Quasi－regular Bands

By Miyuki Yamada

（Received Nov．16，1960）

山田深雪：擬正則巾等準群

A band is synonymous with an idempontent semigroup．Let S be a band．
Then there exist，up to isomorphism，a unique semilattice Γ ，and a disjoint family of rectan－ gular subbands of S indexed by $\Gamma,\left\{S_{\gamma}: \gamma \in \Gamma\right\}$ ，such that

$$
\begin{array}{ll}
& \text { (1) } S=\cup\left\{S_{\gamma}: \gamma \in \Gamma\right\} \\
\text { and } & \text { (2) } S_{\alpha} S_{\beta} \subset S_{\alpha \beta} \text { for all } \alpha, \beta \in \Gamma \text {. }
\end{array}
$$

（See McLean［3］）．

Following Kimura［1］，Γ is called the strcture semilattice of S ，and S_{γ} the γ－kernel．
And this decomposition is called the structure decomposition of S ，and denoted by $S \sim \sum\left\{S_{\gamma}\right.$ ： $r \in \Gamma\}$ ．

For each subset Δ of Γ ，we first define the relation \Re_{Λ} on S as follows：

$$
a \Re_{\Delta} b \text { if and only if }\left\{\begin{array}{l}
a b=a \text { and both } a \text { and } b \text { are contained in a common } S_{\gamma}, r \in \Delta \\
\text { or } \\
a b=b \text { and both } a \text { and } b \text { are contained in a common } S_{\gamma}, r \notin \Delta
\end{array}\right.
$$

Then，it is easily seen that \Re_{Δ} is an equivalence relation and especially \Re_{ϕ} and \Re_{Γ}（where ϕ is the empty subset of Γ ）coincide with \Re and \mathfrak{D} in Kimura［2］respectively．

The following two theorems have been proved by［2］：
THEOREM I．$\Re_{\phi}\left(\Re_{\Gamma}\right)$ is a congruence on S if and only if S is left（right）semiregular．
Further，in this case the quotient semigroup $S / \Re_{\phi}\left(S / \Re_{\Gamma}\right)$ is left（right）regular．
THEOREM II．Both \Re_{ϕ} and \Re_{Γ} are congruences on S if and only if S is regular．
Further，in this case S is isomorphic to the spined product of S / \Re_{ϕ} and S / \Re_{Γ} with respect to Γ ．
In this paper，we shall present a necessary and sufficient condition for \Re_{Δ} to be a congruence on S ，and make some generalizations of Theorems I and II．Further，this paper contains an ex－ ample which shows the existence of a band $B \equiv\left\{B_{\omega}: \Omega\right\}^{2)}$ on which for some subset Λ of Ω both \Re_{Λ} and $\Re_{\Omega / \Lambda}$（where $\Omega \backslash \Lambda$ is the complement of Λ in Ω ）are congruences although neither \Re_{ϕ} nor \Re_{Ω} is a congruence，that is，the existence of a band which is quasi－regular but neither left semiregular nor right semiregular．

Notations and terminologies．If M and N are sets such that $M \supset N$ ，then $M \backslash N$ will denote the complement of N in M ．The notation ϕ will denote always the empty set．Throughout the paragraphs 1 and 2，S will denote a band unless otherwise mentioned．The structure semilattice of S and the γ－kernel，for each r of the structure semilattice，will be denoted by Γ and S_{γ} res－

1）Yamada［5］is an abstract of this paper．
2）The notation＇a band $B \equiv\left\{B_{\omega}: \Omega\right\}$＇stands for＇a band B whose structure decomposition is $B \sim \sum\left\{B_{\omega}\right.$ ： $\omega \in \Omega\}$＇
pectively. And the structure decomposition of S will be denoted naturally by $S \sim \Sigma\left\{S_{\gamma}: r \in \Gamma\right\}$. Further, an element of S_{γ} will be denoted by a small letter with the sufflix γ such as $a_{\gamma}, b_{\gamma}, e_{\gamma}$ etc. Any other notation or terminology without definition should be referred to [1].

1. Quasi-separativity.

Let Δ be a subest of the structure semilattice Γ of S, and put $\cup\left\{S_{\gamma}: r \in \Delta\right\}=S(\Delta)$.
Then, we have immediately
LEMMA 1. For $a, b \in S(4), a \Re \Delta b$ if and only if $a b=a$ and $b a=b$.
Proof. McLean [3] has proved that for elements x, y, satisfying $x y=x$ and $y x=y$, of a band $B \equiv\left\{B_{\omega}: \Omega\right\}$ there exists B_{ω} which contains both x and y. The 'only if' part follows from the definition of \Re_{Δ} and the fact that in any $S_{\gamma} x y=x$ implies $y x=y$.
The 'if' part is proved as follows. Let a and b be elements of $S(4)$. If $a b=a$ and $b a=b$, then it follows from the McLean's result that there exists S_{γ} which contains both a and b. Since $S(4)$ $\ni a, r$ is an element of Δ. Hence $a \Re_{\Delta} b$.
Similarly, we obtain
LEMMA 2. For $a, b \notin S(\lrcorner), a \Re_{\Delta} b$ if and only if $a b=b$ and $b a=a$.
LEMMA 3. If \Re_{Δ} is a congruence on S, then for an element $\alpha \in \Delta$ the following (1) and (2) are equivalent:
(1) $a_{a} b_{a}=a_{\alpha}$.
(2) For any $c_{\beta}, \begin{cases}c_{\beta} a_{\alpha} c_{\beta} b_{\alpha}=c_{\beta} a_{\alpha} & \text { if } \alpha \beta \in \Delta, \\ a_{\alpha} c_{\beta}=b_{\alpha} c_{\beta} & \text { if } \alpha \beta \notin \Delta\end{cases}$

Proof. By the definition of \Re_{Δ}, the relation (1) implies $a_{\infty} \Re_{\Delta} b_{\alpha}$. Since \Re_{Δ} is a congruence on S, two relations $c_{\beta} a_{\alpha} \not \Re_{\Delta} c_{\beta} b_{\alpha}$ and $a_{\alpha} c_{\beta} \Re \mathcal{R}_{\Delta} b_{\alpha} c_{\beta}$ hold for any $c_{\beta} \in S$.
We have then

$$
\begin{cases}c_{\beta} a_{\alpha} c_{\beta} b_{\alpha}=c_{\beta} a_{\alpha} & \text { if } \alpha \beta \in \Delta, \\ a_{\alpha} c_{\beta}=b_{\alpha} c_{\beta} & \text { if } \alpha \beta \notin \Delta\end{cases}
$$

because $a_{\alpha} c_{\beta}=a_{\alpha} b_{\alpha} c_{\beta}=a_{\alpha} b_{\alpha} c_{\beta} b_{\alpha} c_{\beta}=a_{\alpha} c_{\beta} b_{\alpha} c_{\beta}=b_{\alpha} c_{\beta}$ if $\alpha \beta \notin \Delta$. Thus, (1) implies (2). Conversely, assume the relation (2). Putting $c_{\beta}=a_{\alpha}$ in (2), we have $a_{\alpha} b_{\alpha}=a_{\alpha}$ since $\alpha \alpha \in A$. Accordingly, (2) implies (1).

Similarly, we obtain
LEMMA 4. If \Re_{Δ} is a congruence on S, then for an element $\alpha \notin \Delta$ the following (1) and (2) are equivalent:
(1) $a_{\alpha} b_{\alpha}=b_{\alpha}$.
(2) For any $c_{\beta}, \begin{cases}a_{\alpha} c_{\beta} b_{\alpha} c_{\beta}=b_{\alpha} c_{\beta} & \text { if } \alpha \beta \notin \Delta, \\ c_{\beta} b_{\alpha}=c_{\beta} a_{\alpha} & \text { if } \alpha \beta \in \Delta .\end{cases}$

Using Lemmas 1-4,, we have
THEOREM 1. \Re_{Δ} is a congruence on S if and only if S satisfies the condition

$$
\text { (C) } \begin{cases}c a b a c b a=c a b a & \text { if } a b \in S(\Lambda) \text { and } a b c \in S(\Lambda), \\ a b a c=b a c & \text { if } a b \in S(\Lambda) \text { and } a b c \notin S(\Lambda), \\ c a b a=c a b & \text { if } a b \notin S(\Delta) \text { and } a b c \in S(\Lambda), \\ a b c a b a c=a b a c & \text { if } a b \notin S(\Lambda) \text { and } a b c \notin S(\Lambda) .\end{cases}
$$

Proof. Necessity. Suppose that \Re_{Δ} is a congruence on S. We shall prove first that in the case $a b \in S(\Delta)$ and $a b c \in S(J)$ the relation $c a b a c b a=c a b a$ holds. First of all, there exist S_{α} and S_{β} such that $a b \in S_{\alpha}$ and $a b c \in S_{\beta}$. Since $a b \in S(J)$ and $a b c \in S(J)$, both α and β are elements of Δ. Further,
it is clear that the elements $a b a$ and $b a$ are contained in S_{a}, and the elements $c a b a$ and $c b a$ are contained in S. Since $(a b a)(b a)=a b a$, the relation $c a b a c b a=c a b a$ follows from Lemma 3. The proofs of the other cases are obtained by similar methods.

Sufficiency. Let S satisfy the condition (C). Since \Re_{Δ} is an equivalence relation, we need only to show that $a \Re_{\Delta} b$ implies both $a c \Re_{\Delta} b c$ and $c a \Re_{\Delta} c b$ for every element c of S. To show this, for an arbitrary element c and elements a, b such that $a \Re_{\Delta} b$, we divide into four cases as follows; (i) a, $b \in S(\Delta)$ and $a c \in S(\Delta)$, (ii) $a, b \in S(\Delta)$ and $a c \notin S(\Delta)$, (iii) $a, b \notin S(\Delta)$ and $a c \in S(\Delta)$, (iv) a, b $\notin S(\Delta)$ and $a c \notin S(\Delta)$. In the case (i), both $a b=a$ and $b a=b$ follows from Lemma 1 and elements $b c, c a, b a, c b, a b$ and $a b c$ are all contained in $S(\Delta)$ since $a, b \in S(\Delta)$ and $a c \in S(4)$. From these and the condition (C), we have

$$
\begin{aligned}
a c b c & =a b c b c=a b c=a c, \\
b c a c & =b a c a c=b a c=b c, \\
c a c b & =c a b a c b a=c a b a=c a \\
\text { and } \quad c b c a & =c b a b c a b=c b a b=c b .
\end{aligned}
$$

Accordingly, we conclude $a c \Re_{\Delta} b c$ and $c a \Re_{\Delta} c b$ by using Lemma 1. By an analogous argument we can easily prove $a c \Re_{\Delta} b c$ and $c a \Re_{\Delta} c b$ also in the case (ii), (iii) or (iv). So we omit the proofs in these cases.

COROLLARY. Both \Re_{Δ} and $\Re_{\Gamma \backslash \Delta}$ are congruences on S if and only if S satisfies the condition
$\left(C^{*}\right)\left\{\begin{array}{l}c a b a c b a=c a b a \\ a b c a b a c=a b a c\end{array}\right\}$ if $a b \in S(\Delta)$ and $a b c \in S(\Delta)$, or if $a b \in S(\Gamma \backslash \Delta)$ and $a b c \in S(\Gamma \backslash \Delta)$,,
Now, we shall define here (Γ, Δ)-semiregularity, $\Gamma(\Delta)$-regularity, quasi-separativity and quasiregularity. S is called (Γ, Δ)-semiregular (or (Γ, Δ)-separative) if it satisfies the condition (C) in Theorem 1. Further, S is called quasi-separative if it is (Γ, Δ)-semiregular for some subset Δ of Γ. Moreover, S is is called $\Gamma(\Delta)$-regular (or $\Gamma(\Delta)$-separative) if it satisfies the condition $\left(C^{*}\right)$ in the foregoing corollary. And S is called quasi-regular (or separative) if it is $\Gamma(4)$-regular for some subset of Γ. Of course, it is obvious from the definition that $\Gamma(\Delta)$-regularity is equivalent to $\Gamma(\Gamma \backslash \Delta)$ regularity.

Under these definitions, Theorem 1 and its corollary can be paraphrased as follows.
THEOREM $1^{\prime} . \Re_{\Delta}$ is a congruence on S if and only if S is $(\Gamma, 4)$-semiregular.
COROLLARY. Both \Re_{Δ} and $\Re_{\Gamma, ~}$ are congruences on S if and only if S is $\Gamma(4)$-regular.
REMARK. (Γ, ϕ)-semiregularity ((Γ, Γ)-semiregularity, $\Gamma(\phi)-(\equiv \Gamma(\Gamma)-)$ regularity) coincides with left semiregularity (right semiregularity, regularity). Accordingly, it is particularly noted from Theorem 1^{\prime} and its corollary that
$\left\{\begin{array}{l}\Re_{\phi} \text { is a congruence } \\ \Re_{\Gamma} \text { is a congruence } \\ \text { both } \Re_{\phi} \text { and } \Re_{\Gamma} \text { are congruences }\end{array}\right\}$ on S if and only if S is $\left\{\begin{array}{l}\text { left semiregular } \\ \text { right semiregular } \\ \text { regular }\end{array}\right\}$.
Therefore, Theorem 1^{\prime} or its corollary can be considered as a generalization of the first half of Theorem I or II respectively.

The next theorem gives a necessary and sufficient condition for S to be quasi- separative:
THEOREM 2. S is quasi-separative if and only if it is the class sum of mutually disjoint subsets A, B having the properties
(1) $A \ni a, a x a=a$ and $x a x=x$ imply $x \in A$,
(2) $B \ni b, b y b=b$ and $y b y=y$ imply $y \in B$,
(3) $A \ni a b$ and $B \ni a b c$ imply $a b a c=b a c$,
(4) $A \ni a b c$ and $B \ni a b$ imply $c a b a=c a b$,
(5) $B \ni a b$ and $B \ni a b c$ imply $a b c a b a c=a b a c$,
(6) $A \ni a b$ and $A \ni a b c$ imply cabacba $=c a b a$.

Proof. Necessity. By the definition of quasi-separativity, for some $\Delta \subset \Gamma, \Re_{\Delta}$ is a congruence on S. Let $A=S(\Delta)$ and $B=S(\Gamma \backslash \Delta)$. Then, it is easily seen from Theorem 1 that A and B have the properties (1)-(6). Since $S=A \cup B$, the proof of the 'only if' part is complete.

Sufficiency. Suppose that S is partitioned into disjoint subsets A, B having the properties (1)(6). Let $\Delta=\left\{\alpha: A \cap S_{\alpha} \neq \phi, \alpha \in \Gamma\right\}$. We shall first prove the relation $A=S(\Delta)$. Take up an arbitrary element x from $S(\Delta)$. Then, there exists S_{β} such that $x \in \mathrm{~S}_{\beta} \subset S(\Delta)$. Since the set $A \cap S_{\beta}$ is non-empty, there exists b_{β} such that $b_{\beta} \in A \cap S_{\beta}$.

By the rectangularity of S_{β}, we have $b_{\beta} x b_{\beta}=b_{\beta}$ and $x b_{\underline{\beta}} x=x$, which implies $x \in A$ by the property (1). Thus we have $S(\Delta) \subset A$. Since the converse relation $A \subset S(\Delta)$ is clear, the relation $A=$ $S(\Delta)$ holds. Now, it follows from the relation $A=S(\Delta)$, Theorem 1 and the properties (3)-(6) that \mathfrak{f}_{Δ} is a congruence on S. Therefore, the 'if' part is valid.

COROLLARY. S is quasi-regular if and only if it is the class sum of mutually disjoint subsets A, B having the properties
(1) $A \ni a, a x a=a$ and $x a x=x$ imply $x \in A$,
(2) $B \ni b, b y b=b$ and $y b y=y$ imply $y \in B$,

(4) $\left\{\begin{array}{l}A \ni a b \text { and } B \ni a b c \\ o r \\ A \ni a b c \text { and } B \ni a b\end{array}\right\}$ imply $a b a c=b a c$ and $c a b a=c a b$.
2. The structure of quasi-regular bands.

A band is called bi-regular if for any given elements a, b it satisfies at least one of the relations $a b a=b a$ and $a b a=a b$.

LEMMA 5. S is left singular or right singular if and only if it is rectangular and bi-regular.
Proof. Let S be rectangular and bi-regular. Then S may be considered as the direct product $L \times R$ of a left singular band L and a right singular band R, since S is rectangular.
(See Kimura [1]).
Pick up a_{1} and a_{2} from L, and b_{1} and b_{2} from R.
Then,

$$
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1}, b_{2}\right) \text { and }\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{1}\right)
$$

On the other hand,

$$
\left(a_{1}, b_{1}\right)=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)=\left\{\begin{array}{l}
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \\
\text { or } \\
\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)
\end{array}\right.
$$

by bi-regularity.
Hence we have either $\left(a_{1}, b_{1}\right)=\left(a_{1}, b_{2}\right)$ or $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{1}\right)$, whence $b_{1}=b_{2}$ or $a_{1}=a_{2}$.
Accordingly, at least one of L and R consists of a single element. This means that S is left singular or right singular. Thus, the proof of the 'if' part is complete. The 'only if' part is clear.

The global structure of bi-regular bands is given by
THEOREM 3. S is bi-regular if and only if each γ-kernel S_{γ} is left singular or right singular.
Proof. Necessity. Let S be bi-regular. It is easily seen that any subband of a bi-regular band is bi-regular. Hence, each γ-kernel S_{γ} is rectangular and bi-regular. According to Lemma $5, S_{\gamma}$ is then left singular or right singular.

Sufficiency. Assume that each γ-kernel S_{γ} of S is left singular or right singular. Let a_{α} and b_{β} be arbitrary elements of S. Then, both $a_{x} b_{\beta}$ and $b_{\beta} a_{\alpha}$ are contained in $S_{\alpha \beta}$.

Now, we have

$$
a_{\alpha x} b_{\beta} a_{\alpha t}=\left(a_{\alpha} b_{\beta}\right)\left(b_{\beta} a_{\alpha}\right)= \begin{cases}a_{\alpha} b_{\beta} & \text { if } S_{\alpha \beta} \text { is left singular, } \\ b_{\beta} a_{\infty} & \text { if } S_{\alpha \beta} \text { is right singular. }\end{cases}
$$

Thus, S is bi-regular.
Let $B \equiv\left\{B_{\omega}: \Omega\right\}$ be a bi-regular band. From Theorem 3, each ω-kernel B_{ω} is then left singular or right singular. Let Λ be a subset of Ω.
B is said to be (Ω, Λ)-regular if it satisfies the following (P) :
$(P)\left\{\begin{array}{l}\text { For } \omega \in \Lambda, B_{\omega} \text { is left singular. } \\ \text { For } \omega \notin \Lambda, B_{\omega} \text { is right singular. }\end{array}\right.$
It should be noted that (Ω, Ω)-regularity and (Ω, ϕ)-regularity coincide with left regularity and right regularity respectively. Further, it is sometimes possible that a band $B \equiv\left\{B_{\omega}: \Omega\right\}$ is both $\left(\Omega, \Lambda_{1}\right)$-and $\left(\Omega, \Lambda_{2}\right)$-regular for some different subsets Λ_{1} and Λ_{2} of Ω.

For example, take up a commutative band (i.e. semilattice) T. Then, the structure decomposition of T is $T \sim \Sigma\{\{t\}: t \in T\}$. Since every t-kernel consists of the single element t, it is left and right singular. Hence, T is $\left(T, T_{1}\right)$-regular for an arbitrary subet T_{1} of T.

THEOREM 4. Let S be (Γ, Δ)-semiregular. Then the quotient semigroup S / \Re_{Δ} is a $(\Gamma, \Gamma \backslash 4)$ regular band, and its structure decomposition is $S / \Re_{\Delta} \sim \sum\left\{S_{\gamma} / \Re_{\Delta}: r \in \Gamma\right\}$.

Proof. We shall first prove that S / \Re_{Δ} is bi-regular. Denote by \bar{x} the congruence class conthining $x \bmod \Re_{\Delta}$. Pick up two congruence classes $\bar{a}_{\alpha}, \bar{b}_{\beta}$ from S / \Re_{Δ}. If $\alpha \beta \in \Delta$ then $a_{\infty} b_{\beta} a_{\alpha} b_{\beta} a_{\alpha}$ $=a_{\alpha} b_{\beta} a_{\alpha}$, whence $\bar{a}_{\alpha} \bar{b}_{\beta} \bar{a}_{\alpha}=\bar{b}_{\beta} \bar{a}_{\alpha}$. If conversely $\alpha \beta \notin \Delta$ then $a_{\alpha} b_{\beta} a_{\alpha} a_{\alpha \alpha} b_{\beta}=a_{\alpha} b_{\beta}$, whence $\bar{a}_{\alpha} \bar{b}_{\beta \alpha \alpha}=$ $\bar{a}_{\alpha} \bar{b}_{\beta}$.

Therefore

$$
\overline{a_{\alpha}} \overline{b_{\beta}} \overline{a_{\alpha}}=\left\{\begin{array}{l}
\bar{a}_{\alpha} \bar{b}_{\beta} \\
\text { or } \\
\overline{b_{\beta}} \overline{a_{\alpha}}
\end{array}\right.
$$

This shows S / \Re_{Δ} to be bi-regular. Further, it is easily seen that the structure decomposition of S / \Re_{Δ} is $S / \Re_{\Delta} \sim \sum\left\{S_{\gamma} / \Re_{\Delta}: \gamma \in \Gamma\right\}$. Thus, to complete the proof it is sufficient to prove that S_{γ} / R_{Δ} is left singular if $\gamma \notin \Delta$ and $S_{\gamma} / \mathfrak{R}_{\Delta}$ is right singular if $\gamma \in \Delta$.
(i) The case $r \in \Delta$. Pick up two different elements $\bar{a}, \bar{b}\left(a \in S_{\gamma}, b \in S_{\gamma}\right)$ from $S_{\gamma} / \Re_{\Delta}$.

Then, $\bar{a}=\bar{a} \bar{a}=\bar{a} \bar{b} \bar{a}=\bar{a} \bar{b}$ or $=\bar{b} \bar{a}$ by the bi-regularity of S. If $\bar{a}=\bar{a} \bar{b}$, then we have $\bar{a}=\bar{b}$ which is contrary to $\bar{a} \neq \bar{b}$. Hence, $\bar{a}=\bar{b} \bar{a}$. Thus, $S_{\gamma} / \Re_{\Delta}$ is right singular.
(ii) The case $\gamma \notin \Delta$. The left singularity of $S_{\gamma} / \overbrace{\Delta}$ is proved by an analogous argument to that in (i).

THEOREM 5. If both \Re_{Δ} and $\Re_{\Gamma}{ }_{\triangle \Delta}$ are congruences on S, then S is isomorphic to the spined poduct of S / \Re_{Δ} and $S / \Re_{\Gamma}{ }_{\Delta \Delta}$ with respect to Γ.

Proof. Define the relation \mathfrak{D} on S as follows:
$a \mathfrak{D} b$ if and only if a and b are contained in a common S_{γ}.
Then,
(i) $\Re_{\Delta}, \Re_{\Gamma, \Delta} \leqq(\mathscr{D}$
(ii) $\Re_{\Delta} \cap \Re_{\Gamma \backslash \Delta}=O$
and (iii) $\mathfrak{R}_{\Delta} \cup \mathfrak{R}_{\Gamma, \Delta}=\mathfrak{D}$
are obvious.
Next, we shall prove
(iv) $\Re_{\Delta}, \Re_{\Gamma \backslash \Delta}$ are permutable.

Let $a \Re_{\Delta} x$ and $x \Re_{\Gamma}, \Delta b$. Then, there exists S_{γ} containing a, x, b. If $\gamma \in \Delta$, then $b \Re_{\Delta} a b$ and $b a \Re_{\Gamma \backslash \Delta} a$ follow from $b a b=b$ and $a a b=a b$. Conversely if $r \notin \Delta$, then $b \Re_{\Delta} b a$ and $b a \Re_{\Gamma \backslash \Delta} a$ follow from $b b a=b a$ and $a b a=a$. Thus, it was proved that there exists an element y such that $b \Re_{\Delta} y$ and $y \Re_{\Gamma, \Delta} a$. Therefore, $\Re_{\Delta}, \Re_{\Gamma \backslash \Delta}$ are permutable.

Since $\Re_{\Delta}, \Re_{\Gamma \backslash \Delta}$ satisfy (i)-(iv), S is isomorphic to the spined product of S / \Re_{Δ} and $S / \Re_{\Gamma}{ }^{\prime} \Delta$ with respect to Γ. (See Yamada [5]).

Combining Theorems 4 and 5, we have
COROLLARY. If S is $\Gamma(\Delta)$-regular, then S is isomorphic to the spined product of a $(\Gamma, \Gamma / \Delta)$ regular band and a (Γ, Δ)-regular band with respect to Γ.

REMARK. It is noted that Theorem 4 (5) is a generalization of the latter half of Theorem I (II).

Let $B_{1} \equiv\left\{B_{\omega}{ }^{(1)}: \Omega\right\}$ and $B_{2} \equiv\left\{B_{\omega}{ }^{(2)}: \Omega\right\}$ be bi-regular bands with the same structure semilattice Ω. Then, B_{1} and B_{2} are called mutually associated bands if the following (A) is satisfied:
(A) For any given $\omega \in \Omega,\left\{\begin{array}{l}B_{\omega}{ }^{(1)} \text { is left singular and } B_{\omega}{ }^{(2)} \text { is right singular. } \\ \text { or } \\ B_{\omega}{ }^{(1)} \text { is right singular and } B_{\omega}{ }^{(2)} \text { is left singular. }\end{array}\right.$

From the definition of quasi-regularity and the foregoing corollary, we have immediately.
THEOREM 6. A quasi-regular band $B \equiv\left\{B_{\omega}: \Omega\right\}$ is isomorphic to the spined product of mutually associated bi-regular bunds with respect to Ω.

COROLLARY. S is isomorphic to the spined product of mutually associated bi-regular bands with respect to Γ if it is the class sum of mutually disjoint subsets A, B having the properties (1)-(4) in Corollary to Theorem 2.
3. Example.

Let Ω be the semilattice consisting of 0 and 1 with respect to the ordinary multiplication.
And let

$$
\begin{aligned}
& B_{1}=\left\{\left(a_{i}, a_{j}^{*}\right): i, j=1,2\right\}, \\
& B_{0}=\left\{\left(b_{m}, b_{n}{ }^{*}\right): m, n=1,2,3\right\}
\end{aligned}
$$

and $B=B_{1} \cup B_{0}$.
Then, B becomes a band with respect to the multiplication defined by
(I) $\left(a_{i}, a_{j}^{*}\right)\left(a_{k}, a_{s}^{*}\right)=\left(a_{k}, a_{j}^{*}\right)$ for all i, j, k, s,
(II) $\left(b_{m}, b_{i 0}^{*}\right)\left(b_{t}, b_{u}{ }^{*}\right)=\left(b_{m}, b_{u}{ }^{*}\right)$ for all m, n, t, u,
(III) $\left(a_{i}, a_{j}^{*}\right)\left(b_{m}, b_{n}{ }^{*}\right)=\left\{\begin{array}{l}\left(b_{m}, b_{n}{ }^{*}\right) \text { for } m=2,3 \text { and for all } i, j, n, \\ \left(b_{3}, b_{n}{ }^{*}\right) \text { for } i=1, m=1 \text { and for all } j, n, \\ \left(b_{2}, b_{i n}^{*}\right) \text { for } i=2, m=1 \text { and for all } j, n,\end{array}\right.$

L(IV) $\left(b_{m}, b_{n}^{*}\right)\left(a_{i}, a_{j}^{*}\right)=\left\{\begin{array}{l}\left(b_{m}, b_{n^{*}}^{*}\right) \text { for } n=2,3 \text { and for all } i, j, m, \\ \left(b_{m}, b_{3}^{*}\right) \text { for } n=1, j=1 \text { and for all } i, m, \\ \left(b_{m}, b_{2}^{*}\right) \text { for } n=1, j=2 \text { and for all } i, m .\end{array}\right.$
The structure decomposition of B is $B \sim \sum\left\{B_{\omega}: \omega \in \Omega\right\}$. Further, it is easily seen from simple consideration that both $\Re_{\{0\}}$ and $\Re_{\{1\}}$ are congruences on B although neither \Re_{ϕ} nor \Re_{Ω} is a congruence. That is, B is a $\Omega(\{0\})$-regular band and isomorphic to the spined product of the mutually associated bands $B / \Re_{\{0\}}$ and $B / \Re_{\{1\}}$ with respect to Ω, but B is neither left semiregular nor right semiregular. Consequently, it has been proved that there exists a quasi-regular band which is neither left semiregular nor right semiregular.

REFERENCES

1. Naoki Kimura: The structure of idempotent semigroups (1), Pacific Journal of Math., 8(1958), 257-275.
2. Naoki Kimura: Note on idempotent semigroups III, Proc. Japan Acad., 34 (1958), 113-114.
3. David McLean: Idempotent semigroups, Amer. Math. Monthly, 61 (1954), 110-113.
4. Miyuki Yamada: Gertain congruences and the structure of some special bands, Proc. Japan Acad., 36 (1960), 408-410.
5. Miyuki Yamada: A note on subdirect decompositions of idempotent semigroups, Proc. Japan Acad., 36 (1960), 411-414.
