ON INVERSIBLE SEMIGROUPS

Míyuki Yamada

Let S be a semigroup, and let I be the totality of all idempotents of S.
Then S is said to be inversible if S satisfies the following two conditions ; (1) to each $a \in S$ there exists $a^{*} \in S$ such that $a a^{*}=a^{*} a \in I$; (2) I is a subsemigroup of S. For instance, idempotent semigroups (accordingly completely non-commutative semigorups) [3] [4], left (right) regular and right (left) simple semigroups [2] and ccmmutative inverse semigroups [5] are clearly inversible semigroups.
T. Tamura showed that if I is consisting of only one idempotent (he defined such a semigroup to be an 'unipotent semigroup') S has the minimal two sided ideal K (Suschkewitsch kernel [7] ;which is the same as the maximal subgrcup of S. Norecver, uncer the same restriction he points out that the Rees factor semigroup $Z=S / K$ [6] is a zero-semigroup and that the structure of S is completely determined by K, Z and a ramified homomorphism f of Z into K [8].

The main purpose of this paper is to show, amorg other things, that the above-mentioned Tamura's results are extended to an inversible semigroup whose idempctents are primitive.

Throughout the whole paper the operation $\dot{+}(\cdot \Sigma)$ will denote the class sum, i.e., disjoint sum of sets.

§ 1. i-components and structure of inversivie semigroups.

Let G be a semigroup containing at least one idempoterit. For any idempcterit e of G, by the ' i -component of G at e ' we shall mean the greatest subset $\mathrm{C}(e)$ of G such that to each element x of $\mathrm{C}(e)$ there exists $x^{*} \in G$ which satisfies the relation $x x^{*}=x^{*} x=e$.

In this paragraph S will always denote an inversible sem;group, and I will denote the totality of all idempotents of S. $N(e)$ will always denote the i-ccmponent of S at e.
Lemma 1.1. Every $N(e)$ is an inversible subs ϵ migroup of S.
Proof. Let a, b be any two elements of $N(e)$. Then there exist $a^{*}, b^{*} \in S$, such that $a a^{*}=a^{*} a=e$ and $b b^{*}=b^{*} b=e$ respectively. If we put $c=b^{*} a^{*}$, the following relations hold ; $(a b) c=a b b^{*} a^{*}=a e a *=a a^{*} a a^{*}=e, \quad c(a b) \Longrightarrow b^{*} a^{*} a b=b^{*} e b=b^{*} b b * b=e$.
Hence $a b \in N(e)$. This implies $N(e)$ to be a subsem:group of S. Since $N(e)$ is clearly inversible, we obtain this lemma.

Lemma 1.2. If e is an idemipotent of S, then e ccmmuties with any element of $N(e)$. Accordingly the relation $e N(e)=N(e) e$ holds.

Proof. Take up any element $x \in N(e)$. There exists $x^{*} \in S$ such that $x_{x^{*}}=x^{*} x=e$. Hence $e x=\left(x x^{*}\right) x=x\left(x^{*} x\right)=x e$.

Lemma 1. 3. If e is an idempotent of S, then $e N(e)$ is the greatest subgroup of $N(e)$ as well as an ideal of $N(e)$. Accordingly $N(e)$ is a subhomogroup [**: of S.

Proof. It is obvious that e is the unit of $e N(e)$. Let x be any element of $N(e)$. Then there exists $x^{*} \in N(e)$ such that $x x^{*}=x^{*} x=e . e x^{*}$ is clearly an element of $e N(e)$. Therefore the element $e x^{*}$ becomes the inverse element of $e x$ in $e N(e)$, since the relations $e x e x^{*}=e, e x^{*} e x=e$ hold. Hence $e N(e)$ is a subgroup of $N(e)$, It is easy to see that $e N(e)$ becomes the greatest subgroup and an ideal of $N(e)$, and so we save the trouble to prove it.

Remark. [\%] . A homogroup is a semigroup having an ideal which is also a subgroup. It is obvious that for any homogroup such an ideal is uniquely determined. By a" group ideal' of a homogroup we shall mean an ideal which is also a subgroup. Hence $e N(e)$ is the group ideal of $N(e)$.

Let G be a semigroup containing at least one idempotent, and let I_{G} be the totality of all idempotents of G. An idempotent e of G is said to be prmitive if it satisfies the relation $e I_{G} e=\{e\} \quad[3]$.

Theorem 1.1. Any homogroup has at most one primitive idempotent. Moreover if a homogroup H has a primitive idempotent e, then e is the unit of the group ideal of H .

Proof. Let K, e be the group ideal of H and the unit of K respectively. If $e l$ is any primitive idempotent of H, then the relation $e^{\prime} e e^{\prime} \Longrightarrow e^{\prime}$ follows from the definition of the primitivity. Accordingly $e=e^{\prime}$ holds, since eleel is contained in K and is an idempotent of H .
Lemma 1.4. For any $N(e)$, e is a primitive idempotent of $N(e)$ itself.
Proof. Let e^{\prime} be any id m mpotent of $N(e)$. Then $e e^{\prime}=e$, since $e e^{\prime}$ is an jdempotent and is contained in the subgroup $e \mathrm{~N}(e)$ of $\mathrm{N}(e)$. Hence we have $e e^{\prime} e=e$.

Lemma 1.3 and Lemma 1.4 imply ;
Theorem 1.2. Every $\mathrm{N}(e)$ is an inversible subhomogroup, zohich has one and only one primitive idempotent of $\mathrm{N}(e)$ itself.

Lemma 1.5. The group ideals of $\mathrm{N}\left(e_{1}\right), \mathrm{N}\left(\epsilon_{2}\right)$ are mutually disjoint if e_{1} and e_{2} are different two idempotents of S.

Proof. If $e_{2} \mathrm{~N}\left(e_{1}\right)$ and $\epsilon_{2} \mathrm{~N}\left(e_{2}\right)$ contain x in ccmmon, then there exist two elfments $x_{1} * \in$ $e_{1} \mathrm{~N}\left(e_{1}\right.$ and $x_{2} * \in e_{2} \mathrm{~N}\left(e_{2}\right)$ such that $x x_{1} *=x_{1} * x=e_{1}$ and $x x_{2} *=x_{2} * x=e_{2}$ respectively. Hence the following relations hold successively ;

$$
\begin{aligned}
& e_{1}=x_{1} * x=x_{1} * x e_{2}=e_{1} e_{2} \\
& e_{2}=x x_{2} *=e_{1} x x_{2} *=e_{2} e_{2}
\end{aligned}
$$

$$
e_{t}=e_{2 .}
$$

This is contrary to our assumption.
By Lemma 1.5 and Theorem 1.2, we get the following
Theorem 1.3. S is represented as a sum of inversible subhomogroups $\left\{S_{\alpha}\right\}_{\alpha}$ such that
(1) every S_{α} has one and only one primitive idempotent,
(2) the group ideals of $\left\{S_{\alpha}\right\}_{\alpha}$ are murually disjoint.

Moreover we can prove the next interesting theorem.
Theorem 1.4. S is uniquely decomposed into the class sum of mutually disjoint subgroups if and only if the following relation is solvable for any given a of S.

$$
(R) a x a=a \text { and } a x=x a \in I .
$$

Proof. To prove the first half of this theorem, we assume that S has a solution of (R) for any given a of S. We shall show, first of all, that any element of S is contained in the group ideal of some i-component of S. Talse up any element $a \in S$.
By the assumption, there exists x such that $a x a=a$ and $a x=x a \in I$. If we put $e=a x=x a$, then a and x are elements of $N(e)$. Hence $e a \in N(e)$, and hence $a \in N(e)$, since $e a=a$ holds. This shows a to be an element of the group ideal of $\mathrm{N}(e)$. Accordingly it follows from Lemma 1.5 that S is decomposed into the class sum of mutually disjoint subgroups; $S=\stackrel{\bullet}{e \in I}$ $e \mathrm{~N}(e)$. We prove next the uniqueness of such decompositions. Assume that there exists a decomposition $\varphi, S=\odot \sum_{\alpha} \mathscr{g}_{\alpha}$ of S into the class sum of mutually disjoint subgroups \mathscr{F}_{α}. Then each \mathscr{F}_{α} contains clearly one and only one idempotent of S. Let $\mathscr{g}^{(}(e)$ $=\mathscr{F}_{\alpha}$ if \mathscr{F}_{α} contains an idempotent e. Then S is represented as follows ; $S=\stackrel{\bullet}{e \in I}$ g $\mathcal{F}(e)$. If x is an element of $\mathcal{F}(e)$, there exists $x * \in \mathscr{f}(e)$ such that $x x^{*}=x^{*} x=e$. Hence $x \in$
 of this theorem is obvious by the properties of g oups.

Corollary 1.1 If the relation $a x=x a \in I$ has a mique solution for any given element a of S, then S is uniquely decomposed into the class sum of mutually disjoint subgroups, and it is the decomposition into the class sum of all i-components of S.
Proof. Take up any element a of S. Then by the assumption, there exists one and only one $x \in S$ such that $a x=x a \in I$. Let $e=a x=x a$. Since $e a x=x e a=e$, the relation $e a=$ a follows from the uniqueness of an element y such that $y x=x y \in I$.

Hence $\mathrm{N}(e)=e \mathrm{~N}(e)$ and $a x a=a$. Therefore by Lemma 1.5 and Theorem 1.4, we have our corollary.

Corollary 1.2. If S is left (right) cancellable, then S is uniquely decomposed into the class sum of mutually disjoint subgroups, and it is the decomposition into the class sum of

all i-components of S.

Proof. We may prove this corollary only when S is left cancellable, because in the other case we can prove it by the same process. Let S be left cancellable. Take up any element $a \in S$, and assume that there exist two elements x_{1} and x_{2} which satisfy the relations ax $x_{1}=$ $x_{1} a \in I$ and $a x_{2}=x_{2} a \in I$ respectively. We set $e_{1}=a x_{1}$ and $e_{2}=a x_{2}$. Then the following relations follow successively ; $e_{1} x_{1} a=e_{1}, x_{1} e_{1}=e_{1} x_{1}, x_{1} e_{1} a=e_{1}=x_{1} a$ and $e_{1} a=a$. Since $a x_{1}=$ $x_{1} a_{1}=e_{1}$ implies $e_{1} a=a e_{1}$, the relation $a e_{1}=e_{1} a=a$ is concluded. Similarly we have $a e_{2}=e_{2} a=$ a by the same procedure. Thus $a e_{1}=a e_{2}$, and consequently $e_{1}=e_{2}, x_{1}=x_{2}$ by the left cancellability of S. This means that the proof of our corollary is reduced to one of corollary 1.1.

Remark. If S satisfies the condition of Corollary 1.1 or Corollary 1.2 , then S is, in effect, isomorphic to the direct product [11] $\circ \times L \times R$ of a group of, a left singular semigroup $L[2]$ and a right singular semigroup $R[2]$ (see the paragraph 3) . Hereafter by a 'quasi-gr-group' we shall mean a semigioup which is isomorphic to the direct product $\mathscr{F} \times \boldsymbol{L} \times \mathrm{R}$ of a group \mathscr{E}, a left singular semigroup L and a right singular semigroup $R[9]$.
§ 2. Special middle unitary inversible semigroups.
If an element a of a semigroup G satisfies the relation $x a y=x y$ for any elements $x, y \in$ G, then a is said to be a middle unit of G. By a ' middle unitary semigroup' we shall mean a semigroup having at least one midade unit, and especially a' special middle unitary semigroup' will mean a middle unitary semigroup whose idempotents are midỏle units [10] . Moreover by a' special middle unitary inversible semigroup' we shall mean a special midde unitary semigroup which is inversible. Of course, middle units are not necessarily idempotents even in a special middle unitary inversible semigroup. In this paragraph we shall determine the structure of special middle unitary inversible semigroups. To save repetition, we shall adhere throughout this paragraph to the following notations. V will denote a special middle unitary inversible semigroup. $\quad I_{V}$ will denote the totality of all idempotents of V. M will denote the totality of all middle units of $V . I_{V}$ and M ane obviously subsemigroups of V, and I_{V} is contained in M by the above definitions.

Lemma 2. 1. If the relation $x a=a x \in M$ has two solutions x_{1}, x_{2} in V for given element a of V, shen $x_{1} a=x_{2} a$ holds .

Proof. If we set $e_{1}=x_{1} a=a x_{1}$ and $e_{2}=a_{2} x_{1}=x_{2} a$, then $e x_{2}=x_{2} a x_{1}=x_{2} e_{1}$ and successively $a x_{1}=a e_{2} x_{1}=a x_{2} e_{1}=x_{2} a e_{1}, a x_{1}=x_{2} a\left(x_{1} a\right)=x_{2}\left(a x_{1}\right) a=x_{2} a=a x_{2}$.

We define an equivalence relation between elements a and b of V as follows ;
$a \sim b$ if and only if there exists an element $x \in V$ such that $a x \in M$ and $b x \in M$.
Then the following relations hold ;
(1) $a \sim a$ for every $a \in V$.
(2) $a \sim b$ implies $b \sim a$.
(3) $a \sim b, b \sim c$ imply $a \sim c$.
(4) $a \sim b, c \sim d$ imply $a c \sim b d$.

Let Ω be the factor semigroup of $V \bmod (\sim)$ and let $\overline{\bar{a}}$ be the residue class of V which contains the element a. Then we have

Lemma 2.2. Ω is a group, and its unit class consurres wiih M.
Proof. It is obvious that the relation. $\overline{\bar{e}}=M$ holds for any element e of M. Let e be any element of M and let $\overline{\bar{x}}$ be any element of Ω. Then $\overline{\bar{e}} \cdot \overline{\bar{x}}=\overline{\overline{e x}}$ and $\overline{\bar{x}} \circ \overline{\bar{e}}=\overline{\overline{x e}}$ hold. On the other hand, there exists x^{*} such that $x x^{*}=x^{*} x \in I_{I} \subset M$. Hence, it follows that $x x^{*} \in M$. ex. $x^{*} \in$ M and $x e \cdot x^{*} \in M$. Consequently $\overline{\bar{e}} \cdot \overline{\bar{x}}=\overline{\overline{e x}}=\overline{\bar{x}}$ and $\overline{\bar{x}}{ }_{0} \overline{\bar{e}}=\overline{\overline{x e}}=\overline{\bar{x}}$, which imply $\overline{\bar{e}}$ to be the unit element of Ω. Moreover we have $\overline{\bar{x} \cdot x^{*}}=\overline{\bar{x} x^{*}}=\overline{\bar{e}}_{1}=\overline{\bar{e}}=\overline{\overline{e_{1}}}=\overline{\overline{x^{*}}} \overline{\bar{x}}$, where e_{1} denotes the element $x x^{*}$. Therefore there exists an inverse element for any element of Ω. This completes the proof of our lemma.

Since $I_{V^{V}}$ is the totality of all iompotent middle units of V, it is isomorphic to the directproduct $L \times R$ of a left singular semigroup L and a right singular semigroup $R[9]$. Accordingly there exists an isomorphism ξ of I_{r} onto $L \times R$;

$$
\begin{equation*}
I_{V} \xlongequal{\xi} \mathbb{L} \times R \tag{A}
\end{equation*}
$$

On the other hand the mapping φ, which is the correspondence $\left.a \longrightarrow \overline{\overline{(}} a, a a^{*}\right)$, is a homomorphism of V onto $\Omega \times I_{V}$ (where a^{*} is an element of V such that $a a^{*}=a^{*} a \in M$. Such an element $a a^{*}$ is uniquely determined by Lemma 2.1) ;

$$
V _\varphi=I_{V} \quad(B)
$$

From (A) and (B), we have V है $\Omega \times L \times R$.
If we denote by $V(g, l, r)$ the inverse image of $(g, l, r) \in \Omega \times L \times R$ by $\xi \varphi$,
$V\left(g_{1}, l_{1}, r_{1}\right) \quad V\left(g_{2}, l_{2}, r_{2}\right)$ is a set consisting of only one element for any two elements $\left(g_{1}, l_{1}, r_{1}\right), \quad\left(g_{2}, l_{2}, r_{2}\right)$ of $\Omega \times \mathbb{L} \times \boldsymbol{R}$.

Summarizing the above mentioned results, we obtain;
Lemma 2.3. There exists a quasi-gh-growp T and a collection $\left\{V_{\alpha} \mid \alpha \in \Gamma\right\}$ of subsets of V which satisfy the following conditions;
(C. 1) $V=\sum_{a \leqslant \Gamma} V_{a}$,
(C.2) for any $\beta, \gamma \in \Gamma, V_{\beta} V_{\gamma}$ is a set consisting of only one element of $V_{\beta \gamma}$.

Proof. Let $\Gamma=\Omega \times L \times R$ and let V_{α} be the inverse image of $\alpha \in \Gamma$ by $\xi \varphi$. Then this lemma follows from the above observations.

Now we prove the most important assertion ;

Theorem 2. 1. There exist a quasi-g-grout Γ, a collection $\left\{V_{w^{\prime}} \mid \alpha \in \Gamma\right\}$ of subsets of V and a subset $\left\{p_{a} \mid \alpha \in \Gamma\right\}$ of V, such that
(C. 1) $V=\underset{\alpha \in \Gamma}{\sum_{\Gamma}} V \alpha$,
(C. 2) $p_{\alpha} \in V_{\alpha}$ for any $\alpha \in \Gamma$,
(C.3) $V_{\beta} V_{\gamma}=p_{\beta \gamma}$ for any $\beta, \gamma \in \Gamma$.

Proof. Let $\Gamma=\Omega \times L \times R$, let V_{α} be the inverse image of $\alpha \in \Gamma$ by $\xi \varphi$, and let $p(g, l, r)$ $=V(g, l, r) V\left(g^{-1}, l, r\right) V(g, l, r)$ to each element $(g, l, r) \in \Gamma$. Then the following relation hold̉s for any two elements $\left(g, l, r_{3}\right),\left(g^{\prime}, l^{\prime}, r^{\prime}\right) \in \Gamma$;

$$
\begin{aligned}
p(g, l, r) & p\left(g^{\prime}, l^{\prime}, r^{\prime}\right)=\left\{V(g, l, r) V\left(g^{-1}, l, r\right) V(g, l, r)\right\}\left\{V\left(g^{\prime}, l^{\prime}, r^{\prime}\right) V\left(g^{\prime}-1, l^{\prime}, r^{\prime}\right) V\left(g^{\prime}, l^{\prime}, r^{\prime}\right)\right\} \\
& =V(g, l, r)\left\{V\left(g^{-1}, l, r\right) V(g, l, r)\right\}\left\{V\left(g^{\prime}, l^{\prime}, r^{\prime}\right) V\left(g^{\prime-1}, l^{\prime}, r^{\prime}\right)\right\} V\left(g^{\prime}, l^{\prime}, r^{\prime}\right)[a] \\
& =V(g, l, r) V\left(g^{\prime}, l, r^{\prime}\right) \\
& =V(g, l, r)\left\{V\left(g^{\prime}, l, r^{\prime}\right) V\left(g^{\prime-1}, l, r\right)\right\}\left\{V\left(g^{-1}, l^{\prime} r^{\prime}\right) V\left(g, l, r^{\prime}\right)\right\} V\left(g^{\prime} l^{\prime} r^{\prime}\right)[a] \\
& =V\left(g g^{\prime}, l, r^{\prime}\right) V\left(g^{\prime-1} g g^{-1}, l, r^{\prime}\right) V\left(g g^{\prime}, l, r^{\prime}\right) \\
& =p\left(g g^{\prime}, l, r^{\prime}\right)
\end{aligned}
$$

Hence, by Lemma 2.3 this completes the proof of our theorem.
Remarks. [a]. $V\left(g^{-1, l, r)} V(g, l, r), V\left(g^{\prime}, l^{\prime}, r^{\prime}\right) V\left(g^{\prime-1}, l^{\prime}, r^{\prime}\right), V\left(g^{\prime}, l, r^{\prime}\right) V\left(g^{\prime-1}, l, r\right)\right.$ and $V\left(g^{-1}, l^{\prime}, r^{\prime}\right) V\left(g, l, r^{\prime}\right)$ are consisting of only one middle unit, respectively (see the mapping $\xi \varphi$).
[b]. Corversely, it is easy to see that any semigroup satisfying the conditions (C.1), (C.2), (C. 3) of Theorem 2.1 becmes a special middile unitary inversible semigioup. Since the set $\left\{p_{\alpha} \mid \alpha \in \Gamma\right\}$ of Theorem 2.1 is clearly a quasi- $e^{n-\text { group, }} V$ is nothing but a quasi-gr-group in its essence.
Mo eover, we have
Theorem 2.2. If V is simple [12], then V is a quasi-9--groutp.
Proof. Let P be the set $\left\{p_{\alpha} \mid \alpha \in \Gamma\right\}$ of Theorem 2.1. Then P is clearly the minimal ideal of V (Suschkewitsch kernel), Since V is simple, we have the relation $P=V$. This means V to be a quasi-ga-group.

§ 3. Kernels of inversible semigroups with primitive idempotents.

If an inversible semigroup has at least one primitive icempotent, it has also a minimal ideal (Suschkewitsch kernel). In paragraphs 3, 4, we shall investigate the stiucture of inversible semigroups having at least one primitive idempotent. Hereafter \mathfrak{S} will always denote an inversible semigioup with primitive idempotents and Ω will denote the kernel
of \mathfrak{S}. Moreover \mathfrak{F} and \mathfrak{F} will always denote the totality of all idempotents of \mathfrak{S} and the totality of all primitive idempotents of \mathbb{S} respectively.
By the definitons of the inversibility and the primitivity it is easy to see that \mathfrak{J} and \mathfrak{F} are subsemigroups of \mathfrak{S}, and that \mathfrak{F} becomes an ideal of $\mathfrak{\Im}$ (see [3]).
Theorem 3.1. © has a kernel, which contains all primitive idempotents of \subseteq.
Proof. Let E be any ideal of \mathbb{S}. We shall show first that E contains the set \mathfrak{B}. Take up any $x \in E$. Then there exists $x^{*} \in \mathbb{S}$ such that $x x^{*}=x^{*} x \in \mathfrak{J}$. If we put $e=x x^{*}, e$ is an idempotent contained in E. Hence any primitive idempotent p of \subseteq is contained in E, since E is an ideal of \subseteq and since the relation $p e p=p$ follows from the definition of the primitivity. This implies $\mathfrak{F} \subset E$. Let $\prod_{\alpha} E_{\alpha}$ be the intersection of all ideals E_{α} of \mathbb{S}. Since the relation $\prod_{\alpha} E_{\alpha} \supset \Re$ follows from the above relation, $\bigcap_{\alpha} E_{\alpha}$ is not empty, and hence $\prod_{\alpha} E_{\alpha}$ becomes the kernel of \subseteq.
Lemma 3.1. \Re is formularized as follows;

$$
\mathscr{R}=\underset{i_{i}, e_{j} \in}{ } e_{i} \in e_{\mathbb{B}}\left(e_{j}\right.
$$

 verse of this relation. Take an element e_{k} of \mathfrak{F}. Then we get the relation $\bigodot_{e_{k}} \Subset=\Omega$, since
 exist two elements x^{*}, y^{*} of \subseteq such that

$$
\begin{aligned}
& \left(x e_{k}\right) x^{*}=x^{*}\left(x e_{k}\right) \in \mathfrak{J} . \\
& \left(e_{k} y\right) y^{*}=y^{*}\left(e_{n} y\right) \in \mathfrak{J} .
\end{aligned}
$$

Let $\left(x e_{k}\right) x^{*}=e$ and let $\left(e_{k} y\right) y^{*}=e^{\prime}$. Since $x e_{k} \in \mathrm{C}(e)$ and $e_{k} y \in \mathrm{C}\left(e^{*}\right)$, where $\mathrm{C}(e)$ and $\mathrm{C}(e l)$ denote the i-components of \mathbb{S} at e and e^{\prime} respectively, the relations $\left(x e_{k}\right) e=e\left(x e_{k}\right)$ and $\left(e_{k} y\right) e^{\prime}=e^{\prime}\left(e_{k} y\right)$ hold. On the other hand, $x^{*}\left(x e_{k}\right) e_{k}=e e_{k}$. Hence $x^{*}\left(x e_{k}\right)=e e^{k}$, which implies $e=e e_{k} \in \mathfrak{F} . \quad$ Similarly we have the relation $e^{t} \in \mathcal{F}_{3}$.
Therefore

$$
\begin{aligned}
x e_{k} y & =x e_{k} e_{k} y=\left(x e_{k}\right)\left(e e^{\prime}\right)\left(e_{k} y\right)=\left(x e_{i}\right) e e^{\prime}\left(e_{k} y\right)=e\left(x e_{k}\right)\left(e_{k} y\right) e^{\prime} \\
& =e\left(x e_{k} y\right) e^{\prime} \in \sum_{\substack{k_{k}, e_{i} \in \mathcal{P}}} e_{i} e_{j},
\end{aligned}
$$

Lemma 3.2. \mathfrak{B} is formularized as follows;

$$
\mathfrak{\beta}=\mathfrak{\Im} \cap \mathfrak{R} .
$$

Proof. $\mathfrak{F C} \mathfrak{F} \cap \Omega$ is obvious by the relation $\mathfrak{R \subset} \subset \Omega$. To show the converse of this relation, take up any element e of $\mathcal{G} \cap \mathcal{B}$. Since $e \in \sum_{i, r_{j} \in \mathbb{B}} e_{i} \mathcal{E}_{j}$, there exist three elements e_{i}, x, e_{j} such that $e_{i} \in \mathfrak{F}, e_{j} \in \mathfrak{F}, x \in \mathbb{S}$ and $e_{i} x e_{j}=e$. If e^{t} is an element of \mathfrak{F}, then $e_{j} e e_{i}=e_{j} e_{i}$ holds. For the following relations hold successively;

$$
e_{j}=e_{j}\left(e^{\prime} e_{i}\right) e_{j}=e_{j} e_{i} e_{j},
$$

$$
\begin{gathered}
e_{j} e^{\prime}\left(e_{i} e_{j} e_{i}\right)=\left(e_{j} e_{i}\right)\left(e_{j} e_{i}\right) \\
e_{j} e^{\prime} e_{i}=e_{j} e_{i}
\end{gathered}
$$

Since $\left(e_{i} x e_{j}\right) e^{\prime}\left(e_{i} x e_{j}\right)=\left(e_{i} x e_{j}\right)^{2}$, we have the relation $e e^{\prime} e=e$. This implies $e \in \mathcal{B}$, and hence $\mathfrak{J U} \cup \mathfrak{J} \subset \mathfrak{F}$.

Lemma 3.3. Ω is an inversible subsemigroup of \mathfrak{S}.
Proof. Let x be any elemnt of $\mathfrak{\Omega}$. Then there exists $x^{*} \in \subseteq$ such that $x x^{*}=x^{*} x \in \mathfrak{J}$. We put $e=x x^{*}$. Since e is an idempotent of \mathfrak{R}, e $\in \mathfrak{P}$ follows frcm Lemma 3.2. Let $x^{* *}$ $=e x^{*} e$. Then $x^{* *}$ is an element of Ω such that $x x^{* *}=x^{* *} x \in \varsubsetneqq$. Thus \Re becomes an invresible subsemigroup of \mathfrak{S}.

Lemma 3.4. Every primitive idempotent is a middle unit of \AA.
Proof. $e_{i} e_{j} e_{i}=e_{i} e_{k}$ holds for any elements e_{i}, e_{j}, e_{i} of \mathfrak{F} as we see in the proof of Lemma 3.2. Hence this Iemma is obvious by Lemma 3.1.

Since the kemel of a semigroup is simple, above three Lemmas 3.2,3.3 and 3.4 can be summed up as the following

Theorem 3.2. Ω is a simple snd special middle unitary inversible semigroup. Accordingly \mathfrak{K} is a quasi-gu-group.

Corollary 3.1. If $\mathscr{\Im}$ is a commutative semigroup, then $\mathfrak{\Re}$ is a subgroup of \mathfrak{S}. According$l y \subseteq$ is a homogrout.

Proof. According to Theorem 2.2, \AA is a quasi- \mathscr{V}_{x}-group. On the other hand, \mathfrak{F} is a commtative subsemigroup of \mathfrak{J} such that $\mathfrak{\beta} \subset \Omega$. Hence it is easy to see that \mathfrak{R} is consisting of only one element. This means \Re to be a group, since \Re is the totality of all idempotents of Ω.

Corollary 3.2. Let S be an inversible semigroup having at most finite idempotents. Then S has at least one primitive idempotent, and therefore S has a kernel which is a simple and special middle unitary inversible subsemigrop.

Proof. Let I be the totality of all idempotents of S . By the assumption I is a finite subsemigroup of S . We show first that $p I p=q I q$ implies $p=q$ for any two elements p, q of I. Assume that $p I p=q I q$. Then the following relations hold successively ; $p=p q p, q=$ $p q p, p q=q p q, p q=p q p$ and $p=q p q=p q=p q p=q$. Thus $p I p=q I q$ implies $p=q$. Now since the collecton $\{p I p \mid p \in I\}$ of subsets $p I p$ of I is finite, there exists at least one minimal set $p I p \in\{p I p \mid p \in I\}$. If $p I p$ is not consisting of only one element p, then there exists $q \in$ $P I p$ such that $p \neq q$. Cleany $p I p \neq q I q$. This is incmpatible, for $p I p$ is a minimal set of $\{p I p \mid p \in I\}$. Thus we have the relation $p I p=\{p\}$, i. e. , p is a primitive idempotent of S .

Remark. N. Kimura showed that a finite semigroup, whose elements are idempotents,
has at least one primitive idemporent. The proof of Corollary 3.2 is due to N. Kimura [3].
Corollary 3.3. Any simple and inversible semigroutp having at most finite idempotents is a quuasi-gn-groutp.

Lemma 3.5. © is simple if and only if it satisfies the foowing conditions;
(C.1) every idempotent is primitive,
(C.2) $a x a=a$ is solvable for any given $a \in \Subset$.

Proof. If \mathfrak{S} is simple, then according to the defintion of the simplicity the relation $\Omega=\Subset$ holds. Hense the necessity of our conditions is obvious by the definition of a quasi -2e-group. To prove the sufficiency we assume that satisfies the conditions (C.1) and (C.2). Let a be amy element of \Subset. According to the assumption, there exists $x \in \Subset$ such that $a x a=a$. Clearly $a x \in \mathscr{R}$. Consequertly $a x a=a \in \Omega$. Hence $\Subset \subset \subset$, and hence $\mathcal{C}=\Re$, which completes our proof of this lemma.
Theorem 3.3. § is a quasi-gu-grout if and only if it satisfies the following conditions ;
(C. 1) every idempotent is primitive,
(C.2) $a x a=a$ is solvable for any given $a \in \Subset$.

Proof. Obvious by Lemma 3.5 and Theorem 2.2.
Corollary 3.4. Let S be an inversible semigroup, and let I be the totality of all idempotents of S . If the relation $a x=x a \in I$ has a unique solution for any given element a of S , then S is a quasi-gr-group.

Proof. We show first that every idempotent of S is primitive.
Let e and e^{\prime} be any two idempotents of S . Then the following relations hold successively ;

$$
\begin{aligned}
& e \cdot e^{\prime l} e=e e^{\prime} e \in I, \text { eele } \cdot e=e^{\prime} e \in I, \\
& e \cdot e e^{\prime} e=e e^{l} e \cdot e \in I \text { and } e \cdot e \in I .
\end{aligned}
$$

By the assumption, we have eeie $=e$. Therefore any idempoeat of S is primitive. Using Theorem1.4, Corollary 1.1and Theorem 3.3, we get this corollary.

Corollary 3.5. Let S be an inversible scmisrout. If S is left (right) cancellablc, then S is a quasi-gr-grout.

Proof. This corolla"y is obvious by Corollary 3.4, since the relation $a x=x a \in I$ has a unique solution for any given element a of S if S is left (right) cancellable (see the proof of Corollary 1.2).
4. Construction of inversibie semigroups with primitive idempotents.

Let G be any semigroup, and let E be any ideal of G. Rees bifines the factor semigro. up G / E essertially that obtinea by collapsing E into a single zero element 0 , while the remaining elements of G retain their identity. Thus the G / E-product of two nonzero
elements is defined to be 0 if their G-product lies in E, and otherwise to be the same as defined in G [6]. Now the Rees factor semigroup © \Subset / Ω becomes clearly an inversible semigroup with ze:o.

Conversely we consider the problem of constructing, for given quasi-gr-group Q and given inversible semigroup D with zero, every possible inversible semigroup \mathbb{S}^{*} with primitive idempotents which satisfies the following conditions;

$$
\begin{aligned}
& \text { (P. 1) } \varrho^{*}=Q+D^{*}, \\
& \text { (P. 2) } Q \text { is an ideal of } \varsigma^{*} \text { (hence } Q \text { is the kernel of } \Im^{*} \text {, since it is a } \\
& \text { quasi- } Q^{*} \text {-group), } \\
& \text { (P.3) } A \circ B\left\{\begin{array}{l}
\in Q \text { if } A, B \in D^{*} \text { and if } A B=0 \\
=A B \text { if } A, B \in D^{*} \text { and if } A B \neq 0,
\end{array}\right.
\end{aligned}
$$

where o denctes the $\mathbb{§}^{*}$-product and D^{*} denotes the set of nonzero elements of D. We shall call such a ©* an 'i. p-extension' of Q by D.
A. H. Clifford considered the problem of constructing, for given semigroup G and given semigroup T with 0 , every possible semigroup Σ containing G as an ideal, such that Σ / G is isomorphic with T. He calls such a Σ an 'extension' of G by T. He showed the following result [1].
Theorem. Let G satisfy Cond. A, and let T^{*} be the set of non-zero elements of T. Then every extension of G oy T is found as follows. Let $A \longrightarrow \lambda_{A}$ and $A \longrightarrow \rho_{A}$ be mappings of T^{*} into the semigroups \mathcal{J}_{K} and \mathcal{J}_{R} of left and right translations of G respectively, and let $[A, B]$ be a ramification set of T^{*} in G, such that Cond. (C. 1~3) are satisfied. Then the class sum $\Sigma=G+T^{*}$ of G and T^{*} becomes an extension of G by T if product \circ therein is defined by the equations (N. 1~4);

Cond. A. If $a s=b s$ and $s a=s b$ for all s, then $a=b$.
(C. 1) $\lambda_{A} \lambda_{B}=\left\{\begin{array}{l}\lambda_{A B} \text { if } A B \neq 0, \\ \left.\lambda_{[A, B]} \text { if } A B=0[\nless]\right] .\end{array}\right.$
(C.2) $\rho_{A} \rho_{H}= \begin{cases}\rho_{A B} & \text { if } A B \neq 0, \\ \rho_{[A, B]} & \text { if } A B=0[\%] .\end{cases}$
(C.3) $s\left(\lambda_{A} t\right)=\left(s, \rho_{A}\right) t$ if $s, t \in G$, that is, λ_{A} and ρ_{A} are linked.
(N. 1) $A \circ B=\left\{\begin{array}{c}A B \text { if } A \in T^{*}, B \in T^{*} \text { and if } A B \neq 0, \\ {[A, B] \text { if } A \in T^{*}, B \in T^{*} \text { and if } A B=0 .}\end{array}\right.$
(N.2) $A \circ s=\lambda_{A} s$ if $s \in G, A \in T^{*}$.
(N.3) $s \circ A=s \rho_{A}$ if $s \in G, A \in T^{*}$.
(N. 4) sot=st if $s, t \in G$.

Remark. [米]. $\lambda_{[A, r]}$ and $\rho_{[A, k]}$ denote the special left and right translations respectively,
which are induced by $[A, B][1]$.
A semigroup is called a 'zero-semigroup' if it contains a zero element but no other idempotent. The Rees factor semigroup \Subset / \Re becomes a zero-semigroup if all idempotents of \mathbb{C} are primitive. In this paragraph, we shall show a result which is closely related to the above theorem.

To save repetition, we shall adhere throughout this paragraph to the following notations.
Q will denote any quasi- \mathscr{F}-group. D will denote any inversible semigroup with zero o, having no elements in common with Q. Especially Z will denote any zero-semigroup, having no elements in common with $Q . D^{*}$ and Z^{*} will denote the sets of nonzero elements of D and Z respectively. The small letters $a, b, c, d, e, s, t, u, v$, will always denote elements of Q. Except in Corollary 4.1, the capitals A, B, C, will denote elements of D^{*}. These will denote, in Corollary 4.1, elements of Z^{*}. I_{Q} will denote the totality of idempotents of Q and I_{D} will denote the totality of nonzero idempotents of $D . \mathcal{J}_{l}$ and \mathcal{J}_{R} will denote the semigroups of left and right translations of Q respectively. For any $a \in Q, \lambda_{a}$ will denote the special left translation induced by a and ρ_{a} will denote the special right translation induced by $a[1]$.

Theorem 4.1. Every i. p-extension of Q by D is found as follows.
Let $\varphi ; A \longrightarrow \lambda_{A}$ and $\psi ; A \longrightarrow \rho_{A}$ be mappings of D^{*} into \mathcal{J}_{x} and \mathcal{J}_{R} respectively and let $f ;[A, B]$ be a ramification set of D^{*} in Q, such that Cond. (C. $\left.1^{\prime} \sim 6^{\prime}\right)$ are satisfied. Then the class sum $\mathbb{G}^{*}=Q^{\dot{+}} D^{*}$ of Q and D^{*} becomes an i. p-extension of Q by D if product 。 therein is defined by the equations ($N .1^{\prime} \sim 4^{\prime}$);
-(C. $\left.1^{\prime}\right) \quad \lambda_{A} \lambda_{B}= \begin{cases}\lambda_{A B} & \text { if } A B \neq 0, \\ \lambda_{[A, B]} & \text { if } A B=0 .\end{cases}$
(C. $\left.2^{\prime}\right) \quad \rho_{A} \rho_{B}= \begin{cases}\rho_{A B} & \text { if } A B \neq 0, \\ \rho_{[A A B]} & \text { if } A B=0 .\end{cases}$
(C. $\left.3^{\prime}\right) ~ s\left(\lambda_{A} t\right)=\left(s \rho_{A}\right) t$, that is, λ_{A} and ρ_{A} are linked.
(C. 4^{\prime}) If there exist no elements B such that $A B=B A \in I_{D}$, then there exists s such that $\lambda_{A} s=s \rho_{A} \in I_{Q}$.
(C. $\left.5^{\prime}\right) \quad\left[E, E^{\prime}\right] \in I_{Q}$ if $E, E^{\prime} \in I_{D}$ and $E E^{\prime}=0$.
(C. $\left.6^{\prime}\right) \lambda_{E} e \in I_{Q}, e \rho_{F} \in I_{Q}$ and $e\left(\lambda_{F} e\right)=\left(e \rho_{F}\right) e=e$ if $E \in I_{D}, e \in I_{q}$.
(N. 1^{\prime}) $\quad A \circ B=\left\{\begin{array}{l}A B \text { if } A B \neq 0, \\ {[A, B] \text { if } A B=0 .}\end{array}\right.$
(N. 2') $A \circ s=\lambda_{A} s$.
(N. 3') $s \circ A=s \rho_{A}$.
$-\left(N .4^{\prime}\right) s \circ t=s t$.

Proof. Let \bigodot^{*} be the class sum $Q \dot{+} D^{*}$ of Q and D^{*}. Assume that \bigodot^{*}-product 0 is defined by φ, ψ, f satisfying Cond. (C. $1^{\prime \prime} \sim 6^{\prime}$) and by the equations (N. $1^{\prime \prime} \sim 4^{\prime}$). According to the Clifford Theorem, \mathbb{C}^{*} becomes an extension of Q by D since Q satisfies Cond. A. To prove \mathfrak{C}^{*} to be inversible, we show first that the class sum $I=I_{Q}+$ I_{D} of I_{Q} and I_{D} becomes a subsemigroup of ς^{*}. Let α and β be two elements of I. If both α and β are contained in I_{Q} or in I_{D}, then $\alpha \circ \beta$ is contained in I_{Q} or in I_{D} according to Cond. (C.5'). We assume that $\alpha \in I_{D}$ and $\beta \in I_{G_{i}}$. Since $\alpha \circ \beta=\lambda_{\alpha} \beta$ by (N. 2'), $\alpha \circ \beta \in$ I_{Q} follows from Cond. (C. 6^{\prime}). Similarly we can prove the relation $\alpha \circ \beta \in I_{Q}$, if $\alpha \in I_{Q}$ and $\beta \in I_{D}$. Hence I becomes a subsemigioup of \mathbb{C}^{*}. Moreover it is obvious, by Cond. (C. 4^{\prime}), that to each element $\alpha \in \mathscr{C}^{*}$ there exists $\beta \in \mathscr{C}^{*}$ such that $\alpha \circ \beta=\beta \circ \alpha \in I$. Accordingly \mathbb{S}^{*}. becomes an i. p-extension of Q by D. Conversely, let \Subset° be an i. p-extension of Q by D. If we take a ramification set $f ;[A, B]$ of D^{*} in Q and mappings φ, ψ of D^{*} into \mathscr{J}_{L} and \mathcal{J}_{R} as follows ;
$\varphi ; A \longrightarrow \lambda_{A}$, where λ_{A} is the left translation of Q such that $\lambda_{A} t=A \circ t$ (\cdot denotes the S*-product) for all $t \in Q$,
$\psi ; A \longrightarrow \rho_{A}$, where ρ_{A} is the right translation of Q such that $t \rho_{A}=t \cdot A$ for all $t \in Q$, $f ;[A, B]=A \cdot B$ if $A B=0$,
then it is easy to see that φ, ψ and f satisfy Cond. ($C, 1^{\prime} \sim 6^{\prime}$) and that ©*-product ${ }^{*}$ is the same as the product o defined by $\left(\mathrm{N}_{0} 1^{\prime} \sim 4^{\prime}\right)$. Thus our theorem is completely proved.

Moreover we obtain the following corollary as a special case of Theorem 4.1.
Corollary 4.1. Every i.p-exiension of Q by Z is found as follows.
Let $\varphi ; A \longrightarrow \lambda_{A}$ and $\psi ; A \longrightarrow \rho_{A}$ be mappings of Z^{*} into \mathscr{J}_{L} and \mathscr{J}_{R} respectively and let $f ;[A, B]$ be a ramification set of Z^{*} in Q, such that Cond. (C. $1^{\prime} \sim 4^{\prime}$) are satisfied. Then the class sum $\mathfrak{E}^{*}=Q^{\circ}+Z^{*}$ of Q and Z^{*} becomes an i.p-extension of Q by Z if product o therein is defined by the equations ($N_{0} 1^{\prime} \sim 4^{\prime}$).

Corollary 4.2. Let e be any idempotent of Q. Then ihe class sum $\varsigma^{*}=Q^{\circ}+D^{*}$ of Q and D^{*} becomes an i. p-extension of Q by D if producto therein is defined as follows;

$$
\begin{array}{ll}
\text { (1) } A \circ B= \begin{cases}A B \text { if } A B \neq 0, \\
e & \text { if } A B=0 .\end{cases} & \text { (2) Aos }=e s .
\end{array} \begin{array}{ll}
\text { (3) } s \circ A=s e & \text { (4) sot }=s t
\end{array}
$$

Proof. Let φ be the mapping ; $A \longrightarrow \lambda_{e}$ (special left translation), let ψ be the mapping ; $A \longrightarrow o_{e}$ (special right translation) and let f be the ramification set ; $[A, B]=e$. Then this corollary follows from Theorem 4. 1, since these mappings φ, ψ and the ramif.cation set f satisfy Cond. (C. $1^{\prime} \sim 6^{\prime}$).

Summarizing the results of paragarphs 3, 4, we obtain the following conclusion.
Let G be any inversible semigroup with primitive idempotents. Let Q be the kernel of G, and let D be the Rees factor semigroup G / Q. Then D is an inversible semigroup with zero, and the structure of G is competely determined by Q, D and a pair (φ, ψ, f) of mappings φ, ψ and $f=[A . B]$ saltisfying Cond. (C. $1^{\prime} \sim 6^{\prime}$);

$$
G=\{Q, D,(\varphi, \psi, f)\}
$$

Especially if we consider G only for inversible semigroups whose all idempotents are primitive, then G / Q is always a zero-semigroup Z and hence we have

$$
G=\{Q, Z,(\varphi, \psi, f)\}
$$

REFFRFNCFS

[1] A. H. Clifford, Extensions of semigroups. Trans. Amer. Math. Soc. 68 (1950).
[2] N.Kimura, On some examples of semigroups. Kīdai Math. Sem. Rep. No 3 (1954).
A semigroup G is said to be right (left) singular if $a b=b$ ($a b=a$) for any $a, b \in G$.
[3] N. Kimura, On idempotent semigroups (in Japanese). Sûgaku Shijô Danwa.
No 19 (1954).
An 'idempotent semigroup' is a semigroup whose all elements are idempotents.
[4] N. Kimura, Decision of the type of completely non-commutative semigroups (in Japanese). Sûgaku Shijô Danwa. No 19 (1954).
A semigroup G is said to be completely non-commutative if $x y \neq y x$ for any different two elements x, y of G.
[5] G. B. Preston, Inverse semigroups. J. Londion Math. Soc. 29 (1954).
[6] D. Rees, On semi-groups. Proc. Cambridge Phil. Soc. 36 (1940)
[7] A. Suschkewitsch, Über die endiichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit. Math. Ann. 99 (1928).
[8] T. Tamura, Note on unipotent inversible semigroups. K̄dai Math. Sem. Rep. No (31954).
[9] M. Yamada, On the structure of certain senuigroups (in Japanese). Sûgaku Shijô Danwa. No 21 (1954).
[10] M. Yamada, A note on middle unitary semigroups. Kōdai Math. Sem. Rep. vol 7. No 2
$[11]$ Let G_{1}, G_{2} be any two semigroups, and let G be the set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in G_{1}, x_{2} \in G_{2}\right\}$. Then G becomes a semigroup if we define G-product - as follows;

$$
\left(x_{1}, x_{2}\right) \cdot\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}, x_{2} y_{2}\right)
$$

This semigroup G is called the direct product of G_{1} and G_{2}.
[12] A semigroup G is called simple if it contains no other ideals than G itself. This definition of simplicity is equal to the definition of Rees [6] if G has not a zeroelement.
Supplement to Corollary 3.5. Accordingly S is a right (left) group [2].

