Inverse translation $\left.\hbar: \pi-n f\left(\operatorname{Univ}_{\lambda}\right) \rightarrow \Lambda\right)$.
(1): $x^{\natural}=x$
(2): $\left(\pi_{1}\left(\pi_{2}^{i} a\right)\right)^{\mathfrak{\natural}}=a_{i+1}(i \geq 0)$
(3): $\left((\lambda x . R) R_{1}\right)^{\natural}=\left(\lambda x . R^{\natural}\right) R_{1}^{\natural}$
(4): $\left(\lambda a . R\left\langle R_{1}, \ldots\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right)^{\natural}=\lambda a_{1} \ldots a_{n} \cdot R^{\natural} R_{1}^{\natural} \cdots R_{m}^{\natural}(m \geq 0, n \geq 1)$

Lemma 3. For any $M \in \Lambda$, we have $\llbracket M \rrbracket^{\natural} \rightarrow{ }_{\eta}^{*} M$.
Proof. By induction on the structure of $M \in \Lambda$. We show some of the base cases.
(i):

$$
\begin{aligned}
\llbracket \lambda x \cdot M \rrbracket^{\natural} & =\left(\lambda a \cdot(\lambda x \cdot \llbracket M \rrbracket)\left(\pi_{1} a\right)\left(\pi_{2} a\right)\right)^{\natural} \\
& =\lambda a_{1} \cdot\left(\lambda x \cdot \llbracket M \rrbracket^{\natural}\right) a_{1} \\
& \rightarrow_{\eta} \lambda x \cdot \llbracket M \rrbracket^{\natural} \\
& \rightarrow_{\eta}^{*} \quad \lambda x \cdot M \text { by the induction hypothesis. }
\end{aligned}
$$

(ii):

$$
\begin{aligned}
\llbracket M_{1} M_{2} \rrbracket^{\natural} & =\left(\lambda a \cdot \llbracket M_{1} \rrbracket\left\langle\llbracket M_{2} \rrbracket, a\right\rangle\right)^{\natural} \\
& =\left(\lambda a \cdot \llbracket M_{1} \rrbracket\left\langle\llbracket M_{2} \rrbracket,\left\langle\pi_{1} a, \pi_{2} a\right\rangle\right\rangle\right)^{\natural} \\
& =\lambda a_{1} \llbracket M \rrbracket^{\natural} \llbracket M_{2} \rrbracket^{\natural} a_{1} \\
& \rightarrow_{\eta} \llbracket M_{1} \rrbracket^{\natural} \llbracket M_{2} \rrbracket^{\natural} \\
& { }_{\eta}^{*} M_{1} M_{2} \quad \text { by the induction hypotheses. }
\end{aligned}
$$

For the variables $a_{i}(i \geq 1)$, the CPS-translation is naturally extended as follows:

Definition 5.

$$
\begin{aligned}
\llbracket a_{i} \rrbracket & =a_{i}(i \geq 1) \\
\llbracket \lambda a_{i} \cdot M \rrbracket & =\lambda a \cdot\left(\lambda a_{i} \cdot \llbracket M \rrbracket\right)\left(\pi_{1} a\right)\left(\pi_{2} a\right)
\end{aligned}
$$

Lemma 4. For any $P \in$ Univ $_{\lambda}$, we have that $\llbracket P^{\natural} \rrbracket \theta \rightarrow_{\lambda^{\prime}}^{*} P$ where $\theta=\left[a_{1}:=\right.$ $\left.\pi_{1} a, a_{2}:=\pi_{1}\left(\pi_{2} a\right), \ldots, a_{i+1}:=\pi_{1}\left(\pi_{2}^{i} a\right), \ldots\right]$.

Proof. By induction on the structure of $P \in U_{n i v_{\lambda}}$. We show some of the cases.
Case: P of $(\lambda x . R) R_{1}$

$$
\begin{aligned}
\llbracket\left((\lambda x \cdot R) R_{1}\right)^{\natural} \rrbracket & =\lambda a \cdot\left(\lambda a^{\prime} \cdot\left(\lambda x \cdot \llbracket R^{\natural} \rrbracket\right)\left(\pi_{1} a^{\prime}\right)\left(\pi_{2} a^{\prime}\right)\right)\left\langle\llbracket R_{1}^{\natural} \rrbracket, a\right\rangle \\
& \rightarrow_{\lambda \ll}^{+}\left(\lambda x \cdot \llbracket R^{\natural} \rrbracket\right) \llbracket R_{1}^{\natural} \rrbracket
\end{aligned}
$$

Then from the induction hypotheses we have the desired property:

$$
\begin{aligned}
\llbracket\left((\lambda x \cdot R) R_{1}\right)^{\natural} \rrbracket \theta & \rightarrow_{\lambda}^{+}\left(\lambda x \cdot\left(\llbracket R^{\natural} \rrbracket \theta\right)\right)\left(\llbracket R_{1}^{\mathrm{h}} \rrbracket \theta\right) \\
& \rightarrow_{\lambda>}^{*}(\lambda x \cdot R) R_{1}
\end{aligned}
$$

Case: P of $\lambda a . R\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle$
$\llbracket \lambda a \cdot R\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle \rrbracket=\llbracket \lambda a_{1} \ldots a_{n} \cdot R^{\natural} R_{1}^{\natural} \ldots R_{m}^{\natural} \rrbracket$

$$
\begin{aligned}
& \rightarrow_{\beta}^{+} \quad \lambda a \cdot \llbracket R^{\natural} \rrbracket\left\langle\llbracket R_{1}^{\natural} \rrbracket, \ldots,\left\langle\llbracket R_{m}^{\natural} \rrbracket, \pi_{2}^{n} a\right\rangle \ldots\right\rangle \\
& \quad\left[a_{1}:=\pi_{1} a, a_{2}:=\pi_{1}\left(\pi_{2} a\right), \ldots, a_{n}:=\pi_{1}\left(\pi_{2}^{n-1} a\right)\right]
\end{aligned}
$$

Now the use of the induction hypotheses gives what we need:

$$
\begin{array}{rll}
\llbracket \lambda a \cdot R\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle \rrbracket \theta & \rightarrow_{\beta}^{+} & \lambda a .\left(\llbracket R^{\natural} \rrbracket \theta\right)\left\langle\left(\llbracket R_{1}^{\natural} \rrbracket \theta\right), \ldots,\left\langle\left(\llbracket R_{m}^{\natural} \rrbracket \theta\right), \pi_{2}^{n} a\right\rangle \ldots\right\rangle \\
& \rightarrow_{\lambda}^{*} & \lambda a \cdot R\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle
\end{array}
$$

Lemma 5. Let $R, R_{1}, \ldots, R_{n} \in \mathcal{R}$.
(1): $R^{\natural}\left[x:=R_{1}^{\natural}\right]=\left(R\left[x:=R_{1}\right]\right)^{\natural}$
(2): $\left(R\left[b:=\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right]\right)^{\natural}$

$$
=R^{\natural}\left[b_{1}:=R_{1}^{\natural}, \ldots, b_{m}:=R_{m}^{\natural}, b_{m+1}:=a_{n+1}, b_{m+2}:=a_{n+2}, \cdots\right]
$$

under the simultaneous substitution where $m \geq 0$ and $n \geq 1$.
Proof. By straightforward induction on the structure of R. We show the base case for (2).

Case of: $i+1 \leq m$

$$
\begin{aligned}
\left(\pi_{1}\left(\pi_{2}^{i} b\right)\left[b:=\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right]\right)^{\natural} & =\left(\pi_{1}\left(\pi_{2}^{i}\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right)\right)^{\natural} \\
& =R_{i+1}^{\natural}=\left(\pi_{1}\left(\pi_{2}^{i} b\right)\right)^{\natural}\left[b_{i+1}:=R_{i+1}^{\natural}\right]
\end{aligned}
$$

Case of: $i+1>m$

$$
\begin{aligned}
\left(\pi_{1}\left(\pi_{2}^{i} b\right)\left[b:=\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right]\right)^{\natural} & =\left(\pi_{1}\left(\pi_{2}^{i}\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right)\right)^{\natural} \\
& =\left(\pi_{1}\left(\pi_{2}^{n+i-m} a\right)\right)^{\natural}=a_{n+i-m+1} \\
& =\left(\pi_{1}\left(\pi_{2}^{i} b\right)\right)^{\natural}\left[b_{m+1}:=a_{n+1}, \ldots\right] \\
& =b_{i+1}\left[b_{m+1}:=a_{n+1}, \ldots\right]=a_{i+1-m+n}
\end{aligned}
$$

Proposition 3 (Completeness). Let $P, Q \in$ Univ $_{\lambda}$.
(1): If $P \rightarrow_{\beta_{x}} Q$ then $P^{\natural} \rightarrow_{\beta} Q^{\natural}$.
(2): If $P \rightarrow_{\beta_{a}} Q$ then $P^{\natural} \rightarrow_{\beta}^{+} Q^{\natural}$.
(3): If $P \rightarrow_{\eta_{a}} Q$ then $P^{\natural} \rightarrow_{\eta} Q^{\natural}$.
(4): If $P \rightarrow_{\pi_{R, K}} Q$ then $P^{\natural} \equiv Q^{\natural}$.
(5): If $P \rightarrow_{\operatorname{sp}_{K}} Q$ then $P^{\natural} \rightarrow_{\eta}^{*} Q^{\natural}$.

Proof. By induction on the derivations. We show one case for (2), and other cases are straightforward.

Let K be $\left\langle S_{1}, \ldots,\left\langle S_{q}, \pi_{2}^{p} b\right\rangle \ldots\right\rangle$ with $q \geq 0, p \geq 1$, and K^{\prime} be $\left\langle R_{1}, \ldots,\left\langle R_{m}\right.\right.$, $\left.\left.\pi_{2}^{n} a\right\rangle \ldots\right\rangle$ with $m \geq 0, n \geq 1$. Let θ be $\left[b:=K^{\prime}\right]$. Now we prove the case P of $\lambda a .(\lambda b . R K) K^{\prime}$:

$$
\left(\lambda a \cdot(\lambda b \cdot R K) K^{\prime}\right)^{\natural}=\lambda a_{1} \ldots a_{n} \cdot\left(\lambda b_{1} \cdots b_{p} \cdot R^{\natural} S_{1}^{\natural} \cdots S_{q}^{\natural}\right) R_{1}^{\natural} \cdots R_{m}^{\natural}
$$

Case of: $p+1 \leq m$
$\left(\lambda a .(\lambda b . R K) K^{\prime}\right)^{\natural} \quad \rightarrow_{\beta}^{+} \quad \lambda a_{1} \ldots a_{n} .\left(R^{\natural} S_{1}^{\natural} \cdots S_{q}^{\natural}\right)\left[b_{1}:=R_{1}^{\natural}, \ldots, b_{p}:=R_{p}^{\natural}\right] R_{p+1}^{\natural} \cdots R_{m}^{\natural}$
$=\lambda a_{1} \ldots a_{n} .\left(R^{\natural} S_{1}^{\natural} \cdots S_{q}^{\natural}\right)$
$\left[b_{1}:=R_{1}^{\natural}, \ldots, b_{m}:=R_{m}^{\natural}, b_{m+1}:=a_{m+1}, b_{m+2}:=a_{m+2}, \ldots\right] R_{p+1}^{\natural} \cdots R_{m}^{\natural}$
since none of b_{p+1}, b_{p+2}, \ldots appears in $R^{\natural}, S_{1}^{\natural}, \ldots, S_{q}^{\natural}$
$=\lambda a_{1} \ldots a_{n} \cdot\left((R \theta)^{\natural}\left(S_{1} \theta\right)^{\natural} \cdots\left(S_{q} \theta\right)^{\natural}\right) R_{p+1}^{\natural} \cdots R_{m}^{\natural} \quad$ by Lemma 5
$=\left(\lambda a . R \theta\left\langle S_{1} \theta, \ldots,\left\langle S_{q} \theta,\left\langle R_{p+1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right\rangle \ldots\right\rangle\right)^{\natural}$
$=\left(\lambda a . R \theta\left\langle S_{1} \theta, \ldots,\left\langle S_{q} \theta, \pi_{2}^{p}\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right\rangle \ldots\right\rangle\right)^{\natural}$
$=\left(\lambda a \cdot R K\left[b:=K^{\prime}\right]\right)^{\natural}$
Case of: $p+1>m$

$$
\begin{aligned}
\left(\lambda a .(\lambda b . R K) K^{\prime}\right)^{\natural} & \rightarrow_{\beta}^{+} \quad \lambda a_{1} \ldots a_{n} \cdot \lambda b_{m+1} \ldots b_{p} \cdot\left(R^{\natural} S_{1}^{\natural} \cdots S_{q}^{\natural}\right)\left[b_{1}:=R_{1}^{\natural}, \ldots, b_{m}:=R_{m}^{\natural}\right] \\
= & \lambda a_{1} \ldots a_{n} a_{n+1} \ldots a_{p-m+n} \cdot R^{\natural} S_{1}^{\natural} \cdots S_{q}^{\natural} \\
& \quad\left[b_{1}:=R_{1}^{\natural}, \ldots, b_{m}:=R_{m}^{\natural}, b_{m+1}:=a_{n+1}, b_{m+2}:=a_{n+2}, \ldots\right] \\
= & \lambda a_{1} \ldots a_{n+p-m} \cdot(R \theta)^{\natural}\left(S_{1} \theta\right)^{\natural} \cdots\left(S_{q} \theta\right)^{\natural} \quad \text { by Lemma } 5 \\
= & \left(\lambda a \cdot R \theta\left\langle S_{1} \theta, \ldots,\left\langle S_{q} \theta, \pi_{2}^{n+p-m}(a)\right\rangle \ldots\right\rangle\right)^{\natural} \\
= & \left(\lambda a \cdot R \theta\left\langle S_{1} \theta, \ldots,\left\langle S_{q} \theta, \pi_{2}^{p}\left\langle R_{1}, \ldots,\left\langle R_{m}, \pi_{2}^{n} a\right\rangle \ldots\right\rangle\right\rangle \ldots\right\rangle\right)^{\natural} \\
= & \left(\lambda a \cdot R K\left[b:=K^{\prime}\right]\right)^{\natural}
\end{aligned}
$$

Now we can establish our main theorem (equational correspondence between Λ and $\left.\operatorname{Univ}_{\lambda} \subseteq \Lambda^{(\rangle}\right)$.

Theorem 1. (i): Let $M_{1}, M_{2} \in \Lambda . M_{1}={ }_{\beta \eta} M_{2}$ if and only if $\llbracket M_{1} \rrbracket={ }_{\lambda /\rangle} \llbracket M_{2} \rrbracket$.
(ii): Let $\left.P_{1}, P_{2} \in \operatorname{Univ}_{\lambda} . P_{1}={ }_{\lambda}\right\rangle P_{2}$ if and only if $P_{1}^{\natural}={ }_{\beta \eta} P_{2}^{\natural}$.

Proof. (i): From Propositions 1 and 3 and Lemma 3.
(ii): From Propositions 1 and 3 and Lemma 4.

Let $[M] \stackrel{\text { def }}{=}\left\{N \in \Lambda \mid \llbracket M \rrbracket=_{\lambda\rangle} \llbracket N \rrbracket\right\}$ for $M \in \Lambda$. The theorem above means that we have $N_{1}={ }_{\beta \eta} N_{2}$ for any $N_{1}, N_{2} \in[M]$.

Corollary 1. Let $\llbracket \Lambda \rrbracket \stackrel{\text { def }}{=}\left\{\llbracket M \rrbracket \in \Lambda^{\wedge\rangle} \mid M \in \Lambda\right\}$. $\llbracket \Lambda \rrbracket$ is a Church-Rosser subset, in the sense that if $P \rightarrow_{\left.\lambda^{\prime}\right)}^{*} P_{1}$ and $P \rightarrow_{\lambda^{\prime}}^{*} P_{2}$ where $P, P_{1}, P_{2} \in \llbracket \Lambda \rrbracket$ then there exists some $Q \in \llbracket \Lambda \rrbracket$ such that $P_{1} \rightarrow_{\lambda\rangle}^{*} Q$ and $P_{2} \rightarrow_{\lambda\rangle}^{*} Q$.

3. Concluding Remarks

(1): $\Lambda^{\langle \rangle}$is not Church-Rosser by Klop [1].

As stated in Corollary 1, Theorem 1 reveals that

$$
\llbracket \Lambda \rrbracket \stackrel{\text { def }}{=}\left\{\llbracket M \rrbracket \in \Lambda^{\langle \rangle} \mid M \in \Lambda\right\}
$$

is a confluent fragment, in the sense that if $P_{1}={ }_{\lambda /} P_{2}$ for $P_{1}, P_{2} \in \llbracket \Lambda \rrbracket$ then there exists some $P \in \llbracket \Lambda \rrbracket$ such that $P_{1} \rightarrow_{\lambda\rangle}^{*} P$ and $P_{2} \rightarrow_{\lambda \lambda\rangle}^{*} P$.
(2): There exists a one-to-one correspondence between $\Lambda^{\langle \rangle}$and C-monoids ${ }^{2}$ by Lambek and Scott [11] and by Curien [3]:

$$
\begin{aligned}
& \left(\mathrm{C}_{\mathrm{Ass}}\right):(x \circ y) \circ z=x \circ(y \circ z) \\
& \left(\mathrm{C}_{\mathrm{Idl}}\right): 1 \circ x=x \\
& \left(\mathrm{C}_{\mathrm{Idr}}\right): x \circ 1=x \\
& \left(\mathrm{C}_{\mathrm{Fst}}\right): \pi_{1} \circ\langle x, y\rangle=x \\
& \left(\mathrm{C}_{\mathrm{Snd}}\right): \pi_{2} \circ\langle x, y\rangle=y \\
& \left(\mathrm{C}_{\mathrm{SP}}\right):\left\langle\pi_{1} \circ x, \pi_{2} \circ x\right\rangle=x \\
& \left(\mathrm{C}_{\mathrm{App}}\right): \operatorname{App} \circ\left\langle\operatorname{Cur}(x) \circ \pi_{1}, \pi_{2}\right\rangle=x \\
& \left(\mathrm{C}_{\mathrm{S} \Lambda}\right): \operatorname{Cur}\left(\operatorname{App} \circ\left\langle x \circ \pi_{1}, \pi_{2}\right\rangle\right)=x
\end{aligned}
$$

Theorem 1 implies that there also exists a nontrivial injection from Λ into C-monoids.
(3): Even in the case of typed λ-calculus, the novel CPS-translation works well as a negative translation from proofs of intuitionistic logic consisting of \Rightarrow (implication) into those of that consisting of \Rightarrow and \wedge (conjunction). $\neg A($ negation of $A)$ is defined by $A \Rightarrow \perp$ where \perp is treated as an arbitrary proposition letter. From the Curry-Howard isomorphism [10], formulae are regarded as types and proofs are as terms or programs. Here the judgement $\Gamma \vdash M: A$ says that M is a proof of the formula A under the set of

[^1]assumptions Γ. The inference rules of typed $\Lambda^{\dagger\rangle}$ is given as follows, and those of typed Λ is defined by typed $\Lambda^{\langle \rangle}$without $(\wedge I)$ nor $(\wedge E)$:
\[

$$
\begin{gathered}
\frac{x: A \in \Gamma}{\Gamma \vdash x: A} \\
\frac{\Gamma, x: A_{1} \vdash M: A_{2}}{\Gamma \vdash \lambda x \cdot M: A_{1} \Rightarrow A_{2}}(\Rightarrow I) \quad \frac{\Gamma \vdash M_{1}: A_{1} \Rightarrow A_{2} \quad \Gamma \vdash M_{2}: A_{1}}{\Gamma \vdash M_{1} M_{2}: A_{2}}(\Rightarrow E) \\
\frac{\Gamma \vdash M_{1}: A_{1} \quad \Gamma \vdash M_{2}: A_{2}}{\Gamma \vdash\left\langle M_{1}, M_{2}\right\rangle: A_{1} \wedge A_{2}}(\wedge I) \quad \\
\frac{\Gamma \vdash M: A_{1} \wedge A_{2}}{\Gamma \vdash \pi_{i}(M): A_{i}}(\wedge E)
\end{gathered}
$$
\]

Proposition 4. $\Gamma \vdash M: A$ in typed Λ if and only if $\Gamma^{k} \vdash \llbracket M \rrbracket: A^{k}$ in typed $\Lambda^{\wedge\rangle}$, where formulae (types) are embedded as follows:

$$
\left\{\begin{aligned}
\left(A_{1} \Rightarrow A_{2}\right)^{k} & =\neg\left(A_{1}^{k} \wedge A_{2}^{*}\right) ; \\
A^{k} & =\neg \neg A \text { if } A \text { is atomic; and } \\
A^{*} & =B \text { where } \neg B \equiv A^{k} .
\end{aligned}\right.
$$

We remark that the embedding A^{k} is essentially equivalent to the GödelGentzen negative translation, since we have $\neg\left(A_{1}^{k} \wedge A_{2}^{*}\right) \Leftrightarrow\left(A_{1}^{k} \Rightarrow A_{2}^{k}\right)$ in the so-called minimal logic. This observation can be applied to prove the only-if part of the proposition above.
(4): A recursive domain safisfying

$$
U \cong U \times U \cong[U \rightarrow U]
$$

gives a model of the λ-calculus with surjective pairing [8]. The domain $U \cong U \times U \cong[U \rightarrow U]$ can provide continuation denotational semantics of the extensional $\lambda \mu$-calculus as well. From a natural extension of Theorem 1 the completeness of the continuation denotational semantics of the $\lambda \mu$ calculus depends on that of the direct denotational semantics of $\Lambda^{\wedge\rangle}$. See also [6] for a formal relation, via continuous functions f and g, between the continuation denotational semantics $\mathcal{C}(-)$ of the $\lambda \mu$-calculus and the CPS-translation followed by the direct denotational semantics $\mathcal{D}(-)$ of $\Lambda^{\wedge\rangle}$:

where $U^{\prime}=[U \times U \rightarrow U]$.
Acknowledgments . I am grateful to Horai-Takahashi Masako and Yokouchi Hirofumi for helpful discussions. This work has been partially supported by Grants-in-Aid for Scientific Research (C)(2)14540119, Japan Society for the Promotion of

Science. This research has been supported by the Kayamori Foundation of Informational Science Advancement.

References

[1] H. P. Barendregt: The Lambda Calculus, Its Syntax and Semantics (revised edition), NorthHolland, 1984.
[2] K. Baba, S. Hirokawa, and K. Fujita: Parallel Reduction in Type-Free $\lambda \mu$-Calculus, Electronic Notes in Theoretical Computer Science, Vol. 42, pp. 52-66, 2001.
[3] P. -L. Curien: Categorical Combinators, Sequential Algorithms and Functional Programming, Pitman, London/John Wiley\&Sons, 1986.
[4] K. Fujita: A Simple Model of Type Free $\lambda \mu$-Calculus, The 18th Conference Proceedings Japan Society for Software Science and Technology, 2001.
[5] K. Fujita: An interpretation of $\lambda \mu$-calculus in λ-calculus, Information Processing Letters, Vol. 84-5, pp. 261-264, 2002.
[6] K. Fujita: Continuation Semantics and CPS-translation of $\lambda \mu$-Calculus, Scientiae Mathematicae Japonicae, Vol. 57, No. 1, pp. 73-82, 2003.
[7] T. G. Griffin: A Formulae-as-Types Notion of Control, Proc. the 1^{17} th Annual ACM Symposium on Principles of Programming Languages, pp. 47-58, 1990.
[8] C. A. Gunter and D. S. Scott: Semantic Domains, in: Handbook of Theoretical Computer Science Vol. B : Formal Models and Semantics, Elsevier Science Publishers B. V., 1990.
[9] M. Hofmann and T. Streicher: Continuation models are universal for $\lambda \mu$-calculus, Proc. the 12th Annual IEEE Symposium on Logic in Computer Science, pp. 387-395, 1997.
[10] W. Howard: The Formulae-as-Types Notion of Constructions, in: To H.B.Curry: Essays on combinatory logic, lambda-calculus, and formalism, Academic Press, pp. 479-490, 1980.
[11] J. Lambek and P. J. Scott: Introduction to higher order categorical logic, Cambridge University Press, 1986.
[12] C. R. Murthy: An Evaluation Semantics for Classical Proofs, Proc. the 6th Annual IEEE Symposium on Logic in Computer Science, pp. 96-107, 1991.
[13] M. Parigot: $\lambda \mu$-Calculus: An Algorithmic Interpretation of Classical Natural Deduction, Lecture Notes in Computer Science 624, pp. 190-201, 1992.
[14] M. Parigot: Proofs of Strong Normalization for Second Order Classical Natural Deduction, J. Symbolic Logic 62 (4), pp. 1461-1479, 1997.
[15] G. Plotkin: Call-by-Name, Call-by-Value and the λ-Calculus, Theoretical Computer Science 1, pp. 125-159, 1975.
[16] P. Selinger: Control Categories and Duality: on the Categorical Semantics of the LambdaMu Calculus, Mathematical Structures in Computer Science 11, pp. 207-260, 2001.
[17] T. Streicher and B. Reus: Classical Logic, Continuation Semantics and Abstract Machines, J. Functional Programming 8, No. 6, pp. 543-572, 1998.

Department of Mathematics and Computer Science, Shimane University, Matsue 690-8504, Japan.

E-mail address: fujiken@cis.shimane-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 68N18, 68Q05, 68Q55.
 Key words and phrases. extensional λ-calculus, surjective pairing, Church-Rosser property, continuation-passing-style translation, call-by-name, call-by-value.
 ${ }^{1} \mathrm{CPS}$ stands for continuation-passing style.

[^1]: ${ }^{2}$ According to [11], C stands for Curry, Church, combinatory or cartesian.

