鳥取県多里地方産クロム鉄鉱の化学組成 ならびにその屈析率,格子恒数との関係

北 原 順 -(昭和36年10月27日受理)

Jun-ichi KITAHARA : Chemical Composition and its Relation to Refractive Index and Lattice Constant in the Chromites from the Tari District, Tottori Prefecture

1. クロム鉄鉱床およびクロム鉄鉱

筆者はサキに広瀬鉱山と若松鉱山との附近の地質および両鉱山の各鉱床¹⁾²⁾について述べた。 47個のクロム鉄鉱の肉眼的,顕微鏡的特徴³⁾を記載し,それらの化学組成⁴⁾についても表示し, 更にクロム鉄鉱の屈折率,格子恒数³⁾についても記述した。

(1) 広瀬鉱山の鉱床(簡約)

広瀬鉱山の鉱床は大切坑, 広瀬坑, 22米坑, 34米坑, 37米坑, 充填坑から成り, それらの鉱 床の方向は山稜線にほぼ一致している。ここに22米坑, 34米坑, 37米坑は広瀬坑(海抜775米)を 0米の基準としてそれよりそれぞれ22米, 34米, 37米の高さに存する鉱床である。広瀬坑及び 大切坑は下部の鉱床である。充填坑は22米坑, 37米坑を充填するために堀った鉱床である。そ れらの充填坑, 37米坑, 34米坑, 22米坑, 広瀬坑, 大切坑の各鉱体は互に傾斜の方向に連続し, 一般走行は N10°~20°W, 傾斜は30°~70°Wである。広瀬坑, 22米坑, 37米坑, 充填坑の各鉱 体は採鉱済のため, ここでは述べない。

広瀬鉱山大切坑の鉱床(海抜745米)および34米坑の鉱床(海抜809米(775+34))は第1図, 第2図に示す通りである。塊状鉱,密斑状鉱,斑状鉱の存在状体を先報⁴⁾の図を補正して示し た。

(2) 若松鉱山の鉱床(簡約)

若松鉱山の鉱床は5号鉱床と7号鉱床から成る。

5号鉱床は南5号坑を主体とする。南5号坑は広瀬鉱山の37米坑の傾斜の方向に続いた上部 鉱体で,837米のレベルにある。南5号坑の鉱体は広瀬鉱山より上部の鉱体で最も高所にあるか ら,辺緑鉱体である。その鉱体は一般に走向N $10^\circ \sim 20^\circ W$,傾斜 $40^\circ W$ である。この鉱体も採鉱済である。

7 号鉱床は7号坑,南坑,中切坑から成り,それらの各鉱体は連続していて,大凡延長200米, 巾40米,厚さ20米である。

北原順

20

若松鉱山中切坑

若松鉱山7号坑(海抜791米),南坑(海抜785米),中切坑(海抜772米)の各鉱床は第3図 ~第5図に示す通りで,前報³⁾⁴⁾の図を補訂して塊状鉱,密斑状鉱および斑状鉱の存在状体を 示した。

若松鉱山7号坑,南坑,中切坑のAA方向の断面図

上記7号坑,南坑,中切坑の各鉱床の断面図は第6図に示す如くである。 47個のクロム鉄鉱試料の産出個所は各鉱床図(第1図~第5図)中に示した。

2. クロム鉄鉱の化学組成

クロム鉄鉱の主成分は2価のFeとMg, 3価のCr, Al, Feである。クロム鉄鉱は (Fe, Mg) (Cr, Al, Fe)₂O₄ で表わされ,スピネル群に属する。

a) 重量比から単位格子中の原子数の算出

尖晶石の単位格子は RO. $R_2O_3 \approx 8$ 分子含有している。次に比較のため分析結果から単位格 子の各金属原子の数を求めた。即ち分析結果から各成分の分子比を求め, 共生する珪酸塩鉱物 の分子比を引き単位格子中の2価金属元素が8個, 3価の金属元素が, 16個存在するものとし て原子数を算出した。Stevens ⁵⁾ はクロムを有する尖晶石の単位格子中の3価原子の数がどの 様に変化するかを三角形図で表わし, クロムを含む尖晶石族を6種に分類している。三角形図 の上部のものは Cr_2O_3 の多い chromite, 下部左は $Al_2 O_3$ の多い spinel, 下部右は Fe_2O_3 の 多い magnetite である。この三角形図は後記の単位格子中の原子数から求めたノルム成分三角 形図と一致する。

b) クロム鉄鉱のノルム成分

クロム鉄鉱の単位格子中の原子数から、Stevens⁵⁾ による spinel = $\frac{Al}{2}$, magnesiochromite = Mg - $\frac{Al}{2}$, ferrochromite = $\frac{Cr + Al}{2}$, -Mg, magnetite = Fe² + Mg - $\frac{Cr + Al}{2}$ = $\frac{Fe^3}{2}$ の式を用いてノルム成分を計算すると第1表に示す様になる。

第 1 表 クロム鉄鉱のノルム成分

広瀬鉱山大切坑

No.	1	2	3	4	5	6	7	8	9	10
Spinels	46.9	50.6	51.2	50.6	46.9	52.5	55.0	43.1	57.5	46.4
Chromite	48.8	45.0	44.4	45.0	46.9	44.4	43.1	51.3	40.6	45.5
Magnetite	1.3	4.4	4.4	4.4	6.2	3.1	1.9	5.6	1.9	8.1

Spinel (MgAl₂O₄), Chromite ((Mg, Fe)Cr₂O₄) and Magnetite (FeFe₂O₄)

No.	11	12	13	14	15	16	17	18	19	20	21
Spinel	58.5	55,0	56.2	51.2	53.1	56.2	52.5	55.6	55.0	53.1	58.7
Chromite	39.3	43.1	42.5	45.7	41.9	41.9	43.8	40.6	40.6	43.2	36.9
Magnetite	1.9	1.9	1.3	3.1	5.0	1.9	3.7	3.8	4.4	3.7	4.4

全 鉱 山 34 米 坑

若松鉱山7号坑

No.	22	23	24	25	26	27	28	29	30	31
Spinel	53.2	51.3	58.1	53.8	53.1	38.7	51.9	56.2	54.4	49.4
Chromite	43.7	42.5	40.0	44.3	44.4	53.2	42.5	41.9	42.5	42.5
Magnetite	3.1	6.2	1.9	1.9	2.5	8.1	5.6	1.9	3.1	8.1

		2	全 鉱 山 i	南坑			
No.	32	33	34	35	36	37	38
Spinel	57.5	53.1	50.6	43.2	41.2	51.3	54.4
Chromite	40.0	43.7	44.4	48.7	49.4	42.5	43.4
Magnetite	2.5	3.2	5.0	8.1	9.4	6.2	2.5

全鉱山中切坑

No.	39	40	41	42	43	44	45	46	47
Spinel	56.9	50.6	54.4	50.6	51.9	59.4	58.7	44.3	50.6
Chromite	41.9	42.5	42.5	44.4	43.1	36.9	36.9	52.6	45.6
Magnetite	1.2	6.9	3.1	5.0	5.0	3.7	4.4	3.1	3.8

本邦産クロム鉄鉱を⁶⁾⁷⁾ ノルム成分三角形図(第7図)に投影すると、多里地方の大部 分を除いた他は aluminian chromite に属することが判る。又京都府河守鉱山産のものは al uminian chromite と chromian spinel の中間に属する。ここに本邦産クロム鉄鉱の分析値は 何れも筆者の分析によるものである。

次に多里地方産のものをノルム三角形図に投影(第8図)して,第7図と比較すると,多く は chromian spnel であるが, Nos. 1, 8, 27, 35, 36, 46のクロム鉄鉱は chromian spinel に近い aluminian chromite であり, No. 5 は aluminian chromite と chromian spinel の中 間のものである。ここにNos. 2, 4 Nos. 7, 12 Nos. 16, 29 Nos. 21, 45 Nos. 22, 33 Nos. 30, 41 Nos. 34, 42 の7組は何れも同一点に投影される。上記のように多里地方産のクロム鉄鉱は chromian spinel ないしそれに近いのが特徴である。第8図はクロム鉄鉱のノルム成分に対する屈折率と

格子恒数の関係を示すものであり、この屈折率と格子恒数に就いては後に簡単に述べる。 外国産のクロム鉄鉱⁵⁾⁸⁾⁹⁾¹⁰⁾¹¹⁾の分析値をノルム三角形図(第9図)に投影すると Wyoming 州の Casper mountain 産の chromian magnetite と Manitoba の Bird river 産の ferrian chromite を除くと、大部分が aluminian chromite である。又 Caribbean Province 産の spinel は chromian spinel に近い aluminian chromite である。

23

北原順一

外国産クロム鉄鉱の産地

○ Kenai Peninsula, Alaska (average).
◆ Bird River, Manitoba ▲ Casper Mountain,
Wyoming (average) + Pacific Coast (average) △ Caribbean Province (average)
• India • Zhob Valley, West Pakistan ● Bushveld, Central Trasvaal, South Africa (average)
× Still Water, Eastern Tranvaal, South Africa (average)

3. クロム鉄鉱の産出個所、性質及び化学組成間の関係(要約)

次に前記の47個のクロム鉄鉱について,産出個所性質及び化学組成の関係を検討してみた。

a) 広瀬鉱山大切坑産のクロム鉄鉱

当抗産のクロム鉄鉱を要約すると、鉱体の辺縁のもの(Nos.1,2,3,4,5,8,10)は鉱体の端のもの(Nos.6,7,9)より Al_2O_3 量が少なく、従って尖晶石($MgAl_2O_4$)成分も少ない。これに反して含鉄量($FeO + Fe_2O_3$)は多く、磁鉄鉱(Fe_3O_4)成分も多い。即ち鉱体の辺縁のものは鉱体の端のものより変質程度が進んでいる。クロム鉄鉱の変質は蛇紋石化作用の程度に無関係である。同一鉱体から産した Nos.2,3,4,6の Cr_2O_3 量は近似($37.0 \sim 38.5\%$)している。 Cr_2O_3 の多い No.1 (39.29%),No.8 (42.07%)は、何れも鉱体の辺縁のもので、塊状鉱に近いもの或は密斑状鉱で、頑火輝石又は緑泥石を多少伴っている。これらの Cr_2O_3 量は後記 34 米坑のものより一般に多い。

24

b) 広瀬鉱山 34 米坑産のクロム鉄鉱

鉱体の中央部に産する Nos. 11, 12, 13, 16 は含鉄量 ($FeO+Fe_2O_8$) が少なく,従って磁 鉄鉱成分少なく,尖晶石成分が比較的多く,変質を余り蒙つていない。鉱体の辺縁に近く産す る Nos. 14, 15, 21 は含鉄量が多く,磁鉄鉱成分に富み,変質程度も大きい。辺縁のものは一 般に 尖晶石成分が少ないが, No. 21 のみは Cr_2O_3 量が少なく, Al_2O_3 が多く,尖晶石成分 の多いものである。鉱体の端ないし端に近い Nos. 17, 18, 19, 20 は含鉄量が中央部より稍々 多く,辺縁部より少なく,何れも褐黒色に変っている。辺縁のものは生成末期に,低温度で水 蒸気圧が大きくなるにつれて,中央部より ($FeO + Fe_2O_8$) が集中したものと考えられる。 TiO₂ の含量は何れの試料も少量であるが,辺縁部の方が中央部より多い傾向がある。

c) 若松鉱山7号坑産のクロム鉄鉱

次に7号坑産 No. 22~No. 31の10個について記述しよう。

これらのクロム鉄鉱を要約すると次のようになる。 近接して産する塊状鉱と斑状鉱を比較す ると、 Cr_2O_3 量は前者が後者より多く、逆に (FeO + Fe₂ O₃) 量は前者が少ない。 鉱体の中 央部に産する Nos. 24, 25, 26, 29, 30 は比較的に尖晶石成分が多く、 磁鉄鉱成分が少なく、 変質を蒙った程度も少ない。 辺縁部に産する Nos. 22, 23, 28 は尖晶石成分が少なく、 磁鉄鉱 成分が多く、 変質をうけた程度は 中央部より進んでいる。 辺縁に産した No. 27 では、 Cr_2O_3 量は多く、 Al_2O_3 量が少なく、 稍々異状の成分を有する。共生鉱物は蛇紋石と頑火輝石ないし それから変った緑泥石で、 Al_2O_3 量は余り多くない。 中央部の No. 31 は斑栃岩から酸化鉄の 注入をうけて変成したものと考えられ、 第8 図に示すように、 中央部のものにしては異状であ る。

d) 若松鉱山南坑産のクロム鉄鉱

南坑産クロム鉄鉱 No. 32 ~ No. 38 の7 個ついて次に記載しよう。

南坑産クロム鉄鉱では辺縁部から離れたところに産する No.32は、含鉄量少なく、変質程度も割合に低い。鉱体の辺縁のもの Nos.34,35,36,37も、その端に産するもの Nos.33,38も含鉄量は多いが、辺縁のものの方が多く、しかも変質程度は進んでいる。

e) 若松鉱山中切坑産のクロム鉄鉱

次に中切坑産の No. 39 ~ No. 47 の 9 個のクロム鉄鉱について述べよう。

中切坑産のクロム鉄鉱を要約すると、鉱体の端に小脈状に産する No. 39 は含鉄量が少なく、 変質程度も少ない。このものは、尖晶石成分が多く、磁鉄鉱成分が少ない。 鉱体の端に産する No. 41 は、含鉄量が辺縁のものよりやや少なく、変質程度も低い。鉱体の辺縁のもの (Nos. 40, 42, 43) は含鉄量も磁鉄鉱成分も多く、変質も進んでいる。辺縁に近いところのもの (Nos. 44, 45, 46, 47) は割合に多く鉄を含むが、 辺縁のもの程、変質は進んでいない。 頑火輝石ないし それから変った緑泥石を多量に伴う No. 47 は Cr_2O_3 を比較的多く含む。

4. クロム鉄鉱と、共生する珪酸塩鉱物との関係(要約)

Nos. 19, 21, 26, 27 のクロム鉄鉱の化学組成とそれらと共生する珪酸塩鉱物との間の関係を 検討し要約してみると次のようである。

鉱体の端では、珪酸塩鉱物にもクロム鉄鉱にも Al_2O_8 が多く、 Al_2O_8 の多い環境下で生じた ものと考えられる。鉱体の辺縁部では、珪酸塩鉱物にも $FeO+Fe_2O_8$ が多く、又クロム鉄鉱に もクロム鉄鉱が固結しつつある時、珪酸塩石基から Al_2O_8 の一部が移行したと考えられるもの もある。 鉱体の中央部では、 珪酸塩鉱物にもクロム鉄鉱にも含鉄量の少ないのがある。一般に 斑状鉱の方が塊状鉱より含鉄量が多く、 斑状鉱が固結しつつある時、 珪酸塩の石基から鉄分が クロム鉄鉱に移行したと考えられる。

5. クロム鉄鉱のCr/Fe

当地産のクロム鉄鉱の Cr/Fe の値は第2表に示す通りである。

a) 広瀬鉱山大切坑産の Cr/Fe

大切坑の鉱体の辺縁部から産した7 試料では $Cr/Fe = 2.0 \sim 3.0$, 端から産した3 試料では $Cr/Fe = 2.8 \sim 3.6$ である。辺縁部より端部の方が Cr/Fe 比が大きい。辺縁部でも端部でも Cr_2 O₃ 量は余り違いがないから, $FeO+Fe_2O_3$ 量は辺縁部の方が端部より多いことが判る。

b) 広瀬鉱山34米坑産クロム鉄鉱の Cr/Fe

鉱体の中央部の3 試料では Cr/Fe = 2.7~3.1, 辺縁部の4 試料では Cr/Fe = 2.0~2.2, 端部 に近いところの4 試料では Cr/Fe = 2.3~2.9 である。これから判るように, Cr/Fe 比は中央 部が辺縁部より大きい。端部に近いものは 中央部と辺縁部との 中間である。34 米坑の 辺縁の Cr/Fe は大切坑の辺縁より大きい。鉄はクロム鉄鉱晶出の後期に集中するから, Cr/Fe の比か ら, 34 米坑の鉱体は大切坑の鉱体より早期であることが分る。

第 2 表 多里地方産クロム鉄鉱の Cr/Fe

広	瀬	鉱	山	大	切	坑
---	---	---	---	---	---	---

No.	1	2	3	4	5	6	7	8	9	· 10
Cr/Fe	2.6	2.3	3.0	2.7	2.3	2.8	3.2	2.4	3.6	2.0

全 鉱 山 34 米 坑

No.	11	12	13	14	15	16	17	18	19	20	21
Cr/Fe	2.9	3.1	3.0	2.0	2.0	2.7	2.8	2.3	2.4	2.7	2.2

若松鉱山7号坑

No.	22	23	24	25	26	27	28	29	30	31
Cr/Fe	2.7	2.4	3.0	2.9	2.4	2.2	2.2	2.3	2.6	1.7

		-		113			
No.	32	- 33	34	35	36	37	38
Cr/Fe	2.8	2.2	2.2	2.2	2.4	1.9	2.3

仝 鉱 山 南 坑

仝	鉱	Щ	申	切	坈

No.	39	40	41	42	43	44	45	46	47
Cr/Fe	2.4	2.2	2.7	2.6	2.4	1.9	2.0	3.1	2.7

c) 若松鉱山7号坑産クロム鉄鉱の Cr/Fe

7号坑の鉱体の中央部から産した5 試料では $Cr/Fe = 2.3 \sim 3.0$ である。鉱体の辺縁部の2 試料に何れも Cr/Fe = 2.2, 鉱体の辺縁部に近い2 試料では $Cr/Fe = 2.4 \sim 2.7$ である。一般に Cr/Fe 比は辺縁部より中央部の方が小さい。ここに同一地点から産出した塊状鉱との Cr/Fe の比を較べると,前者の方が大きい。

d) 若松鉱山南坑産のクロム鉄鉱の Cr/Fe

南坑産クロム 鉄鉱の Cr/Fe の比は 辺縁部の4 試料では 1.9~2.4, 辺縁部に 近い 試料では 2.8, 端部の2 試料では 2.2~2.3 である。辺縁のものも端のものも Cr/Fe の比に著しい違いの ないのは両者の生成時期が近似するためであろう。

e) 若松鉱山中切坑産のクロム鉄鉱の Cr/Fe

中切坑産のクロム鉄鉱の Cr/Fe 比は辺縁部の5 試料では 1.9~2.6, 辺縁部に近い 2 試料では 2.7~3.1, 端部では 2.7, 脈状では 2.4 である。Cr/Fe は辺縁部のものは辺縁部に近いものより 小さく, 端部のものは辺縁部より大きい。

各鉱体は連続していて、それらの鉱体の辺縁部の Cr/Fe 比最大値を較べると、2.6、2.4、2.2 である。これから中切坑、南坑、7 号坑の順に鉱体が生じたと考えられる。

6. クロム鉄鉱の Mg/Fe

当地方産のクロム鉄鉱の Mg/Fe 比は第3表に示す通りである。

広瀬鉱山大切坑産の No.8 は大切坑産のクロム鉄鉱のうち Al₂O₈ 量が最も少なく,23.65%, Mg/Fe =0.7 である。No.9 では,Al₂O₈ 量が最も多く 34.19%, その Mg/Fe =1.8 である。

第3表 多里地方産クロム鉄鉱の Mg/Fe 広瀬鉱山 大切坑

No.	1	2	3	4	5	6	7	8	9	. 10 .
Mg/Fe	1.1	0.9	1.4	1.3	0.9	1.3	1.4	0.7	1.8	0.9

全 鉱 山 34 米 坑

No.	11	12	13	14	15	16	17	18	19	20	21
Mg/Fe	1.4	1.4	1.4	0.8	0.9	1.2	1.5	1.1	1.2	1.2	1.1

若	松	鉱	П	7	号	坑
	1			•		· · · · ·

No.	22	23	24	25	26	27	28	29	30	31
Mg/Fe	1.1	1.2	1.5	1.3	1.1	0.9	1.0	1.0	1.2	0.8
				仝 鉱	山南	坑				÷
No.		32	33	34		35	36	3	7	38
Mg/Fe		1.4	0.9	0.9)	0.9	0.9	0.	.8	1.0
		<u> </u>	3	之 鉱 山	1 中 切	1 坑		,		
No	39	40	41	42	4	3	44	45	46	47

		10		12	10	-11	10	0F	71	
Mg/Fe	1.0	0.9	1.1	1.2	1.1	1.0	1.0	1.4	1.1	
		~ N7								=

広瀬鉱山 24米坑産の No. 14 は Al₂O₃ 量が少なく 27.58%, Mg/Fe が小さい。Cr₂O₃ 量の 少ない Nos. 18, 21 では, Al₂O₃ 量は多いが, Mg/Fe はそれ程大きくない。No. 19 ではAl₂O₃ 量が少ないにも拘らず, Mg/Fe が大きく,これは珪酸塩鉱物を多く伴い,その MgO が試料に 加わったためである。

若松鉱山 7 号坑の No. 24 では Al_2O_3 量が多く, Mg/Fe 比も大きい。但しこの Cr_2O_3 量は 少ない。No. 31 では Al_2O_3 量少なく, Mg/Fe も小さい。Nos. 26, 27では珪酸塩鉱物を多く伴 っているから, クロム鉄鉱だけの Mg/Fe 比は更に小さい。

若松鉱山南坑の No. 32 は Al_2O_3 量が他の試料より多く, Mg/Fe 比も大きい。No. 32 を除 くと、他の試料の Mg/Fe は一般に小さい。

若松鉱山中切坑の Nos. 44, 45 は Al_2O_3 量が多いが, Cr_2O_3 量は少なく, Mg/Fe は小さい。即ち Al_2O_3 量少なく, Cr_2O_3 量の多い場合は Mg/Fe 比が大きい。

上記から判るように、 Cr_2O_3 量の余り違わない試料では、 Al_2O_3 量の多少に応じて Mg/Fe比が定まる。

7. クロム鉄鉱の物理恒数(簡略)

当地方産クロム鉄鉱の屈折率および格子恒数3)について前報に記した。

尖晶石族の主要四端成分,尖晶石,苦土クロム鉄鉱,磁鉄鉱の屈折率^{12) 13) 14)} は,それぞれ 1.715,2.00(calc),2.12,2.42である。従って苦土クロム鉄鉱とクロム鉄鉱成分が等量に含 まれれば,(Mg, Fe)Cr₂O₄の屈折率は2.06となる。黒色部のない均質な試料の屈折率は第8 図の屈折率にほぼ一致するが,黒色部を含むものの屈折率は第8図より低い。ここに三端成分 として(Mg,Fe)Cr₂O₄,MgAl₃O₄,Fe₂O₄を選んだため,(Mg,Fe)Cr₂O₄におけるMgCr₂O₄, FeCr₂O₄の両成分が余り違わない試料では,第8図の屈折率と測定値とはほぼ一致するが, MgCr₂O₄がFeCr₂O₄より多い場合には、実測値は図より低くなる。

上記各坑から産したクロム鉄鉱の格子恒数は8.188Å ~8.224Å で、一般に辺縁部が中央部ないし端部より大きい。辺縁部でも (Mg, Fe) Cr_2O_4 成分が少なく、 $MgAl_2O_3$ 成分が多いと、格子恒数は小さい。

尖晶石族の格子恒数は、尖晶石 8.086Å,苦土クロム鉄鉱 8.305Å,クロム鉄鉱8.344Å,磁鉄 鉱 8.374Å である ¹⁵⁾。従って $MgCr_2O_4$ 成分と $FeCr_2O_4$ 成分を当量有する (Mg, Fe) Cr_2O_4 の格子恒数は 8.325Å となる。 (Mg, Fe) Cr_2O_4 を端成分としたため、 $MgCr_2O_4$ と $FeCr_2O_4$ の両成分が余り違わない試料では、第8図の格子恒数と実測値とはほぼ一致する。

8. Summary

The chromite deposits in the Tari district are the differentiation products of the ultrabasic magma and lenticular or massive. They extend nearly parallel to the longer axis of serpentinite. The ore is now taken from the \bar{O} giri and the 34-m levels of Hirose mine and No. 7, Minami, and Chūgiri levels of Wakamatsu mine. Generally massive ore prevails in the inner portion and porphyritic one in the outer portion. The chromium content of 47 samples of the ore from the district is low, ranging from 31.22 to 41.33% Cr₂ O₃. The norms of the inner portion of the ore body except the portion metamorphosed by gabbro, the outer portion, and edge are as follows :

	Inner portion	Outer Portion	Edge
Spinel $(MgAl_2O_4)$	53.8 - 58.5	38.7 - 59.4	52.5 - 57.5
Chromite $(Mg,Fe)Cr_2O_4$	39.3 - 43.1	36.9 - 53.2	40.6 - 44.4
Magnetite (FeFe ₂ O ₄)	1.3 - 3.1	2.5 - 9.4	1.9 - 4.4

It is ascertained that the inner portion is the highest in the spinel composition and the lowest in the magnetite composition, that the edge is high in the spinel composition and low in magnetite composition, and that the outer portion is low in the spinel composition and high in the magnetite composition.

As the triangular diagram representing norm shows the chromite in the district belongs to chromian spinel, which is rare in Japan as well as in foreign countries.

The thin section of the chromite from the inner portion and the edge is mostly yellow to orange, while the chromite in the outer portion having been metamorphosed the thin section is usually black.

The ratio Cr/Fe of the chromite in the district is 1.7-3.6. It is generally greatest in the inner portion and smallest in the outer portion. The ratio Mg/Fe is 0.7-1.8. In the chromite whose Cr₂O₃ content is not very variable the ratio Mg/Fe is controlled by the quantity of Al₂O₃.

The index of refraction of the chromite in question is 1.86-1.89 and the color of the thin section of the chromite is yellow to light red, inclining to red with increase of the index.

The net plane indices of the chromite are 220, 311, 400, 511 or 333, 440, 622, 444, 731 or 551, 800, 662, 840, 931, and 844. The lattice constant $a_0 = 8.188 - 8.224$ and it becomes greater in proportion to the quantity of Cr_2O_3 and Feo+Fe₂O₃. The lattice constant of the sample shown in the triangular diagram for the norm of spinel group is approximately the same with the measured number like the index of refraction when MgCr₂O₄ and FeCr₂O₄ do not greatly differ.

謝辞 本論文を終るに当り,本研究に終始御指導を賜わった東北大学教授大森啓一先生に深 謝の意を表する。広瀬鉱業株式会社多里鉱業所戸田芳貞所長はじめ各位,日本クロム工業株式 会社若松鉱山野坂常雄所長はじめ各位の御援助に対し謝意を表する。本研究に要した費用の一 部は文部省科学研究費による。

文

1) 北原順一:鳥取県多里地方のクロム鉄鉱と産状に関する研究,岩鉱誌,42,1~9,40~50,114~128, 1958.

献

- 2) 北原順一: _____, 岩鉱誌, 43, 42~54, 1959.
- 3) 北原順一: 鳥取県多里地方産のクム鉄鉱に関する研究, 島根大論集, No, 10, 40~68, 1961.
- Kitahara, J. : Geochemical Studies on the Chromites in the Tari District. Tottori Prefecture, Sci. Rep. Shimane Univ, No. 10, 71~97, 1960.
- Stevens, R. E. : Composition of Some Chromites of the Western Hemisphere, Am. Min., 29, 29~34, 1944.
- 6) 北原順一: 尖晶石族の化学的研究 (2), 鉱物と地質, No. 13, 1~4, 1949.
- 7) 北原順一: クロム鉄鉱の2.3の問題, 岩鉱誌, 34, 13~21, 1950.
- 8) Batemans, J. D. : Composition of the Bird River Chromite Manitoba, Am. Min. , 30, 596 \sim 600, 1945.
- Thayer, T. P. : Preliminary Chemical Correlation of Chromite with the Containing Rocks, Econ. Geol., 41, 202~217, 1946.
- Malhotra, P. D., and Prasada Rao, G. V. H. S.: On the Composition of Some Indian Chromites, Am. Min., 41, 460~473, 1956.
- 11) Bilgrami, S A., and and Ingamells. C. O. : Chemical Composition of Zhob Valley Chromites, West Pakistan, Am, Min., 45, 576~590, 1960.
- Anderson, B. W. and Payne, C. J. : Magnesium-Zinc-Spinels from Ceylon, Min. Mag., 24, 547~554, 1937.
- 13) Railly, R. : Infrared Light for Mineral Determination, Am. Min., 33, 519~531, 1948.
- Hugill. W. : Notes on the Preparation and Properties of Some Synthetic Spinels., Iron and Steel Inst. (London), Special Rep., 26, 201~204, 1939.
- Clark, G. L., Abde Ally and Badger, A. E. : The Lattice Dimension of Spinels, Am, J. Sci, 22, 539~546, 1931.