REGULARLY TOTALLY ORDERED SEMIGROUPS I

by Miyuki Yamada

（Received Nov．30，1956）

山田深雪：正則全順序準群 1

By an ordered semigroup we mean a semigroup S in which a binary relation \leqq is defined as follows ；
（1）$a \leqq a$ for every $a \in S$ ，
（2）$a \leqq b, b \leqq a$ imply $a=b$ ，
（3）$a \leqq b, b \leqq c$ imply $a \leqq c$ ，
（4）$a \leqq b$ implies both $a c \leqq b c$ and $c a \leqq c b$ for every $c \in S$ ．
We write usually $a<b$ if $a \leqq b$ but $a \neq b$ ．Especially，we say S to be a totally ordered semigroup if the binary relation \leqq is a totally ordering．Ordered semigroups have been studied by A．H．Clifford，O．Hörder，F．Klein－Barmen，O．Nakada and many other mathematicians．The present paper takes a small portion of this study in parallel with Clifford［1］and Klein－Barmen［2］，［3］，［4］．Let S be a commutative semigroup．Then we shall call S to be a regularly totally ordered semigrout（r．t．o．semigroup）if S satisfies the following two conditions；
（1）for any different $a, b \in S$ ，either $a S \subset b S$ or $b S \subset a S$ holds，
（2）if $a S \subset b S$ ，then there exists a positive integer n such that $a^{n} \in b^{n} S$ ，where the symbol \subset means＇is of a proper subset of＇．

In fact，S becomes a totally ordered semigroup if a binary relation \leqq in S is defined as follows；$a \leqq b$ means $a S \supseteq b S$ ．A naturally totally ordered commutative semigroup（see Clifford［1］）is not necessarily a r．t．o．semigroup，and vice－versa．A linear holoid defined by Klein－Barmen［3］is，however，the same thing as a r．t．o．Semigroup with identity element．Moreover，both a dense－in－itself segment in sense of Clifford［1］and an archimedean naturally totally ordered commutative semigroup satisfying the cancellation law are interest examples of r．t．o．semigroups．A r．t．o．semigroup is said to be locally nilpotent if S satisfies the following condition；for any element a of S ，

$$
\cap_{n} a^{n} S\left\{\begin{array}{llll}
=\phi & \text { if } & S & \text { has no zero element }, \\
=\{0\} & \text { if } & S & \text { has zero element } o,
\end{array}\right.
$$

where ϕ and $\{o\}$ denote the empty set and the set consisting of only one element zero o
respectively. Moreover S is said to be discrete or non-discrete according to whether S contains the least element (i. e. the elfment e such that $x \geqq e$ for any $x \in S$) or not, respectively.

In $\S 1$ we define, for every positive real number α and for every non-negative real number β, a closed half line $L[\alpha]$ and an open half line $L(\beta)$, and define their indexed subgroups. In $\S 2$ we discuss, in preperation for $\S 3$ and $\S 4$, on general properties of locally nilpotent r. t. o. semigroups without zero. We devote $\S 3$ to show that a discrete, locally nilpotent r. t. o. semigroup without zero is characterized as an indexed subgroup of the closed half line $L[1]$, and $\S 4$ to show that a non-discrete, locally nilpotent r.t. o. semigroup without zero is characterized as a β-dense, indexed subgroup of an open half line $L(\beta)$. In the concluding section we show that if a locally nilpotent r.t. o. semigroup S contains zero element o and if S satisfies the cancellation law (i. e. the law; $a x=b x \neq 0$ implies $a=b$), then the problem of determing the structure of S is reduced to the problem of determirg the stiucture of either locally nilpotent r. t. o. semigroups without zero or dense-in-itself segments.
Notations. $\{x \mid \cdots \cdots$ (proposition about $x)\}$ denotes the set of all elements x such that the proposition about x is correct. If $A \subseteq B, B-A$ denotes the complement of A in B. If $\{A \tau \mid \tau \in I\}$ is a set of classes, $\underset{\tau \in I}{\bullet} \sum_{\mathcal{I}} A \tau$ denotes their class sum. If A and B are subsets of a semigroup, $A B$ denotes the set $\{x y \mid x \in A, y \in B\}$.
§ 1. Closed half lines. Open half lines. Indexed subgroups.
Let $\|\xi\|$ and $\lceil\xi\rceil$ be, for any non-negative real number ξ, the integral part and the decimal part of ξ respectively; i. e., if ξ is expressed in the form $\xi=\alpha_{1} \alpha_{2} \cdots \cdots \cdot \alpha_{n} . \beta_{1} \beta_{2} \cdots \cdots$ by the decimal system, then $\|\xi\|=\alpha_{1} \alpha_{2} \cdots \cdots \alpha_{n}$ and $[\xi]==0 . \beta_{1} \beta_{2} \cdots \cdots$. Take up a real number $\alpha>0$ and set $I[\alpha] \equiv\{x \mid \alpha \leqq x<\alpha+1, x$ is a real number $\}$. Then $I[\alpha]$ becomes a group if we define a binaty relation o in. $I[\alpha]$ as follows; $x 0 y=[x+y-\alpha]+\alpha$. We shall denote by $G[\alpha]$ the above-mentioned group. Next, we set $P[\alpha]=\{(x, n) \mid x \in G[\alpha], n$ is a non-negative integer $\}$ and define a binary relation \times in $P[\alpha]$ as follows; $(x, n) \times(y, m)$ $=(x o y, n+m+\|x+y-\alpha\|) . P[\alpha]$ becomes then a semigroup, which we shall call a closed half line $L[\alpha]$. Let $G^{*}[\alpha]$ be a subgroup of $G[\alpha]$, and set $L^{*}[\alpha]=\{(x, n) \mid x \in$ $G^{*}[\alpha], n$ is a non-negatve integer $\}$. Then it is obvious that $L^{*}[\alpha]$ is a subsemigroup of $L[\alpha]$. We shall call such $L^{*}[\alpha]$ an indexed subgroup (I-subgroup) of $L[\alpha]$.

Similarly, we define open half lines and their l-subgroups as follows. Take up a real number $\beta \geqq 0$, and set $I(\beta)=\{x \mid \beta<x \leqq \beta+1, x$ is a real number $\}$. Then $I(\beta)$ becomes a group if we define a binary relation (o) in $I(\beta)$ as follows;

$$
x \odot y=\lceil x+y-\beta\rceil+\beta+\varphi(x+y-\beta),
$$

where φ is a real function such that

$$
\begin{aligned}
\varphi(z) & =0 \text { if }[z] \neq 0, \\
& =1 \text { if }[z]=0 .
\end{aligned}
$$

We shall denote by $G(\beta)$ the above-mentioned group. Next, we set $P(\beta)=\{(x, n) \mid x \in$ $G(\beta), n$ is a non-negative integer $\}$ and define a binary relation \mathbb{X} in $P(\beta)$ as follows; $(x, n) \nVdash(y, m)=(x \bigcirc y, n+m+\|x+y-\beta\|-\varphi(x+y-\beta))$.
$P(\beta)$ becomes then a semigroup, which we shall call an open half line $L(\beta)$.
Let $G^{*}(\beta)$ be a subgroup of $G(\beta)$, and set $L^{*}(\beta)=\left\{(x, n) \mid x \in G^{*}(\beta), n\right.$ in a non-negative integer $\}$. Then it is easy to see that $L^{*}(\beta)$ is a subsemigroup of $L(\beta)$.
We shall call such $L^{*}(\beta)$ an indexed subgroup (1-subgroup) of $L(\beta)$.
Especially an indexed subgroup $L^{*}(\beta)$ of $L(\beta)$ is said to be β-dense if it satisfies the following condition;
for any $(x, o) \in L(\beta)$, there exists $(y, o) \in L^{*}(\beta)$ such that $y<x$.
The reason for the term "a closed half line $L[\alpha]$ " ["an open half line $L(\beta)$ "] is that $L[\alpha][L(\beta)]$ is isomorphic with the additive semigroup consisting of all real numbers $x \geqq \alpha[x>\beta]$.

By a half line we shall mean a semigroup which is either a closed half line or an open half line. In conclusion of this section we present the next theorem, omitting its proof. [Theorem. 1.] Every I-subgroutp of any half line is a locally nilpotent r. t. o. semigrourp without zero. Espeically, every I-subgrout of $L[1]$ is discrete, locally nilpotent r.t. o. semigroutp without zero, while every β-dense, I-subbgroup of $L(\beta)$ is a nondiscrete, locally nilpotent semigroup without zero.
§2. Locally nilpotent r.t.o. semigroups without zero.

Throughout this section S will denote a locally nilpotent r.t.o. semigroup without zero. [Lemma 1.] S is archimedean, i.e. for any $a, b \in S$ there exist positive integers m, n such that $a^{n} \geqq b$ and $b^{m} \geqq a$.
(Poof.) Take up any two elements a, b frcm S. We may show that there exist positive integers n, m such that $a^{n} S \subseteq b S$ and $b^{m} S \subseteq a S$. Were $b^{i} S \supset a S$ for every positive integer i, we would have $\bigcap_{i} b^{i} \mathrm{~S} \supseteq a \mathrm{~S}$, hence $a S=\phi$, contrary to $a S \neq \phi$. Hence, there exists an integer m such that $b^{m} S \subseteq a S$. Similarly, there exists an integer n such that $a^{n} S \subseteq b S$.
Lemma 2. If $a<b$, then there exists an integer n such that $a^{n+1} \leq b^{n}$.
Proof. $a<b$ implies $a S \square b S$, hence $b^{i} \in a^{i} S$ for some integer i.

We have therefore $b^{i}=a^{i} t$ for some element t of S. On the other hand, there exists an integer k such that $t^{k} \geqq a$. Hence we have $b^{i k}=a^{i k} t^{l} \geqq a^{i k+1}$, and hence $b^{i k} \geqq a^{i k+1}$.
Lemma 3. S contains no idempotents.
Proof. Obviousness.
Lemma 4. S is a positively ordered semigroutp, i. e. for any $a, b \in S, a<a b$ holds.
Proof. $a \leqq a b$ is obvious by the definition of the ordering \leqq. Were $a=a b$, we would have $a=a b^{i}$ for every positive integer i. From Lemma 1 we obtain $b^{j} \geqq a$ for some integer j. Consequently, we have $a=a b^{j} \geqq a^{2}$, hence $a=a^{2}$, contrary to Lemma 3.

Lemma 5. For any $a<b$ and for any $c \in S$ there exist integers n, m such that $a^{n}<c^{n}$ $<b^{n}$.

Proof. By Lemma 2, $a^{i+1} \leqq b^{i}$ holds for some integer i. Since $a^{k} \geqq c^{2}$ is also satisfied for some integer k, we have $a^{k(i+1)} \leqq b^{k i}$, therefore $a^{k i} c^{2} \leqq b^{k i}$. From Lemma 1, we are able to show that $c^{j} \leqq a^{k i}<c^{j+1}$ holds for some integer $j \geqq 2$. Accrdingly we have $a^{k i}<c^{j+1}<c^{j+2}$ $\leqq a^{n i} c^{2} \leqq b^{n i}$. Putting $n=k i$ and $m=j+1$, we obtain the desirable relation $a^{n}<c^{m}<b^{n}$.
[Lemma 6.] S satisfies the cancellation law, i.e. $a x=b x$ implies $a=b$.
(Proof.) Assume that $a x=b x$ but $a \neq b$. Since $a<b$ or $b<a$ we may assume $a<b$. By Lemma 2, we have $a^{m+1} \leqq b^{m}$ for some integer m. Hence $a^{m+1} x^{m} \leqq b^{m} x^{m}=a^{m} x^{m}$. Putting $a^{m} x^{m}=\xi$, we obtain $a \xi \leqq \xi$, contrary to Lemma 4.
[Lemma1]] Let a be any element of S. Then Sjs formularized as follows; $S=\underset{\sim}{\infty} \sum \sum_{n=0}^{\infty} a^{n} S(a)$, where $S(a)$ denotes the set $S-a S$ and $a^{2} S(a)$ means the set $S(a)$.
(Proof.) It is obvious that S is partitioned such as $S=\stackrel{\sum_{n=0}^{\infty}}{\infty}\left(a^{n} S-a^{n+1} S\right)$. Accordingly we may show only that $a^{n} S(a)=a^{n} S-a^{n+1} S$ holds for each non-negative integer n. Take up any $a^{n} y \in a^{n} S(a)$, where y is an element of $S(a)$. Were $a^{n} y \in a^{n+1} S$, we would have $a^{n} y$ $=a^{n+1} z$ for some $z \in S$. Hence, by Lemma 6, we obtain $y=a z$, which contradicts to our assumption $y \in S(a)$. Accordingly we have $a^{n} y \in a^{n+1} S$, which induces the relation $a^{n} S(a)$ $\subseteq a^{n} S-a^{n+1} S$. Conversely, let y be any element of $a^{n} S-a^{n+1} S$. Then $y=a^{n} t$ for some element $t \in S$. If $t \notin S(a)$ we have $t \in a S$, which implies $a t^{\prime}=t$ for some $t^{\prime} \in S$. Accordingly we have $y=a^{n+1} t^{\prime}$, which is contrary to our assumption $y \notin a^{n+1} S$. We obtain therefore $t \notin$ $S(a)$, henee $y \in a^{n} S(a)$, which induces the relat on $a^{n} S-a^{n+1} S \subseteq a^{n} S(a)$.

Lemma 8. Let a be any element of S. Then every element y of S is uniquely expressed in the form $y=a^{n} x$, where n is a non-negative integer, x is an element of S and $a^{\circ} \times$ means x itself.

Proof. From Lemma 7, it is easy to see that y is expressed in the form $y=a^{n} x, x \in$ $S(a)$. Therefore we may show only the uniqueness of such a decomposition. Assume that
y is expressed in two ways such that $y=a^{n} x$ and $y=a^{m} z$, where $x, z \in S(a)$. Were $n>m$, by Lemma 5 we would have $a^{n-m} x=z$ and $n-m>o$, contrary to our assumption $z \in S(a)$. Hence we have $n \ngtr m$, and similarly $m \ngtr n$. Consequently $n=m$ is satisfied. Since S satisfies the cancellation law, we conclude $x=z$ from the relation $a^{n} x=a^{m} z$.
Lemma 9. If b is an element of $S(a)$, then $b<a z$ holds for any element z of S.
Proof. $b € S-a S$ is obvious by the definition of $S(a)$. Assume that there exists an element z satisfying $a z \leqq b$. Then $b S \subseteq a z S$, hence $b z=a z y$ for some $y \in S$. By Lemma 5, we obtain $b=a y$, contrary to $b \notin a S$.

Let e be any element of S. Then, there exists, for every $x \in S$, an integer j satisfying $e \leqq x^{j}$. From the above-mentioned lemmas it is easy to see that an integer $x(n)$ satisfying $e^{x(n)} \leqq x^{n}<e^{x(n)+1}$ is uniquely determined for every integer $n \geqq j$. Since we can easily prove the existence of $\lim _{n \rightarrow \infty} \frac{x(n)}{n}$, we set $\lim _{n \rightarrow \infty} \frac{x(n)}{n}$ as follows; $\lim _{n \rightarrow \infty} \frac{x(n)}{n}=[x]$.
We shall call $[x]$ "the coordinate of x which is induced by the base point e ".
Lemma 10. $[e]=1$.
Proof. Obviousness.
Lemma 11. $a<b$ implies $[a]<[b]$.
Proof. By Lemma 4, $a^{n}<e^{j}<b^{n}$ is satisfied for some integers $n, j \geqq 2$. Morover, by Lemma $2 e^{j(i+1)} \leqq b^{n i}$ is satisfied for some integer i. Accordingly $a^{n i} \leqq e^{j i}<e^{j i+1}<e^{j(i+1)} \leqq b^{n i}$. Putting $n i=k$, we have $a^{j} \leqq e^{j^{j i}}<e^{j(i+1)} \leqq b^{i}$. Take up two integers $a(k)$ and $b(k)$ such that $e^{a(k)} \leq a^{k}<e^{a(k)+1}$ and $e^{\eta(k)} \leqq b^{k}<\epsilon^{\pi(k)+1} . a(k)$ and $b(k)$ must then satisfy the relations $a(k) \leqq j i$ and $b(k) \geqq j(i+1)$.
Hence $[a] \leqq \frac{a(k)+1}{k} \leqq \frac{j i+1}{k}$ and $[b] \geqq \frac{b(k)}{k} \geqq \frac{j i+j}{k}$.
These imply the desired relation $[a]<[b]$.
Lemma 12. $[a b]=[a]+[b]$, for any elements a, b of S.
Proof. By Lemma 1, $e \leqq a^{k}$ and $e \leqq b^{j}$ hold for some integers k, j.
Let $a(n)$ and $b(n)$ be, for every integer $n>\max (k, j)$, two integers such that $e^{a(n)} \leqq a^{n}<$ $e^{n(n)+1}$ and $e^{\eta(n)} \leqq b^{n}<e^{\eta(n)+1}$. Then $e^{a(n)+l(n)} \leqq(a b)^{n}<e^{a(n)+\beta(n)+2}$. Accordingly
$\lim _{n \rightarrow \infty} \frac{a(n)+b(n)}{n} \leqq[a b] \leqq \lim _{n \rightarrow \infty} \frac{a(n)+b(n)+2}{n}$. Hence we have $[a]+[b]=[a b]$.
Let $R[\alpha], R(\alpha)$ be two additive semigroups consisting of all real numbers x such that $x \geq \alpha$ and $x>\alpha$ respectively. If we set $a=\inf [x]$, then it is obvious by Lemmas 11,12 that S is embedded in $R[\alpha]$ or $R(\alpha)$ according to whether S is discrete or not. In $\S 3$ and $\S 4$, we shall yet discuss on the structure of S more precisely.
§ 3. Discrete, locally nilpotent r.t.o. semigroups without zero.

denote

 and e the least element of $S . S(e)$ will denote the set $S-e S$. As was seen in $\S 2$, every element x of S has a coordinate $[x]$ which is induced by the base point e. Set $\mathrm{G}^{*}=\{[x] \mid x \in S(e)\}$. Then we have the following
[Lemma 13.] G^{*} is a subbgroutp of $G[1]$.
Proof. [e] $=1$ is obviously by Lemma 10. Take up any element $[x] \in G^{*} . x<e^{2}$ is then satisfied by Lemma 9. Hence $[x]<2$, which implies $[x] \in G[1]$. This implies the relation $G^{*} \subseteq G[1]$. Let $[x],[y]$ be any elements of G^{*}. Since $e^{2} \leqq x y, x y \notin S(e)$ holds. Accordingly $x y$ is expressed as follows; $x y=e^{i} z$, where $i \geqq 1$ and $z \in S(e)$. [z] is clearly contained in G^{*}. On the other hand, we have $[x] \circ[y]=[[x]+[y]-1]+1=[i+[z]-1]$

$$
+1=[[z]-1]+1=[z] .
$$

Consequently $[x] o[y] \in G^{*}$, which implies G^{*} to be closed under the binary relation o. It is easy to see that $[e]$ is an identity element in G^{*}. Finally we prove, for each elemens $[x]$ of G^{*}, the existence of an inverse element of $[x]$. In case $x=e$ the existence of an inverse element of $[x]$ is trivial. We may, therefore, consider it in case $x \neq e$. Let $x \neq e$. Since $x S \supset e^{2} S$ is satisfied by Lemma 9, there exists an element y of S such that $x y=e^{3} . x y=e^{3}$ implies $[x]+[y]=3$, Fence $[y]<2$, and hence $y \in S(e)$. Hence $[y] \in G^{*}$. On the other hand, we have $[x] 0[y]=\lceil[x]+[y]-1]+1=1=[e]$.
Set $L^{*}[1]=\left\{(x, n) \mid x \in G^{*}, \quad n\right.$ is a nonnegative integer $\}$. Since G^{*} is a subgroup of $G[1]$, the set $L^{*}[1]$ is clearly an I-subgroup of $L[1]$. Let x be any element of S. Then x is uniquely expressed in the form $x=e^{n} y$, where n is an integer and y is an element of $S(e)$. We define a mapping ψ of S into $L^{*}[1]$ as follows;

$$
\psi ; x \longrightarrow([y], n), \text { if } x=e^{n} y, y \in S(e) .
$$

Then it is easy to see that ψ is an isomorphism of S onto $L^{*}[1]$.
Thus we have
[Theorem 2.] Let S be a discrete, locally milpotent rot. o. semigroup without zero. Then S is isomorphic with an I-subgroup of the closed half line $L[1]$.

From Theorem 1 and Theorem 2, we conclude that a discrete, locally nilpotent r. t. o. semigroup without zero is essentially the same thing as an indexed subgroup of $L[1]$.
§ 4. Non-discrete, locally nilpotent r.t.o. semigroups without zero.

Throughout this section S will denote a non-discrete, locally nilpotent r.t.o. semigroup without zero. Take up an element e of S. $S(e)$ will denote the set $S-e S$. As was seen
in $\S 2$, every element x has a coordinate $[x]$ which is induced by the base point e. Set $G^{*}=\{[x] \mid x \in S(e)\}$. Since S does not contain the least element, there exists no element z such that $[z]=\inf _{S \ni x}[x]$. Set $\beta=\inf _{S \ominus x}[x]$. Then $1>\beta \geqq 0$ is obvious.

Lemma 14. G^{*} is a subgroutp of $G(\beta)$.
Psoof. Let ξ be an element of S. Then $z<e \xi$ for every element $z \in S(e)$. We obtain therefore $[z]<1+[\xi]$ for every element $z \in S(e)$ and for every element $\xi \in S$. Hence wa have $[z] \leqq \inf _{\xi \in S}(1+[\xi])=1+\beta$.

Consequently we have $G^{*} \subseteq G(\beta) .[e]=1$ is obviously by Lemma 10. Let $[x],[y]$ be any elements of G^{*}. $x y$ is then uniquely expressed in the form $x y=e^{i} z$, where $i \geqq 0$ and $z \in S(e)$. [z] is crearly contained in G^{*}.

$$
\begin{aligned}
{[x] \bigcirc[y] } & =[[x]+[y]-\beta]+\beta+\varphi([x]+[y]-\beta)=[i+[z]-\beta]+\beta+\varphi(i+[z]-\beta) \\
& =[[z]-\beta]+\beta+\varphi([z]-\beta)=[z]
\end{aligned}
$$

Consequently $[x] \bigcirc[y] \in G^{*}$, which implies G^{*} to be closed under the binary relation © It is easy to see that $[e]$ is an identity element in G^{*}. Finally we prove, for each element $[x]$ of G^{*}, the existence of an inverse element of $[x]$. In case $x=e$ the existence of an inverse elenent of $[x]$ is trivial. We may, therefore, consider it in case $x \neq e$. Let $x \neq e$. Since $x S \sqsupset e^{2} S$ is satisfied by Lemma 9 , there exists an element y of S such that $x y=e^{3}$. On the other hand, y is expressed as follows; $y=e^{i} z$, where $i \geqq 0$ and $z \in S(e)$. Hence $e^{3}=e^{i} x z$. Since $i<3$ is obviously, we have $e^{3-i}=x z$ by Lemma 6. Accordingly $[x]$ (o) $[z]=[[x]+[z]-\beta]+\beta+\varphi([x]+[z]-\beta)=[3-i-\beta]+\beta+\varphi(3-i-\beta)=1=[e]$.
That is, $[z]$ is an inverse element of $[x]$.

Set $L^{*}(\beta)=\left\{(x, n) \mid x \models G^{*}, \quad n\right.$ is a non-negative integer $\}$. Since G^{*} is a subgroup of $G(\beta)$, the set $L^{*}(\beta)$ is clearly an I-subgroup of $L(\beta)$.
Moreover we can prove the β-desity of $L^{*}(\beta)$ as follows. Since $1>\beta=\inf _{s 9 x}[x]$ there exists, for any element $(\xi, a) \in L(\beta)$, an element z of S such that $\beta<[z]<\xi$ and $[z]<1$. $[z]<1$ implies $z \notin e S$, hence $[z] \in G^{*}$, and hence $([z], o) \in L^{*}(\beta)$. Thus the β-density of $L^{*}(\beta)$ is proved. Let x be any element of S. Then x is uniquely expressed in the form $x=e^{n} y$, where x is an integer and y is an element of $S(e)$. We define a mapping ψ of S into $L^{*}(\beta)$ as follows;

$$
\psi ; x \longrightarrow([y], n), \text { if } x=e^{n} y, y \in S(e)
$$

Then it is easy to see that ψ is an isomorphism of S onto $L^{*}(\beta)$. Thus we have
Theorem 3. Let S be a non-discrete, locally nilpotent r.t.o. semigroup without zero. Then S is isomorphic with a β-dense, I-subgroup of an open half line $L(\beta)$, where $\beta<1$.

From Theorem 1 and Theorem 3, we conclude that a non-discrete, locally nilpotent r. t. o. semigroup without zero is essentially the same thing as a β-dense, indexed subgroup of an open half line $L(\beta)$, where $\beta<1$.
§ 5. Locally nilpotent r.t.o. semigroups with zero.
Let S be a locally nilpotent r . t. o. semigroup with zero o. By a zero divisor we shall mean a non-zero element x such that $x y=0$ for some non-zero element y. Moreover, by a nil element we shall mean an element z satisfying $z^{n=0}$ for some inieger n.

Theorem 4. If S has no zero divisor and if the set $S^{*}=S-\{0\}$ is not the empty set then S^{*} is a locally nilpotent r.t.o. subsemigroup of S. That is, S^{*} becomes a subsemigroup of S which is also a locally nilpotent r.t.o. semigroutp without zero.

Proof. lt is obvious that S^{*} is a subsemigroup of S, and that S^{*} has no zero element in S^{*} itself. Therefore, we shall next prove the remaining part of this theorem.
(1) For any two different elements $a, b \in S^{*}$, either $a S \subset b S$ or $b S \subset a S$ holds.

In case $a S \subset b S$ we have $a S^{*} \subset b S^{*}$, while in case $b S \subset a S$ we have $b S^{*} \subset a S^{*}$.
(2) Let a, b be elements of $S^{*} . a S^{*} \subset b S^{*}$ implies $a S^{*}+\{a\} \subset b S^{*}+\{o\}$, hence $a S \subset b S$. Hence $a^{n} \in b^{n} S$ for some integer n. Since $a^{n} \neq a$, we have $a^{n} \in b^{n} S *$.
(3) Let a be an element of S^{*}. Then $\cap_{n} a^{n} S=\{0\}$. Since $\cap_{n} a^{n} S^{*} \subset \cap_{n} a^{n} S=\{o\}, \cap_{n} a^{n} S^{*}$ must be the empty set.

From (1)~(3), we obtain this theorem.
Lemma 15. Every element of S is a nil-element if S has at least one zero divisor.
Proof. Let a be a zero divisor of S. Then there exists an element b such that $a b=a$ and $b \neq 0$. Take up any element x of S. Were $x^{n} \leqq b$ for every positive integer n, we would have $\bigcap_{n} x^{n} S \supseteq b S$, hence $b S=\{a\}$, contrary to our assumption $b \neq o$. Thus there exists an integer i satisfying $x^{i}>b$. Similarly, there exists an integer j satisfying $x^{j}>a$ 。 Hence we have $a=a b \leqq x^{i+j}$, and hence $x^{i+j}=0$. (It is obvious that zero element o is the greatest element of S)

Lemma 16. $x t=x$ implies $x=0$.
Proof. Since $t^{n} x=x$ is satisfied for any positive integer n, we obtain $\{o\}=\cap t_{n}^{n} S \ni x$, and hence $x=0$.

Lemma 17. $x t=y, y t^{\prime}=x$ imply $x=y=0$.
Proof. $x t=y, \quad y t^{\prime}=x$ imply $x\left(t t^{\prime}\right)=x$. We obtain therefore $x=y=0$ from Lemma 16.

The author is not able to know whether every locally nilpotent r. t. o. semigroup having zero elment o always satisfies the cancellation law or not, but at least he is able to present the following statement.

Theorem 5. If S satisfies the cancellation law and if S has at least one zero divisor, then S is a dense-in-itself segment (in sense of Clifford [1])*.

Proof. We shall prove this theorem in three steps.
(1) S is a naturally totally ordered commutative semigroup.

We first prove the relation $S=S^{2}$. Assume the contrary, and take up any element $t \in S-S^{2}$. Then $t x y S \subseteq t^{2} S$ holds for any elements x, y of S. Thus we have $t S^{3} \subseteq t^{2} S$, hence $t S^{2 n-1} \subseteq t^{n} S$ for every integer $n \geqq 2$. Since t is a nil-element, there exists an integer $i \geqq 2$ satisfying $t^{i}=o$. Hence we have $t S^{2 i-1}=\{o\}$. Let j be an integer such that $t S^{j-1} \neq\{o\}$ and $t S^{j}=\{0\}$. Then there exist elements $x_{1}, x_{2}, \cdots \cdots, x_{j-1}$ such that $t x_{1} x_{2} \cdots \cdots x_{j-1} \neq 0$. On the other hand, we have $t x_{1} x_{2} \cdots \cdots x_{j-1} S \subseteq t S^{j}=\{o\}$, hence $t x_{1} x_{2} \cdots \cdots x_{j-1}=0$. Consequently $S=S^{2}$ holds.
Now, it is sufficient to prove that for any different elements x, y of S at least one of relations $x t=y$ and $y t=x$ holds for some element t of S, since from Lemma 17 it is impossible that both $x t=y$ and $y t=x$ happen at the same time. Assume $x<y$. In case $y=o$ the above assertion is trivial. We assume therefore $y \neq o$. Then there exists an element t satisfying $y t \neq 0$. Moreover, $x y^{\prime} \leqq y$ is satisfied by some element t^{\prime} of S. In fact, this is proved as follows. Since $x z>y$ means $x z S \subset y S$ for any element z of S, if $x z>y$ holds for every element z of S we obtain $x S^{2} \subseteq y S$, hence $x S \subseteq y S$. This is impossible since $x<y$ means $x S \supset y S$. There exists therefore an element t^{\prime} satisfying $x t^{\prime} \leqq y$. Set $\min \left(t, t^{\prime}\right)=t^{\prime \prime}$. Then $y t S \subseteq y t^{\prime \prime} S$, and hence $y t^{\prime \prime} \neq 0$. Since $x t^{\prime \prime} \leqq y$ we have $x t^{\prime \prime} S \supseteq y S$. There exists therefore an element s such that $x t^{\prime \prime} s=y t^{\prime \prime} \neq 0$. Thus we obtain $x s=y$ by using the cancellation law.

Hereafter $S(\underline{\underline{\underline{3}}})$ will denote S in which the naturally ordering $\underline{\underline{3}}$ is defined.
(2) $S(\underline{\underline{\underline{3}}})$ is ordinally irreducible (see Clifford [1]).

Obviousness.
(3) Every element of $S(\underset{3}{3})$ has a finite order.

Obviously by Lemma 15.
(4) $S(\underline{\underline{3}})$ is dense-in-itself. That is, for given $x-3 y$ there exists an element z satisfying $x-3 z-3 y$.
Assume the contrary. $x-3 y$ implies $x \neq 0$ and $x<y$. In case $y=0$, we have $x t=o$ for any element $t \in S$, hence $x S=\{0\}$, and hence $x=0$. This is contrary to $x \neq 0$. In case $y \neq 0, x t^{\prime}=x t \neq 0$ is satisfied if we take up two elements t, t^{\prime} such that $x t=y$ and $t^{\prime}<t$.
(The existence of these elements is obvious). By the cancellation law we have therefore $t=t^{\prime}$, contrary to $t^{\prime}<t$.
From (1) $\sim(4)$, we conclude that S is a dense-in-itself segment.

REFERENCES.

$[1]$ A. H. Clifford, "Naturally totally orderèd commutative semigroups", American Joural of Mathematics, Vo1. 76, No. 3, 1954, pp. 631-646.
[2] F. Klein-Barmen, "Über gewisse Halbverbande und kommutative Semigruppen 1", Mathematische Zeitschrift, Vol. 48, 1942-3, pp. 275-288.
[3] "Über gewisse Halbverbande und kommntative Semigruppen 2", Mathematische Zeitschrift, Vo1. 48, 1942-3, pp. 715-734.
[4]
, "Ein Beitrag zur Theorie der linearen Holoide", Mathematische Zeitschrift, Vo1. 51, 1947-9, pp. 355-366.
[*] A naturally totally ordered commutative semigronp S is said to be a segment if S is ordinally irreducible and if each element of S has a finite order.

