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For the quantized Dirac and Proca fields ten generators of the Poincar6 group, energy 

and momenta, three angular momenta and three boost generators, are brought into diagonal 

form in the spin and momentum space. The results are quite simple and physically sensible 

Some applications are also given. 

S I . Imtrodwctiom and Sumnlary 

The principle of invariance under the inhomogeneous Lorentz group (the Poincar6 

group) plays a fundamental role to describe all of the physical phenomena except for 

the gravitational one in a cosmological scale. It gives the conservation laws of energy-

momentum and angular momentum as well as the law of Lorentz covariance for any 
isolated system. It is a rather remarkable fact [1, 2] that this principle determines all 

of the possible types of free particles in the universe with the help of the quantum 

mechanics. In order to guarantee the Poincar6 invariance the existence of the gener-

ators of this group with well-known commutation relations is essential. Ten generators 

of this group have also important physical meanings 

In the relativistic quantum field theory these generators can be written in terms 

of quantized field operators [3, 4] ･ To get a particle picture we must decompose 

these generators into normal mode in terms of occupation number representation in 

momentum space. Evel'y text book [5, 6, 7, 8] on quantum field theory describes 

four generators, energy and three momenta, in normal mode. But no text book 

except one [2] describes other six generators, three angular momenta and three Lorentz 

boosts, in normal mode, as far as we know. In his excellent book [2] Ohnuki develops 

a general theory of the representations of the Poincar6 group. He uses the Bargmann 

Wigner amplitudes and gives ten generators in normal mode for local quantized fields 

wrth arbitrary spin 

Owmg to their fundamental character it will be worth while to describe a different 

procedure from that in reference 2 to decompose the six generators into normal mode 

In this paper we follow the standard Lagrangian theory of quantized field, and de-

compose the field into Fourier components, thereby fixing the spin quantization axis 

arbitrarily. We express the six generators in terms of creation and annihilation 
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operators m momentum space for the Dirac and the Proca fields in SS 3 and 4, respec-

tively. The calculation is rather tedious, but the results are quite simple and coincide 

with that in reference 2 for the case of the Dirac field. We use the traditional field 

theory with the familiar physical meanings, therefore, if we consider the interaction 

with other fields, we would have more transparent physical picture than that of reference 

2. As a simple application of S 3 we examine the transformation properties of the 

creatron and annihilation operators of the spinar particle in S 5 

S 2. The Gemerators of the Poincar6 Group 

In the Lagrangian quantum field theQry [3, 4] the ten generators P/1 and MPv can 

be written*) as 

= I :, PP : 60,1 dx ( I ) 
and 

=J : M/1 v : MO/1 v d x (.2) 
with 

MhPv = x'l Oh* - x~ 6A,t - ilT:JL ~u" ep (3) 

an d 

7cA- 6~2 
~ 8ajLep ' 

In Eq's (1), (2) and (3) we denote q) (multi components) the quantized field, 7co its 

canomcal momentum and O;1 ~ canonical energy momentum tensor, respectively and 

means Wick's normal product. OP~ is defined through Lagrangian ~2 by 

O/tv = ~/lavep - g/lv~2 (4) 
and satisfies 'conservation law 

ap Ouv = O (5) 

by virtue of the Euler equation for q'. In Eq. (3) ZP*' is the spin matrix of ep and is 

defined by the transformation property 

(
 
. ~ ep(.x) -> ep'(x') = I - ~ e/lv ~'1") q'(x) 

for the infinitesimal Lorentz transformation 

x/1 __~* x"t =x/1 + e/tvxv' 

*) We use the metric (1, -1, -1, -1). 
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By using the canonical commutation relations 

[1co(xO x) q)(x y)]~=-i~(x-y) , 
(6) 

[1co(xO, x), Ico(xo, y)]d~ = [ep(xo, x), ~o(xo, y)]~ = O. 

we can show that the ten generators P/' and MP" = - M"P satisfy the following com-

mutation relations : 

[pu, p~] =0, ( i ) 
[pA, MP~]=i(gAPp"-gA~pP) , (.ii ) (7) 
[MP", M"'] = i(gP'M~" + g~"Mu' gP"M~' g"' (iii) - Mu") . 

Eq's (7) are the defining equations of the Lie algebra of the Poincar6 group. 

As is well known, from the conservation laws (5) we can deduce the time in-

dependence of Pu in accordance with (7) (i) . From the relativistic invariance of the 

Lagrangian ~2, we deduce [4] 

7cP a~ep - 7c~euep = iaA~A ~P" ep + ilc~ ~~~ aAep. (8) 

By using (8) and (5), we obtain 

aAM~u~ = O. (9) 
Therefore we also deduce the time independence of Mu~ defined by (2) in accordance 

with (7) (ii). It should be noted that owing to the explicit tirhe dependence of MOk 

we must use the following equation 

d MOk- eMO" +1[po Mok]=Pk+i[P Mok] O (10) 
dxo ~ axO 

In the remaining of this section we shall discuss the physical meaning of MOk 

The symmetrical energy momentum tensor (the Belinfante tensor) 0~" is given [3, 4] by 

1
 e~~ =0P"+ 7 a~XAu~ (11) 

with 

XAu" = - XPA' = - i(7ch ~P" ep - 7cu ~jL* q) - 7c" ZAP q)) . (12) 

Since the difference between e~" and OP~ is total divergence of an anti-symmetric 

tensor, PP can also be rewritten as 

l :. PP = : OoBPdx (1') 
We can also rewrite [3, 4] 
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where 

From (2') and (1') we have 

M/lv::= ' J : M~l' ~ dX 

M~B/lv == xp O~v _ Xv 6;~/l 

(,~') 

(*3') 

=:: J :- : J : Mok xo: OOBk dx xkOoBo dx 

== -j : xopk : xk 60BO dx 

The physical meaning of Eq. 

operator [9] Xk by 

( 1 3) is as follows : we define the center of the 

(1 3) 

mass 

By differentiating (14) with xO, we have f : . (14) Xkpo = : xk 60BO dx 

Xkp0=: xk eoBO dx - : xk ak ekBo dx 

J ekBO dx: = Pk (15) 
By differentiating (13) with respec-t to xo and using (13), (.14) and (15) we again obtain 

Eq. (10). The explicit xo_dependence of MOk is canceled by the xo_dependence of Xk 

By using above discussions we have ' 
J
 

Jk~;Mij= : 7cO(xiaj-xjai-i~ij)ep!dx: 

(i, j, k is a cyclic permutation of 1, 2, 3.) (16) 

= ･ J(-xkeoo 17cozokep) o dx (17) Mo k . 

Our next task is to express (16) and (17) in terms of normal mode. Th 

in the next two sections for the Dirac and the proca fields. is will be done 

S 3. The Dirac Field 

For the spin 1/2 field we have the following relatlons 

~P(x) = ~~(iyllap _ m)~, 

7co_ 6~2 _ . _ 
l(~yo). = i~~ . 

'~6~a ~ 
(18) 
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In order to satisfy the Dirac equation ~(x) and ~(x) are expanded mto Founer 

components : 

~ (x) = ~ dp (a.(p)u(')(p) e~iP* + b;(p)v(')(p) eiP*). , 
.
j
 

('-1c)32pO 

(p0=~p2+m and I s +1/2) (19) 
~(x) = ~ j dp (b (p)~(')(p) e~iP' + at(p)ti(')(p) eiP') . 

. (2lc)3r_ipO ' * ' 
The four coinponeint Dirac spinors u(')(.p) and v(')(p) satisfy 

( p - m)u (')(p) = L~1 (')(p) ( p' - m) = O, 

( p + m)v(')(p) = ~(')(p) ( p + m) = O 

with the ortho-normalization relations 

~(')(p)u(')(p)=-~(')(p)v(')(p) 2m~rs' 

v(')(p)u(')(p) u(')(p)v(')(p)=0. 

In order to satisfy (6) a.(p), at(q), b;(p) and b.(q) must satisfy the following anti 

commutation relations 

[a.(p), at(q)] + = [b.(p), b;(q)] + = (2~)32p06..~(p -q) 

[a.(p), a.(q)]+=[a.(p) b (q)]+ "'=0. 

Substitutmg (18) and (19) into (16), we obtain 

Mij = ~ dp [at(p)1'Ja (p) +bf(p)1'Jb (p)] 
.
J
 

(2lc) 32pO ' 

1
 

: (b.( -p) v(')t ( -p) +at(p) u(')f (p)) x 
.,* (2lc) 34p2 

X Ia.(p) (1'J + -p) (~lij + v(') ( -p) u(')(p) + bt( 

i('ni a ' a ~ and aij= l with lij = [vi, yj]. To further simplify Eq. (20), ~ " ~" epj ~PJU~pi/ 2 
we must use the explicit form of Dirac spinors u(')(p) and 'v(')(-p) 

~pO +m w(') 

u(')(p)= , I~~~p/Ipl, ~po _ m (alb) }v(') 

- ~pO _m (aF~) w'(~') (21) 
v(')(-p)- ~p0+mw'(~') 
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In Eq. (21) w(r) is a two component Pauli spinor with arbitrary spin-quantization-axis 

e. EXPlicitly, 

14'(:1:1/2) e~i~a'e~l~c~_ x ) ( 9 1
 O
 

( , )
 

O
 1
 

with e : (sin O cos ep, sin O sin ep, cos e). From the consideration for charge conju-

gation invariance [8] we choose w'(r) = _ cryw(~r)* for the Pauli spinor for anti-particle. 

Note that w'(~s)taw'(~r) = _ w(r)taw(s). By using (21) we get 

u(s)t(p) ( ) l + c2 2u(r)(p)=2po 
2
 

v(s)t( p) (1 + 2 (2_') a u(r)(p) O 

v(s)t (p) 2pO ( ) = ~ )rs l+02 v (r)(p) 

Substituting (22) into (20) we get the result 

l
 

[a (p) 

srar(P) + b~(p) 

srbr(P)] 

(2~)32pO t . 
r's 

where 

sr =~srlk + ; 

sr ' 
(24) 

l a a . and 
sr=w(s)tcrkw(r) 
k= -i(p ' l -J ) apJ P apl 

For the helicity state we must choose e = p/lpl, but be careful that the differential 

operation lij in Eq. ('-O) does not act on w(r), since the momentum and the spin 

belong to different freedoms ' For the boost operator MOk the similar calculation as (20) Ieads to 

( k ar(P) +b;(p)a'--'--pak br(P)) 
MOk = ~ (27c)3_'i at(p) ep 

+ ~ dp (b (-p)v(s)t( p) +atu(s)t(p)) x (.25) 
r's (2lc)34p2 s 

a aOk 'a aOk xlar(P) (-ip apk + 2 + v(r)(._p)J (
 

u(r)(p) + b'( - p) o rp 
epk 2 

By usmg (21) notmg crOk iyoyk = iock, we have the following relations 
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州（叩）（一勿o舌・卯）（ρ）一・・
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（26）

From　Eq’s（25）and（26）we　get　th6resu1t

〃・」ξ／（2糸2、・醐1・1岬）吻）1・1肋）1・（・・）

with

　　　　　　　　　　　　　　　　　　　　　∂　　　1
　　　　　　　　　　　　　〈K此〉酬一δ・〃oグ。・。肋〈四×ρ〉・ノ2

and

　　　　　　　　　　　　〈¢・ρ〉、、＝w（8）†（四・ρ）w（「）・　　　　　　　　（28）

Eq’s（25）and（27）comc1de　w1th　that　g1v’en1n　re胎rence2　Fma11y，for　the　sake　of

comp1eteness　we　wr1te　Pμ1n　our　notat1ons・

戸1一亭1（2票2、・・μ（似⑫）・伽晦）） （2g）

w1th　pμ　（Po＝曲2＋醐2，里）

　　§4。丁肚ePr㏄盆醐出

　　For　the　neutra1vector丘e1dψμ，we　ha▽e　the　fo11ow1ng　re1at1ons’

　　　　　　　　　　　　　　1　　　　　　　　　　　　　肋2
　　　　　　　　　　y＝て（∂1ψド∂・ψ1）（∂μφv一∂Ψψμ）十丁〃・

　　　　　　　　　　　　　δy
　　　　　　　　　　π1一δグφW此ψO…（皿）㌧

　　　　　　　　　　ψ・一去π，

　　　　　　　　　　　　　肋

　　　　　　　　　　1・・一圭（π・・吻・・（卿）・・（服）2／肋2）・

　　　　　　　　　　（Σμv）、β＝1（σμ、ググσv、σμβ）・

The　Four1er　expans1on　ofψμ（x）1s　wr1tten

（30）
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epP(x)-J (_,7T)32kO (ap(k)_ e~ik'+apt(k) e'k') _ dk 

(31) 

wri~h aO(k) = ho(k)/ko 
ff(x) = J d¥k_3 ' I(a(k) - ke_~fk) ) e~ik' -(at(k) - ka~kt(k)) eik' 

J･ _ (32) 

The commutation relations between aA(k) and aut(.k') is read from (:6), (31) and (32) as 

[a'l(h), a~t(k')] = -(2lr)32k08(k-k') (gP" - k#k' ) , (kO = ~k2 + In2) (33) 
m 2 

others are zero 

In order to get the normal mode we must expand ap(k) in terms of the four 
dimensional polarization vectors [7] 8(')p ' 

(.)p k(ke(*)) ke(') 

e =( m ' ) e(') + (r = 1,2, 3) (34) m(k0+m) ' 

where e(') are three orthogonal unit space vectors in the rest system of the time like 

four vector kP 

ap(k) = ~. 8(')ua(')(k), aut(k) = ~. e(')pa(')t(k) (35) 

Denoting 

8(o)u ~ kP/rn , (36) 
we have the following relations : 

(P)P (') = gP", 

(37) 
8(o)pe(o)+ ~ e(')p8(')+=gP" . 

Using (37) we can invert (35) as 

a(')(k) = - ap(k)8(') . (38) 
From (33), (37) and (38) we get 

[a.(')(.k), a(';t(k')] = 8rs(2~)32k06(k - k') . (39) 

a(')(k) and a(')t(k) are the usual annihilation and creation operators of a vector meson 

with momentum k and linear polarization e('). Substituting (31) and (32) into (16) 

we have 
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j o : [( ~ ~ o _ ) J- (2lc)32ik at(k) a( k) - ko (aot(k) + a ( k)) 

' (h x Vk) (a(k) +at( -k)) + (at(k) -a( -k) 

k
 

(aOt(k)+a ( k)))x (a(k)+at(-k))]: . 

By examining the symmetry operation k~' -k, we can drop the terms quadratic in 

a (at) in (40). Substituting (35) into (40) and making use of the following relations : 

kl ~ (&(r)1 ko ~ - e(r)ol 8(s)1 =5.s' 

~ (8(r)1 kl (r) k (r)o x ~(s) =e(r) x e(s) _ ~
 - e(')o/ (k x Vk)e(s)1 + _ , (4 1 ) 

( kl (s)o k (s)o r
 + ~(') x ~~(s) 8 ~1 8(r)1(k x Vk)~e(*)1 - e =e(r) x e(s) 

we finally get the following result 

J
 

dk J= ~ (2lc)32ko a(s)t(k)
s'a(r)(k) (42) "s 

with 

sr = ~ i~sr(k x Vk) - i(e(s) x e(r)) 

To get the angular momentum representation we must make use of the circular 
polarization ; 

a.(-+) = :F (a(1) :F ia(2))l~2, 

a(:t)t = :F (a(1)t :!: ia(2)t)l~2, (43) 

a(o) a(3) a(o)t~;a(3)t. 

As for the boost generators Mok a similar calculation as that of Jk yields the 

following answer 

= j dk Mok _ (2lc)32ko a(s)t(k)
sra(r)(k) (44) 

~
 r' s 

wit h 

sr 3srlkoVk+ ko +m ((ke(s))e(r) (ke(r))e(s)) 
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S 5. Application 

As a simple application of the result in S 3 we shall examine the transformation 

property of the annihilation operator a.(p) of the Dirac particle. In this section we 

denote it a..(p) tQ _ specify the spin quantizatio~l axis explicitly 

We consider a three dimensronal rotation wrth rotation parameters a = uoc. The 

unit yector u represents the axis of the rotation and oc its magnitude ; - Ic 

By this rotation the moment]ml p is t.ransformed to p' and e to e'. The unitary 

transformation corresponding to this rotation is given by e~iJ* with Jk given by (23) 

By a straightforward calculation we can prove that 

iJa a..(p) eiJa = a..,(p') . (45) 

Eq. (45) shows that a..(p) behaves as a scalar operator in accordance with our 
intuition. 

The proof of .(45) goes as follows. Calculating multiple commutators [Ja[ 

[Ja, a..(p)]"'], we write the l.h.s. of (45) as 

(ei

 a.(p)). 

where 

 is the two by two matrix with the matrix element given by (24) and a.(p) is two by one matrix. By using (24) we have the followings ; 

l.h.s. of (45) = ~ (w(')t e l~e w(')) eila as'(P) 

= ~ (w(~)t w('))a..(p') = a..,(p') . 

q. e. d. 

For the boost operators (27) a similar relation as (45) can be proved. 
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