On the Phase Shifts in Scattering Problems

By Toshio Takehara

（Received Nov．15，1960）

竹原敏夫：散乱問題における位相のずれについて

Let us consider a collision between two particles in three dimensions．The problem of the non－ relativistic motion of two particles is reduced to the relative motion in the center－of－mass coordi－ nate system，when the interaction depends on their relative positions．We calculate the result of a collision process in the center－of－mass system in which a particle of reduced mass m and an ini－ tial positive kinetic energy E collides with a fixed scattering center．If the potential energy is spherically symmetric，so that the interaction $V(r)$ depends only on the distance r from the origin， the Schrödinger wave equation can be separated in spherical coordinates．

The radial equation may be written in the form

$$
\begin{equation*}
\frac{d^{2} \chi_{l}}{d r^{2}}+\left[k^{2}-U(r)-\frac{l(l+1)}{r^{2}}\right] \chi_{i}=0 \tag{1}
\end{equation*}
$$

where $\quad k^{2}=\frac{2 m E}{\hbar^{2}}, \quad U(r)=\frac{2 m V(r)}{\hbar^{2}}$
It will be assumed that $U(r)$ is negligible for r greater than some distance a ，provided that $U(r)$ falls off more rapidly than $1 / r$ ；in cases of practical interest，a may be small enough so that l term in（1）is not negligible．For large r ，therefore，Eq．（1）becomes

$$
\begin{equation*}
\frac{d^{2} \chi_{l}^{2}}{d r^{2}}+\left[k^{2}-\frac{l(l+1)}{r^{2}}\right] \chi_{l}=0 \tag{2}
\end{equation*}
$$

The solutions of Eq．（2）may be written

$$
\begin{align*}
& f_{l}{ }^{+}(r)=\sqrt{\frac{\pi k r}{2}} J_{l+\frac{1}{2}}(k r) \tag{3}\\
& f_{l}^{-}(r)=\sqrt{\frac{\pi k r}{2}} J_{-l-\frac{1}{2}}(k r)
\end{align*}
$$

$J_{ \pm\left(l+\frac{1}{2}\right)}(k r)$ being ordinary Bessel functions of half－odd－integer order．f_{l}^{+}vanishes as r^{l+1} at $r=0$ ， while f_{l}^{-}has a singularity as r^{-l} ．

From a physical point of view，we interest the solution of Eq．（1）that vanishes at $r=0$ ．The boundary condition at $r=0$ that χ_{l} vanishes determines the asymptotic form．The asymptotic form of χ_{I} can then be written

$$
\begin{equation*}
\chi_{l}(r) \cong \sin \left(k r-\frac{1}{2} l \pi+\delta_{l}\right) \tag{4}
\end{equation*}
$$

where the phase shift δ_{l} of l th partial wave depends on k, l ，and the interaction $V(r)$ ．The phase shifts completely determine the scattering．

The phase shift δ_{l} is computed exactly by the following integral equation

$$
\begin{equation*}
\sin \delta_{l}=-\frac{1}{k} \int_{0}^{\infty} f_{l}+(r) U(r) \chi_{l}(r) d r \tag{5}
\end{equation*}
$$

A proof for this expression is found according to the relation

$$
\sin \delta_{l}=\sin \left(k r-\frac{1}{2} l \pi+\delta_{l}\right) \cos \left(k r-\frac{1}{2} l \pi\right)-\cos \left(k r-\frac{1}{2} l \pi+\delta_{l}\right) \sin \left(k r-\frac{1}{2} l \pi\right)
$$

noting that the asymptotic relation

$$
\begin{aligned}
& x_{l}(r) \cong \sin \left(k r-\frac{1}{2} l \pi+\delta_{l}\right), \quad f_{l}^{+}(r) \cong \sin \left(k r-\frac{1}{2} l \pi\right), \\
& \frac{1}{k} \frac{d \chi_{l}}{d r} \cong \cos \left(k r-\frac{1}{2} l \delta+\delta_{l}\right), \quad \frac{1}{k} \frac{d f_{l}^{-}}{d r} \cong \cos \left(k r-\frac{1}{2} l \pi\right),
\end{aligned}
$$

and vanishing properties of χ_{l} and $f_{l}{ }^{+}$at $r=0$. Thus, we obtain

$$
\begin{equation*}
\sin \delta_{l}=\frac{1}{k}\left[\chi_{l} \frac{d f_{l}^{+}}{d r}-f_{l}^{+} \frac{d \chi_{l}}{d r}\right]_{0}^{\infty} \tag{6}
\end{equation*}
$$

Now, by means of Eqs. (2) and (3), we have

$$
\begin{aligned}
& \chi_{l}\left(\frac{d^{2} f_{l}{ }^{+}}{d r^{2}}+k^{2} f_{l}^{+}-\frac{l(l+1)}{r^{2}} f_{l}^{+}\right)-f_{l}+\left(\frac{d^{2} \chi_{l}}{d r^{2}}+k^{2} \chi_{l}-U(r) \chi_{l}-\frac{l(l+1)}{r^{2}} \chi_{l}\right) \\
& =\chi_{l} \frac{d^{2} f_{l}{ }^{+}}{d r^{2}}-f_{l}{ }^{+} \frac{d^{2} \chi_{l}}{d r^{2}}+f_{l}+U(r) \chi_{l}=0
\end{aligned}
$$

which is integrated over r to give

$$
\begin{equation*}
-\int_{0}^{\infty} f_{l}^{+} U(r) \chi_{l} d r=\int_{0}^{\infty}\left(\chi_{l} \frac{d^{2} f_{l}{ }^{+}}{d r^{2}}-f_{l}{ }^{+} \frac{d^{2} \chi_{l}}{d r^{2}}\right) d r=\left[\chi_{l} \frac{d f_{l}{ }^{+}}{d r}-f_{l}+\frac{d \chi_{l}}{d r}\right]_{0}^{\infty} \tag{7}
\end{equation*}
$$

From (6) and (7), we get Eq. (5).
Further, χ_{l} and $\chi^{\prime}{ }^{\prime}{ }^{\prime}$ are solutions of (1) ; δ_{l} and $\delta^{\prime}{ }^{\prime}{ }^{\prime}$ the phase shifts for the same k, but different interactions U and U^{\prime}, respectively. Then, it is seen by analogy

$$
\begin{aligned}
& \sin \left(\delta^{\prime}{ }_{l^{\prime}}-\delta_{l}-\frac{1}{2}\left(l^{\prime}-l\right) \pi\right) \\
& =\sin \left(k r-\frac{1}{2} l^{\prime} \pi+\delta^{\prime}{ }_{l^{\prime}}\right) \cos \left(k r-\frac{1}{2} l \pi+\delta_{l}\right)-\cos \left(k r-\frac{1}{2} l^{\prime} \pi+\delta^{\prime}{ }_{l^{\prime}}\right) \sin \left(k r-\frac{1}{2} l \pi+\delta_{l}\right) \\
& =\frac{1}{k}\left[\chi^{\prime}{ }_{l^{\prime}} \frac{d \chi_{l}}{d r}-\chi_{l} \frac{d \chi^{\prime}{ }^{\prime}{ }^{\prime}}{d r}\right]_{0}^{\infty}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sin \left(\delta^{\prime}{ }_{l^{\prime}}-\delta_{l}-\frac{1}{2}\left(l^{\prime}-l\right) \pi\right)=-\frac{1}{k} \int_{0}^{\infty} \chi^{\prime}{ }^{\prime}{ }^{\prime}\left[U^{\prime}+\frac{l^{\prime}\left(l^{\prime}+1\right)}{r^{2}}-U-\frac{l(l+1)}{r^{2}}\right] \chi_{l} d r \tag{8}
\end{equation*}
$$

If now we set $l^{\prime}=l$ and the difference $U^{\prime}-U=\delta U$, the corresponding change of the phase shift $\delta^{\prime}{ }^{\prime}{ }^{\prime}-\delta_{l}=\delta \delta_{l}$ is given by

$$
\begin{equation*}
\delta \delta_{l}=-\frac{1}{k} \int_{0}^{\infty} \chi_{l}{ }^{2} \delta U d r \tag{9}
\end{equation*}
$$

Equation (9) provides the first order perturbation for the phase shifts.
If the whole interaction is taken as a perturbation, substitution of (9) into the scattering amplitude gives the Born approximation. If we put $U=U^{\prime}=0$, Eq. (8) gives

$$
\begin{equation*}
\sin \left(\left(l^{\prime}-l\right) \frac{\pi}{2}\right)=-\frac{1}{k} \int_{0}^{\infty} f_{l^{\prime}}^{+}\left[\frac{l^{\prime}\left(l^{\prime}+1\right)}{r^{2}}-\frac{l(l+1)}{r^{2}}\right] f_{l}+d r \tag{10}
\end{equation*}
$$

Eq. (10) corresponds to an integral formula in the theory of Bessel functions:

$$
\int_{0}^{\infty} J_{\mu}(a t) J_{\nu}(a t) \frac{d t}{t}=\frac{2}{\pi} \frac{\sin \frac{1}{2}(\nu-\mu) \pi}{\nu^{2}-\mu^{2}}
$$

A singular solution $f_{l}{ }^{-}(r)$ at $r=0$ is used also to calculate the phase shifts instead of $f_{l}{ }^{+}(r)$. Analogous to $f_{l}{ }^{+}(r)$, the following relation is easily written

$$
f_{l}-\frac{d^{2} \chi_{l}}{d r^{2}}-\chi_{l} \frac{d^{2} f_{l}^{-}}{d r^{2}}=f_{l}^{-} U(r) \chi_{l}
$$

which may be integrated to be

$$
\begin{equation*}
\left[f_{l}^{-}-\frac{d \chi_{l}}{d r}-\chi_{l} \frac{d f_{l}^{-}}{d r}\right]_{0}^{\infty}=\int_{0}^{\infty} f_{l}^{-} U(r) \chi_{l} d r \tag{11}
\end{equation*}
$$

The leading terms for small r. are

$$
\begin{array}{ll}
f_{l}^{-}(r) \cong A_{-l}(k r)^{-l}, & \mathbf{A}_{-l}=\sqrt{\frac{\pi}{2}} \frac{2^{l+\frac{1}{2}}}{\Gamma\left(-l+\frac{1}{2}\right)} \\
\chi_{l}(r) \cong C_{l+1}(k r)^{l+1}, & C_{l+1}=\sqrt{\frac{\pi}{2}} \frac{\alpha}{2^{l+\frac{1}{2}} \Gamma\left(-l+\frac{3}{2}\right)} \tag{13}
\end{array}
$$

a being a constant determined for given U, and if $U=0, \chi_{l}=f_{l}{ }^{+}$, and it is shown that $\alpha=1$ by the properties of Bessel functions. We thus obtain for small r

$$
\begin{equation*}
f_{l}^{-} \frac{d \chi_{l}}{d r}-\chi_{l} \frac{d f_{l}^{-}}{d r} \cong(2 l+1) k A_{-l} C_{l+1}=(-1)^{l} k \alpha \tag{14}
\end{equation*}
$$

For large r, we take into account the asymptotic form of (4) and for $f_{l}{ }^{-}$in the following form

$$
f_{l}^{-}(r) \cong \cos \left(k r+\frac{1}{2} l \pi\right)
$$

so that the left side of Eq. (11) becomes

$$
\left[f_{l-} \frac{d \chi_{l}}{d r}-\chi_{l} \frac{d f_{l}^{-}}{d r}\right]_{0}^{\infty}=(-1)^{l} k \cos \delta_{l}-(-1)^{l} k \alpha
$$

Consequently the following formula is obtained

$$
\begin{equation*}
\cos \delta_{l}=a+\frac{(-1)^{l}}{k} \int_{0}^{\infty} f_{l}^{-} U(r) \chi_{l} d r \tag{15}
\end{equation*}
$$

where $\quad a=\chi_{l} / f_{l}{ }^{+},\left.\right|_{r \rightarrow \infty}$
Formulae (5) and (15) will be made use of in checking the phase shifts obtained by another methods.

References

1) L. I. Schiff: Quantum Mechanics, 2nd ed., 1955.
2) N. F. Mott and H. S. W. Massey: The Theory of Atomic Collisions, 2nd ed., 1949.
3) G. N. Watson: Theory of Bessel Functions, 1922.
