Smooth Circle Group Actions on Complex Surfaces

Hiromichi Matsunaga
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 6, 1980)

Abstract

Complex surfaces have been classified by Kodaira in I of [12] up to birational isomorphism. In this note we study effective smooth circle and torus actions on complex surfaces. In § 1 we consider actions on ruled surfaces, Enriques surfaces and the elliptic modular surface $\boldsymbol{B}_{\boldsymbol{r}(8)}$. The series of elliptic modular surfaces $\boldsymbol{B}_{\boldsymbol{r}(N)}(\mathbb{N} \geqq 5)$ belong to the class $I V_{0}$ and some family of elliptic surfaces derived from basic ones are in the class IV_{0} or VI_{0} ([11]). Actions on these surfaces are considered in § 2. Hopf surfaces and Inoue surfaces [8] are in the class VII⿱0. In § 3 we study actions on these surfaces. In this note we mean by an action an effective action.

§1. Surfaces of class I_{0}

For a complex surface, the following formulas are known:
(i) $12\left(p_{g}-q+1\right)=c_{1}^{2}+c_{2}$ (Noether's formula e.g. (3) in I of [12]),
(ii) $3 b^{+}-3 b^{-}=c_{1}^{2}-2 c_{2}$ (Hirzebruch signature theorem),
(iii) if b_{1} is even, then $2 q=b_{1}, 2 p_{g}=b^{+}-1$, if b_{1} is odd, then $2 q=b_{1}+1,2 p_{g}=b^{+}$(Theorem 3 in I of [12]),
(iv) $c_{2}=2-2 b_{1}+b_{2}$.

First we have
Lemma 1. If a complex surface admits a holomorphic torus action, then its Chern numbers are all zero.

Proof. Since the action is effective and holomorphic, its isotropy groups are all finite. Denote by C the additive group of complex numbers. Then we have a holomorphic C-action on the surface and the action is fixed point free. Thus on the surface there exists a non vanishing holomorphic vector field, and it follows from Corollary 1 in [2] that its Chern numbers c_{1}^{2}, c_{2} are zero.

Now we consider some rational surfaces. The projective plane admits a series of inequivalent holomorphic S^{1}-actions which are given by $\left[z_{0}, z_{1}, z_{2}\right] \rightarrow\left[\rho^{m} z_{0}, \rho z_{1}\right.$, $\left.z_{2}\right]$, where $\rho \in S^{1}$ and for all integers m. By Lemma 1 , it does not yield any holomorphic torus action, because its Chern numbers are given by $c_{1}^{2}=9 x^{2}, c_{2}=3 x^{2}$ for a generator x of the second cohomology group with integer coefficient. However it has an infinite number of inequivalent smooth torus actions, e.g. [17]. Then we have

Proposition 1. On the projective plane, there exists an infinite number of
inequivalent holomorphic circle and smooth torus actions, but it does not yield any holomorphic torus action.

Consider the series of Hirzebruch manifolds \sum_{n} in [6], where n in a non negative integers. These surfaces are ruled surfaces of genus zero. Then we have

Proposition 2. Each surface $\sum_{n}(n=0,1,2, \ldots)$ has an infinite number of inequivalent holomorphic circle and smooth torus actions, but it does not yield any holomorphic torus action.

Proof. The surface is given by

$$
P^{2}\left(x_{0}, x_{1}, x_{2}\right) \times P^{1}\left(y_{1}, y_{2}\right) \supset \sum_{n}: x_{1} y_{1}^{n}-x_{2} y_{2}^{n}=0
$$

It admits a holomorphic circle action which is given by

$$
\left(x_{0}, x_{1}, x_{2}\right)=\left(\rho x_{0}, \rho^{k} x_{1}, \rho^{k} x_{2}\right) \quad \text { for each } \quad \rho \in S^{1} \quad \text { and } \quad k=0,2,3, \ldots
$$

For an even integer n, the surface is diffeomorphic to the product of 2-spheres $S^{2} \times S^{2}$, while for an odd integer n, it is diffeomorphic to a connected sum $P \# Q$ about a fixed point, where P is the projective plane and Q is the one with the reversed orientation. Then by Proposition 1 there exists an infinite number of inequivalent smooth torus actions on the surface. By (i), (ii) above we have $c_{2}=4, c_{1}^{2}=8$. By Lemma 1 we complete the proof of the proposition.

Ruled surfaces of genus 1 have been completely classified by Atiyah and Suwa [21]. If an algebraic surface admits a holomorphic torus action then by [7] it is a principal Seifert fibre space over an algebraic curve. Using Folgerung in p. 122 of [19], the curve is non singular. Thus the surface is an elliptic surface. Elliptic ruled surfaces are given by Theorem 5 in [21]. Each ruled surface of genus 1 is diffeomorphic to S_{0} or A_{-1}, which are elliptic ruled surfaces. Thus we have

Proposition 3. Any ruled surface of genus 1 admits a smooth torus action.
Remark. In [21], Suwa has constructed complex analytic families for the surfaces. We may see that some of ruled surfaces admit holomorphic circle actions.

Next let us consider ruled surfaces of genus $g \geqq 2$. Such a surface is a projective line bundle over a non singular algebraic curve X_{g} of genus $g \geqq 2$. We prove

Theorem 1. Any ruled surface of genus $g \geqq 2$ admits a smooth circle action, but these surjaces do not yield any smooth torus action.

Proof. For any projective line bundle there is an associated holomorphic plane bundle $E \rightarrow X_{g}$. In the smooth category, its structure group $G L(2, C)$ can be reduced into the unitary group $U(2)$. Denote by $E_{0} \rightarrow X_{g}$ the associated principal $U(2)$ bundle. Then the projective line bundle is given by $\pi: P(E)=E_{0} / U(1) \times U(1) \rightarrow X_{g}$. Since a fibre is a 2 -sphere, it admits a cross section and the bundle E_{0} is reducible to a $U(1)$
$\times U(1)$-bundle i.e. $E_{0}=F_{0} \times_{U(1) \times U(1)} U(2)$. Then we have

$$
\begin{aligned}
P(E) & =\left(F_{0} \times_{U(1) \times U(1)} U(2)\right) \times_{U(2)}(U(2) / U(1) \times U(1)) \\
& =F_{0} \times_{U(1) \times U(1)}(U(2) / U(1) \times U(1)) .
\end{aligned}
$$

We can define a $U(1) \times(e)$-action on $P(E)$ by $x(f, g H)=(f, x g H), H=U(1) \times U(1)$ and $x \in U(1) \times(e)$, where $f \in F_{0}, g H \in U(2) / U(1) \times U(1)$ and e is the unit element of $U(1)$. Now the Euler characteristic of the surface $P(E)$ is given by

$$
\chi(P(E))=c_{2}(P(E))=\chi\left(S^{2}\right) \chi\left(X_{g}\right)=2(2-2 g)<0 .
$$

Since a torus is arcwise connected, the induced homomorphism $f_{*}: H_{*}(P(E)) \rightarrow$ $H_{*}(P(E))$ is the identity mapping for a torus action $T^{2} \times P(E) \rightarrow P(E)$ and any $f \in T^{2}$, and its Lefschetz number Λ_{f} is non zero. Choose f to be a generator of the torus group. Then we see that the fixed point set of the action is non empty. If the action is effective, then by VI of [16] the fundamental group $\pi_{1}(P(E))$ must be a free product of infinite and finite cyclic groups. On the other hand, we have $\pi_{1}(P(E))=\pi_{1}\left(X_{g}\right)$, which can not be a free product. This is a contradiction.

Next we prove
Theorem 2. Enriques surfaces may not yield any smooth circle action.
Proof. Since $c_{2}=12 \neq 0$, any circle action has the non empty fixed point set. Any Enriques surface admits a K 3 -surface as an unramified double covering ($\$ 5$, Chap. X in [18]). If an Enriques surface admits a circle action, then by 9. Chap. II in [3], we may lift the action to an action over the K3-surface, but a K3-surface may not yield any circle action except for a trivial action, which is a contradiction.

Let $\Gamma(N)$ be the principal congruence subgroup of level N in the group $S L(2, Z)$ and $B_{\Gamma(N)}$ be the elliptic modular surface attached to the group $\Gamma(N)$ as in [20]. Then we have

Lemma 2. We have an equality $c_{2}\left(B_{\Gamma(N)}\right)=\mu(N)$, where right hand side denotes the index of the subgroup $\Gamma(N) \cdot\{ \pm 1\}$ in the group $S L(2, Z)$.

Proof. By (5.5), (5.3) in [20] and the relation $q=g\left(\Delta_{\Gamma(N)}\right)$, the genus of the base curve $\Delta_{\Gamma(N)}$, we have

$$
p_{g}-q+1=\frac{(N-3) \mu(N)}{6 N}-1-\frac{(N-6) \mu(N)}{12 N}+1=\frac{(2 N-6)-(N-6)}{12 N} \mu(N)=\frac{\mu(N)}{12} .
$$

Since $B_{\Gamma(N)}$ is an elliptic surface for each $N, c_{1}^{2}=0$. Then by the Noether's formula (i), we obtain the lemma.

Now we consider the elliptic modular surface $B_{\Gamma(3)}$ especially. Then we have
Theorem 3. The elliptic modular surface $B_{\Gamma(3)}$ admits a smooth torus action.

Proof. The Lefschetz pencil in § 1, Chap. VII of [18] is an elliptic surface over the projective line and by definition it is diffeomorphic to the connected sum $P \# 9 Q$ and the second Chern class $c_{2}=12$ by the formula (iv) above. On the other hand the surface $B_{\Gamma(3)}$ is an elliptic surface over the projective line with $c_{2}=12$. Taking an analogue to the proof of Theorem 8 using Lemma 4 which appeared in § 1 of Part II of [15], we obtain the following: $B_{\Gamma(3)}$ is deformable into a regular Lefschetz fibration with singular fibres of type $I_{1} \times 12$ by Lemma 6 in p. 155 of [15]. Then we can apply Theorem 9 in p. 175 of [15]. Hence the Lefschetz pencil is diffeomorphic to the surface $B_{\Gamma(3)}$. The surface $B_{\Gamma(3)}$ has the invariants $q=0, p_{g}=0, c_{1}^{2}=0$ and it is a basic member in the sense II of [11], then it is a surface of class I_{0}. The surface $P \# 9 Q$ admits an infinite number of smooth torus actions ([17]).

§ 2. Surfaces of classes $\mathbf{I V}_{\mathbf{0}}$ and VI_{0}

In this section, first we have
Proposition 4. In the classes IV_{0} and VI_{0}, there exist infinitely many surfaces with holomorphic torus actions, while in the class IV_{0}, there exist infinitely many surfaces without smooth circle actions.

Proof. Let Δ be a non singular algebraic curve with genus p, and $C_{0}=C / G$ a torus. Consider the product surface $B_{0}=\Delta \times C_{0}$. The invariants are given by

$$
b_{1}=2 p+2, \quad q=p+1, \quad b_{2}=4 p+2, \quad c_{2}=2-2 b_{1}+b_{2}=0, \quad p_{g}=q-1=p .
$$

Then if $p=0$, then the surface is of class I_{0}; and if $p \geqq 1$, then it is of class IV_{0}. Clearly the surface admits a holomorphic torus action. Let f be the normal bundle of the embedding $\Delta \subset B$. Then f is the product bundle and we have the exact sequence of cohomology groups ((11.7) in III of [11]),

$$
\longrightarrow H^{1}(\Delta, \Omega(f)) \longrightarrow H^{1}(\Delta, \Omega(B)) \xrightarrow{\delta^{*}} H^{2}(\Delta, G) \longrightarrow 0 .
$$

In this case, it follows that $G \approx Z \oplus Z$. Further, we have

$$
b_{1}\left(B^{\eta}\right)= \begin{cases}2 p+2 & \text { if } \quad c(\eta)=\delta^{*}(\eta)=0 \quad \text { for } \quad \eta \in H^{1}(\Delta, \Omega(B)) \\ 2 p+1 & \text { otherwise }\end{cases}
$$

Then the surface B^{η} is of class IV_{0} if $c(\eta)=0$ and of class VI_{0} if $c(\eta) \neq 0$. By the construction 9 of II in [11], we have

$$
\operatorname{dim} H^{1}(\Delta, \Omega(f))=p_{g}=p .
$$

Now we consider the elliptic modular surface $B_{\Gamma(N)} \xrightarrow{\Psi} \Delta_{\Gamma(N)}$ for each $N \geqq 5$. Let f be a holomorphic line bundle over the curve $\Delta_{\Gamma(N)}$ with Chern class $c_{1}=-p_{g}+q-1$.

Then the canonical line bundle of the surface $B_{\Gamma(N)}$ is given by $K=\Psi^{*}\left(k \cdot f^{-1}\right)$, where k is the canonical line bundle of the curve $\Delta_{\Gamma(N)}$ (III of [11]). We have $c_{1}\left(k \cdot f^{-1}\right)=$ $2(g-1)+p_{g}-q+1$, where g is the genus of the curve $\Delta_{\Gamma(N)}$. By $\mu(N)=\frac{1}{2} N^{3} \prod_{p \mid N}$ $\left(1-1 / p^{2}\right)$ and the proof of the lemma 2 in $\S 1$ it follows that $c_{1}(K)$ is an even multiple of some class in $H^{2}\left(B_{\Gamma(N)}, Z\right)$ if $N \equiv 0 \bmod 8$. Thus in this case the surface $B_{\Gamma(N)}$ is a spin manifold and $c_{2} \neq 0$. Since the surface is an elliptic surface, $c_{1}^{2}=0$ and we have

$$
\hat{A}=\frac{1}{24}\left(2 c_{2}-c_{1}^{2}\right)=\frac{1}{12} c_{2} \neq 0 .
$$

Hence by the criterion in [1], the surface may not yield any smooth circle action. Since $b_{1}=2 g$ and $p_{g}>0$ by (5.5) in [20], the surface is of class IV ${ }_{0}$. Thus we have proved the proposition.

Concerning to the proposition 4 , here we prove two propositions.
Proposition 5. The elliptic modular surface $B_{\Gamma(N)}$ may not yield any smooth torus action for each $n \geqq 6$.

Proof. The elliptic modular surface $B_{\Gamma(N)}$ has a cross section, then the fundamental group $\pi_{1}\left(B_{\Gamma(N)}\right)$ has a subgroup which is isomorphic to the fundamental group $\pi_{1}\left(\Delta_{\Gamma(N)}\right)$ and it is not a free product. Then by VI of [16], the surface may not yield any torus action.

Proposition 6. Let S be an algebraic surface with invariants $b_{1}=0, p_{g}>0$. Then the surface S may not yield any holomorphic circle action.

Proof. Suppose that the surface S admits a holomorphic circle action. The group of all holomorphic automorphisms of the surface S is a complex Lie group. By the assumption its Lie algebra has a positive dimension over the complex number field and there exists a non zero holomorphic vector field X on S. Since $b_{1}=0$, it follows from Matsushima's theorem (e.g. Theorem 9.8 in III of [10]) that the vector field X has a non empty zero set, i.e. $\operatorname{Zero}(X) \neq \phi$. Further

$$
0 \leqq \operatorname{dim} \operatorname{Zero}(X)<2, \text { then } \operatorname{dim} H^{0}\left(S, \Omega^{2}\right)=p_{g}=0,
$$

by Theorem 11.1 (Howard) in [10]. It is a contradiction.
Remark. The elliptic modular surface $B_{\Gamma(5)}$ has invariants $b_{1}=0$ and $p_{g}>0$. Hence, it can not yield any holomorphic circle action. In the projective 3-space $C P^{3}$, the surface: $z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}=0$ is of class V_{0}, since its invariants are given by $q=0$, $p_{g}=4, c_{1}^{2}=5, c_{2}=55, b_{1}=0, b_{2}=53$. The surface does not admit any holomorphic circle action.

§3. Surfaces of class VIII

First we have
Proposition 7. Any elliptic surface of class VII_{0} admits a holomorphic torus action.

Proof. By making use of the construction 9 in II of [12], we have a torus action which is given by

$$
D_{v} \times C \ni\left(\sigma_{v},\left[\zeta_{v}\right]\right) \longrightarrow\left(\sigma_{v},\left[\zeta_{v}+\zeta\right]\right) \in D_{v} \times C \quad \text { for } \quad \zeta \in C
$$

The action is compatible with the action of the group \mathfrak{H}_{v} (see 9 [12]) and with the identification (78) in II of [12].

Remark. The generalized Hopf surface $H(a)$ in [4] has the invariants $b_{1}=1$ and $q=1$, if $\Sigma(a)$ is a homology sphere and such a surface admits a holomorphic torus action $T_{a} \times H(a) \rightarrow H(a)$ in [4]. Then by the lemma in $\S 1$, we have $c_{1}^{2}=c_{2}=0$ and $p_{g}=0$. Hence the surface $H(a)$ is of class VII_{0} and is an elliptic surface. Concerning with non elliptic surfaces, first we have

Proposition 8. Any non elliptic Hopf surface admits a smooth torus action with finite isotropy groups.

Proof. By Theorem 32 in II of [12], the surface is given as a quotient manifold W / G, where $W=C^{2}-(0)$ and $G=Z \times Z_{l}$ together with the actions

$$
f:\left(z_{1}, z_{2}\right) \longrightarrow\left(\alpha_{1} z_{1}+\lambda z_{1}^{m}, \alpha_{2} z_{2}\right), \quad \text { where }\left(\alpha_{1}-\alpha_{2}^{m}\right)=0 \text { for a generator } f \text { of } Z,
$$

and

$$
e:\left(z_{1}, z_{2}\right) \longrightarrow\left(\varepsilon_{1} z_{1}, \varepsilon_{2} z_{2}\right), \quad \text { where }\left(\varepsilon_{1}-\varepsilon_{2}^{m}\right)=0 \text { for a generator } e \text { of } Z_{l} \text {. }
$$

Put $\exp \beta_{2}=\alpha_{2}, \exp \beta_{1}=\alpha_{1},\left(\lambda / \alpha_{1}\right) \exp \left(-\beta_{1}\right)=\lambda_{1}$, and define the mapping $F: R \times S^{3}$ $\rightarrow W$ by

$$
F\left(t, z_{1}, z_{2}\right)=f^{t}\left(z_{1}, z_{2}\right)=\left(\left(\exp t \beta_{1}\right)\left(z_{1}+t \lambda_{1} z_{2}^{m}\right),\left(\exp t \beta_{2}\right) z_{2}\right)(\text { see [13] }),
$$

where R is the real number field. Then it is a diffeomorphism and satisfies the equality $f \cdot f^{t}=f^{t+1}$, and it induces a diffeomorphism $\hat{F}: S^{1} \times S^{3} \rightarrow W /\{f\}$. Since the mapping \widehat{F} commutes with the action e, it induces a diffeomorphism $\widehat{F}: S^{1} \times\left(S^{3} /\{e\}\right) \rightarrow W / G$. The quotient space $S^{3} /\{e\}$ admits a torus action which is given by $\left[z_{1}, z_{2}\right] \rightarrow$ $\left[(\exp 2 \pi \varphi) z_{1},(\exp 2 \pi \theta) z_{2}\right]$ for $(\varphi, \theta) \in T^{2}$. Thus the Hopf surface has the required action.

Next we discuss an existence of a circle action on Inoue surfaces [8]. First we prove

Lemma 3. Inoue surfaces are of type $K(\pi, 1)$.

Proof. Denote by H, C and R the upper half of the complex, the complex plane and the real line respectively. Define a diffeomorphism $F: H \times C \rightarrow R^{4}$ by $F\left(X_{1}+i Y_{1}\right.$, $\left.X_{2}+i Y_{2}\right)=\left(X_{1}, \log Y_{1}, X_{2}, Y_{2}\right)$. Then the group $G_{M}=\left\langle g_{0}, g_{1}, g_{2}, g_{3}\right\rangle$ determines a subgroup $\bar{G}_{M}=\left\langle\bar{g}_{0}, \bar{g}_{1}, \bar{g}_{2}, \bar{g}_{3}\right\rangle$ of the affine group $A(4)=R^{4} \cdot G L(4, R)$ and we have a diffeomorphism $\bar{F}: S_{M} \rightarrow R^{4} / \bar{G}_{M}$. By Theorem 3.3 of [9], the quotient surface \bar{S}_{M} inherits a flat connection with parallel torsion and is compact. Then by Proposition 4.3 of [9], it is of type $K(\pi, 1)$ i.e. aspherical. We can prove quite similarly the statement about surfaces $S^{(-)}, S^{(+)}$.

Now we have
Theorem 4. (1) The surfaces S_{M} and $S_{N, p, q, r}^{(-)}$do not admit any smooth circle action. (2) The surfaces $S_{N, p, q, r, t}^{(+)}$admit a smooth circle action.

Proof. If a surface of type $K(\pi, 1)$ admits a circle action, then by Lemma 5.5 [5] the action is injective and we have a central extension $0 \rightarrow Z \rightarrow \pi_{1}\left(S_{M}\right) \rightarrow N \rightarrow 1$. By the relation in p. 274 [8], concerning the generators $g_{0}, g_{1}, g_{2}, g_{3}$, we can choose an element of the form $g=g_{1}^{a} g_{1}^{b} g_{3}^{c} g_{0}^{d}$ as a generator of the normal subgroup Z. Then by a computation of the element $g_{0} g g_{0}^{-1}$, we have a relation ${ }^{t} M^{t}(a b c)={ }^{t}(a b c)$, where the 3×3-matrix $M \in S L(3, Z)$ is the matrix in $\S 2$ of [8] and t denotes the transposed matrix. But the matrix M does not contain 1 as an eigenvalue. This is a contradiction. The situation is quite similar for the surfaces $S_{N, p, q, r}^{(-)}$. Hence we have (1). Now we consider the surfaces $S_{N, p, q, r, t}^{(+)}$. By the proof of Lemma 3 and $\S 3$ in [8], the element \bar{g}_{3} generates an infinite cyclic subgroup of $\bar{G}_{N}^{(+)}$, which is a central subgroup and we have an action of the circle $R\left(X_{2}\right) /(\bmod s)$ on the surface $\bar{S}_{N, p, q, r, t}^{(+)}$, where $s=\left(b_{1} a_{2}-b_{2} a_{1}\right) / r$. Thus we have proved (2).

References

[1] M. F. Atiyah and F. Hirzebruch, Spin-Manifolds and Group Actions, Essays on Topology and related Topics, Springer, 1969, 18-28.
[2] R. Bott, Vector fields and characteristic numbers, Michigan Math. J. 14 (1967) 231-244.
[3] G. E. Bredon, Introduction to compact transformation groups, Academic press, 1972.
[4] E. Brieskorn and A. Van De Ven, Some complex structures on products of homotopy spheres, Topology 5 (1968) 389-393.
[5] P. E. Conner and F. Raymond, Actions of compact Lie groups on Aspherical manifolds, Topology of Manifolds, (Proc. Inst. Univ. of Georgia, Athens) Markham, 1970, 227-264.
[6] F. Hirzebruch, Über eine Klasse von einfach-zusammenhängende komplexen Mannigfaltigkeiten, Math. Ann. 124 (1951) 77-86.
[7] H. Holmann, Seifertsche Faserräume, Math. Ann. 157 (1964), 138-166.
[8] M. Inoue, On surfaces of class VII_{0}, Inventiones Math. 24 (1974), 269-310.
[9] F. W. Kamber and P. H. Tondeur, Flat manifolds with parallel torsion, J. Differential Geometry, 2 (1968), 385-389.
[10] S. Kobayashi, Transformation groups in differential geometry, Springer, 1972.
[11] K. Kodaira, On compact complex analytic surfaces, II-III, Ann. of Math. 77 (1963), 563626, 78 (1963), 1-40.
[12] K. Kodaira, On the structure of compact complex analytic surfaces, I-II, Amer. J. of Math. 86 (1964), 751-798, 88 (1966), 682-721.
[13] K. Kodaira, Theory of complex analytic surfaces, Lecture Notes, Univ. of Tokyo, 1974, (in Japanese).
[14] H. Matsunaga, Automorphisms of some surfaces and equivariant line bundles, Mem. Fac. Sci. Shimane Univ. 13 (1979), 23-29.
[15] B. Moishezon, Complex surfaces, Springer, Lecture Notes in Math. 603 (1977).
[16] P. S. Pao, The topological structure of 4-manifolds with effective torus actions I, Trans. Amer. Math. Soc. 227 (1977), 279-317.
[17] F. Raymond, Actions of the torus on 4-manifolds I, Trans. Amer. Math. Soc. 152 (1970), 531-559.
[18] I. R. Šafarevič, Algebraic surfaces, Proc. Steklov Inst. of Math., 1967.
[19] I. R. Schafarewitsch, Grundzüge der Algebraischen Geometrie, Friedr. Vieweg und Sohn, Braunschweig, 1972.
[20] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24(1) (1972), $20-59$.
[21] T. Suwa, On ruled surfaces of genus 1, J. Math. Soc. Japan 21(2) (1969), 291-311.

