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The iuvestigation of various properties of homogeneous systems in [2], t3], [4] is continued 

to this paper. The notions of mormal subsystems and quotiemt homogerneous systeHns are iu-

troduced in S I . In S 2, analytic homomorphfisms of amalytic homogeneous sv. stems are treated 

It is shown that the tangent Lie triple algebra of a closed normal subsystem of a geodesic homo-

greneous system G is an ideal of the tangent Lie triple algebra of G (Theorem 3). 

S I . Normal subsystems of homogeneous systems 

In this paper, we use the same terminologies and notations as used in the preced-

ing papers [2], [3] and [4] ･ Let G = (G, n) be an abstract homogeneous system and 

H a subsystem of G. For an element x of G we denote by XH the subset n(H, x, H) 

= {n(u, x, v) I u, v e H} of G. The element x is contained in XH since n(u, x, u) =x 

for any u e H. The subsystem H is said to be invariant ([3]) if it satisfies 

(1.1) n(x, J')(xH) =yH for x, y e G. 
It is said to be normal if 

(1.2) n(xH, yH, zH)=n(x, y, z)H for x, y z e G 

REMARK. In the case of a homogeneous system of a group (.c.f. Example in S 1 

of [2]), a subsystem containing the identity element is normal if and only if it is the 

homogeneous system of a normal subgroup 

LEMMA 1. A normalsubsysteln is invariant. 

PRooF. Suppose that H is a normal subsystem of G and x, y e G. Then n(xH, 

yH, xH) = yH implies n(x, y) (xH) c yH, and XH c n(y, x) (yH). Since x and y can be 

chosen arbitrarily, we have n(x, y) (xH) = yH. q. e. d 
Let G~=(G~, ~) be a homogeneous system. A homomorphism of G into G~ is a 

map f: G->G~ satisfying ,fn(x, y, z)=~(fx, fy, fz) for x, y, z e G. If f: G->G~ is a 

homomorphism, then it is clear that the image (resp . inverse image) of any subsystem 

of G (resp. G) underf is a subsystem of G~ (resp. G) 

LEMMA 2. Letf: G->Gbe a llomomol'phism ofhomogeneous systems. For some 
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fixed e e G, set H=f-1 ~ (e) e f(e) Then H rs a subsystem of G and xH=f-1(~), 
x~ =f(x) for any x e G. 

PRooF. Since the subset {~I of a single element forms a subsystem of ~, H = 

f-1(~) is a subsystem of G. Now, Iet u e H and w ef-1(~) for x~' =f(x), x e G, and set 

v=n(x, u, w). The element v belongs to H since f'v=~(fx, fu,fw) =~(~, ~, ~)=~ 

Hence w = tl(.u, x, n(x, u, w)) = n(.u, x, v) e n(_H, x, H) = XH and f-1(~) c xH. On the 

other hand XH c f-1(~) holds since f(xH) =fn(H, x, H) = ~(.~, ~, ~) = ~. q. e. d 

PRoposmoN 1. A non-ell7,pty subset H of a homogeneous system G is a normal 
subsystem of G if and only if thel'e exjsts a homomorphism f : G~'G of G into a homo-

geneous system. G such tl'lat H=f-1(.~) for som,e ~=f(_e), e e H. 

PRooF. Suppose that f : G~'G~ is a homomorphism of G into G~ and H=f-1(~) 

for ~ e G. Then, by Lemma 2 above, we see that H is a subsystem of G and XH = 

f-1(~), ~ =fx for any x e G. For x, y, z e G we have n(xH, yH, zH) cn(x, y, z)H 

since ful(xH, yH, zH) =~(fx, fy, fz) =fn(x, J', z). If u, v e H and x, y, z e G, we 

have ful(n(y, x, u), -', n(J', x, 'v)) = ~(.~(f_V, fx, ~), fz, t~7(fy, fx, ~)) =fz and we get n(n(y, 

x, u), z, n(y, x, 'v)) e zH. This fact implies n(H, n(x, y, -'~), H) c n(xH, yH, zH). In 

fact, n(u, n(x, y, z), v) = n(x, y)n(17(y, x, u), z, n(y, x, v)) e n(x, J', -'H) cn(xH, yH, zH) 

hold for u, v e H and x, J', z e G. Thus, (1.2) is shown and hence H'is a normal sub-

system. Conversely, Iet H be a normal subsystem of G. By Lemma 1, H is an in 

invariant subsystem, and y exH if and only if XH = yH (Lemma '- of [3]). For x, y e G 

we define an equivalence relation - on G as x - y if y e xH. The quotient set G = 

G/ - is the collection of subsets of G given by {XH I x e G}. If we se't ~(xH, yH, zH) 

= n(x, y, z)H for x, y, z e G, then, by (1.2), we get a well defined homogeneous system 

~ = (G~, /~7) so that the natural projection f : G->G is a homomorphism of G onto G~, 

and H=f-1(~) for ~=f(H) e G. q. e. d. 
If H rs a normal subsystem of a homogeneous system G and G = {XH I x e G} , the 

homogeneous system (G, ~) defined in the proof above will be called a quotient /'romo-

geneous systeln of G modulo H, and denoted by G/H. 

S 2. Anatytic homomorphisms 

Let G = (.G, n) be an analytic homogeneous system whose underlying space G is 

a separable analytic manifold of dimension n. In the followings we assume that G 

is a geodesic homogeneous system (.cf. [3])･ We denote by ~ the tangent Lie triple 

alg~bra at some fixed point-ee G. _Suppose that H is a closed invariant analytic sub-

system of G containing e. Then H is an auto-parallel . submanifold with respect to the 

canonical connection of G, and hence the tangent Lie triple algebra ~ of H at e is an 

invariant Lie triple subalgebra of (~ (cf. ' the proof of Theorem 5 in [3])･ For each 
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x e G, XH is also an invariant subsystem of G obtained as the image of H under an 

analytic automorphism n(e, x) of G, and XH is an integral manifold of the distribution 

~ : x~>(~*=n*(e, x)~~_ on G. Since G is assumed to be separable and H is closed, 

there exists a cubical coordinate neighborhood U around e such that XH n U is a single 

slice of U whenever XH n U~~f (cf. p. 94 in [1]). Let G~=G/ - be the quotient set 

of G under the equivalence relation ; x - y if, y e xH. Then, from the results of [5] 

(Theorem X, p. 20) it follows that G has an analytic structure determined by an atlas 

consisting of local coordinate systems {(U., ip*) I x e G} such that U* =f.n(e, x)U 

and c*･f=p'n(x, e), wher-e* fi G~G is the n_at._u.ral projection and p : U->Rh is defined 

by p(x) = (xl,..., xh) when XH n U is expressed in the cubical coordinate system (U; 

ul ..., u") as a slice defined by ul=xl ... uh=xk (ll = n - dim H). Moreover, the 

projecti0.ll f is analytic. If H is normal, then, in the same way as in the case of the fac-

tor group G/H of a Lie group G by a closed normal subgroup H, it is shown that the 

operation ~ : G x G x G->G of the quotient homogeneous system G = G/H is. analytic 

and f is an analytic homomorphism of G onto G. Thus we have ; 

THEOREM 1. Let (G, n) be an analytic homogeneous system defined on a sepa-

rable analytic manifold G. Suppose that G is geodesic and H is a closed normal 

analytic subsystem, of G. Then the quotient homogeneous sJ'stem G=G/H of G 
Inodulo H is an analytic homogeneous system and the natural projection, f : G-~G/H 

is an, analytic hom,omorphism.. 

PROPOSITION 2. Let G and G be analytic hom,ogeneous systelns an,dfan analytic 

homolnorphism of G onto ~. Suppose that the ran.k off is maxilnal at each point of 

G. If G is geodesic, tllen so is G. 

PROoF. For some fixed point e e G, denote by A. the left inn,er mapping gl'oup 

(or llolonorn,y gl'oup) of G at e, i.e., A. is the subgroup of Aut (.G) generated by all 

diffeomorphisms of the form ; 

A*,y =n(x ･ y, e)'n(x, x ' y)'17(e, x), x, y e G, 

where x ･ y = n(e, x, J'). The group A. is contained in the isotropy subgroup of Aut (G) 

at e (cf. S 3 in [2]). Let K. be the closure of the left inner mapping group A. in the 

affine transformation group of the canonical connection of G, and A = G x K* be the 

Lie group identified with the subgroup {11(e, x~)'oc I x e G, oc e K.} of Aut (G) under the 

map (x, oc)H>n(e, x)'Q( (cf. [2] and S I in [3])･ By Proposition 5 in [2], the homo-

geneous system G is geodesic if and only if the 1-p~rameter subgroup exp tX, t e R, 

of A is contained in G x {1} for each X e ~ in the decomposition 2~ = (~; + s~ of the Lie 

algebra ~1: of A, i.e., n(e, x(t)), t e R, is a 1-parameter subgroup of Aut (G) for each 

geodesic x(t) = (exp tX)e of G tangent to X at e, since G = A/K, is a reductive homo-

geneous space and the canonical connection of G is the canonical connection of the 

second kind on A/K. (cf. Theorem I in [3])･ Let A~, K~ and A = G x K~ denote the 
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transformation groups corresponding to the homogeneous system G. Suppose that 

f is an analytic homomorphism of G onto G with maximal rank, f(e) = ~ and let ~ (resp 

~) be the tangent Lie tnple algebra at e (resp. ~). For any X e ~ choose X e ~ such 

that (df).(X) =X. If G is geodesic, then th>n(e, x(t)) for x(t) = (exp tX)e, t e R, is a 

1-parameter group of transformations on G. Since f is a homomorphism, f.n(e, x(t)) 

=~(~, ~(t))･f for ~(t) =f.x(t) and 1-1(~, ~(t)) is a 1-parameter subgroup of Aut (G), that 
d
 is, tH>(~(t), 1) is a 1-parameter subgroup of Z. The tangent vector dl (~(t), 1) at 

the identity (~, 1) is identified with (df)*X = X e ~ in the decompositio~ s~T~ = ~ + ~ 

of the Lie algebra ~~ of A since G = A/K~ is a reductive homogeneous space. Thus 

we have (~(t), 1) =exp tX and we see that G is a geodesic homogeneous system. q. e. d. 

THEORl3M 2. Let (G, n) and (G, ~) be two analytic homogeneous systems. As-

sume that both of G a,nd G are geodesic. Iff is an analytic homolnorphisln of G into 

G sending ee G to ~ e G. Then F=(df)*: ~->~ is a Lie triple algebra homomor-

ph,ism, where ~ (resp. ~;) is the tangent Lie triple algebra of G (resp. G) at e (resp. 

~) . 

PRooF. For each X e ~ = T*(G), denote by X* the analytic vector field on G 

defined as ; 

X*(x)=n*(_e, x)X, x e G, 

which will be called the vectol' field associated with t/･1,e tangent vector X at e. In 

the same manner we define an analytic vector field X* on G associated with X = F(X) 

e (5 = T.~(G). We first show that X* and X* are f-related. In fact, 

X*( f (x)) = ~*(~, fx)X = ~*(. fe, fx) (d f ).X 

= d(~(.fe, fx)'f).X = d(f ･~(e, x)).X =F･n*(e, x)X 

=F(X*(x)), x e G. 

For any analytic curve c(t), t e I, on G defined on an open interval I of R, put ~(.t) = 

f.c(t), t e I. The original definition that G is geodesic is the following (cf. [3]); If 

c(t) is a geodesic curve with respect to the canonical connection V of G, the parallel 

displacement T(tl' t2) of tangent vectors along c from xl = c(.tl) to x2 = c(t2) is given by 

T(.tl' t2) =n*(xl, x2) : T*i(G)~'Tx'(G). In particular, if G is geodesic, the tangent 

vectors dc to the geodesic curve c satisfy 

dt 

(t ) T(tl' t2) dt (tl) =n (c(tl)' c(t )) 2 dt (-tl)' 
dt 2~ 

In this case, the corresponding curve ~ =f.c on G satisfies 
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d c 

dt (t2) = (df) (t2) = (.df)*,n*(xl' x2) (tl) 
*' dt dt 

d c 
=~*(~l, ~2) (df)** dt (tl) 

d ~ 
n*(xl. ~2) dt (tl)' 

that is, ~ is an integral curve of the vector field Cf~(~)=~*(~l, ~)Cfl' ~ e G~, for ~fl = 

d ~ 
dt (tl) e T~,(G). If G is geodesic, the curve ~ is a geodesic curve with respect to the 

canonical connection V of G. Thus, we see that the homomorphism f sends geodesic 
curves in G to geodesie curves in G. Now, by using this fact we show that the vector 

fields Vx'Y* and Vx'Y* are f-related if X* and X* (resp. Y* and Y *) are f-related 

vector fields. For an arbitrarily fixed poi.nt xo e G, we consider a geodesic curve c(t), 

Itl

o dl placement of vectors along c from c(t) to xo' Then 

(Vx'Y ).. =1i~mo h (1:(h, O)Y*(c(h)) - Y*(xo)) ' 

From the fact just proved above, it follows ; 

(df)*~T(ll, O)Y*(.c(h)) = (df)*,n*(c(h), xo)Y*(c(h)) 

= cl(f.n(c(h), xo))Y*(c(h)) 

= ~*(~(h), ~.) (d f).(h) Y*(c(h)) 

= ~*(~(h), ~o)Y *(~(h)) 

= ~(h, O)Y*(~(h)) , 

where ~ =f.c and ~0=f(xo)' Therefore, we get 

(d f )*.(V x' Y*)*. = (V x'Y *) -

* *" . 
Let X*, Y* and Z* be the vector fields associated with X, Y and Z in ~, respectively 

The torsion S and the curvature R of V have their respective values for these vector 

fields as follows 

S(X*, Y*) = [X*, Y*] - Vx'Y* + VY.X* 

R(X*, Y*)Z* = Vtx'.Y']Z* - Vx'VY.Z* + VY.Vx'Z* 

Hence, if X*, Y* and Z* are vector fields on G associated with X=F(X), Y =F(Y) 

and Z = F(Z), respectively, then each of the pairs S(X*, Y*) and S(X*, Y *) ; R(X* 



46 Michihiko KIKKAWA 
Y*)Z* and R(X*, Y*)Z* is f-related. Hence we have 

F S.(X, Y) = S~(X, Y) , 

F R.(X, Y)Z = ~~(X,' l~')~, 

i.e., F : (~f~~; is a homomorphism of the tangent Lie triple algebras (cf. [3])･ q. e. d 

Combining Theorem I with Proposition 2 and Theorem 2, we have the following ; 

THBOP.EM 3. Let G=(G, n) be an analytic hom,ogeneous system and H a closed 

normal subsystem oJ' G. Suppose that G is geodesic. Then, at any point e e H, the 

tangent Lie'tripl'e algebra ~ of H is a Lie triple algebra ideal of the tangent Lie triple 

algebra ~ of G, and the tang~nt Lie triple algebra '~ of the ,quotient homogeneous 

system G/H at the origin is isomorphic to the quotient Lie tl'iple algebra (~;/~-

PROOF.. Let G = G/H be the quotient homoge~eous system of G modulQ H. By 

Theorem 1, G is an analytic homogen~ous system and the natural projection f : G->G~ 

is an analytic homomorphism. Then Proposition 2 and Theorem 2 imply that G is a 

geodesic homogeneous system and F = (df)* : ~; -> ~5 is a Lie triple algebra homo-

morphism of the tangent Lie triple algebras at e and ~ =f(e). Since the kernel of any 

homomorphism of Lie triple algebras is an ideal, we see that ~ = Ker F is an ideal of ~ 

and (~ is isomorphic to the quotient Lie triple algebra ~/~* . q. e. d. 
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