Mem. Fac. Sci., Shimane Univ., 14, pp. 41–46 Dec. 20, 1980

On Homogeneous Systems III

Michihiko KIKKAWA

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1980)

The investigation of various properties of homogeneous systems in [2], [3], [4] is continued to this paper. The notions of normal subsystems and quotient homogeneous systems are introduced in § 1. In § 2, analytic homomorphisms of analytic homogeneous systems are treated. It is shown that the tangent Lie triple algebra of a closed normal subsystem of a geodesic homogeneous system G is an ideal of the tangent Lie triple algebra of G (Theorem 3).

§1. Normal subsystems of homogeneous systems

In this paper, we use the same terminologies and notations as used in the preceding papers [2], [3] and [4]. Let $G = (G, \eta)$ be an abstract homogeneous system and H a subsystem of G. For an element x of G we denote by xH the subset $\eta(H, x, H)$ $= \{\eta(u, x, v) | u, v \in H\}$ of G. The element x is contained in xH since $\eta(u, x, u) = x$ for any $u \in H$. The subsystem H is said to be *invariant* ([3]) if it satisfies

(1.1) $\eta(x, y)(xH) = yH \quad \text{for} \quad x, y \in G.$

It is said to be normal if

(1.2)
$$\eta(xH, yH, zH) = \eta(x, y, z)H \quad \text{for} \quad x, y, z \in G.$$

REMARK. In the case of a homogeneous system of a group (c.f. Example in §1 of [2]), a subsystem containing the identity element is normal if and only if it is the homogeneous system of a normal subgroup.

LEMMA 1. A normal subsystem is invariant.

PROOF. Suppose that H is a normal subsystem of G and x, $y \in G$. Then $\eta(xH, yH, xH) = yH$ implies $\eta(x, y)(xH) \subset yH$, and $xH \subset \eta(y, x)(yH)$. Since x and y can be chosen arbitrarily, we have $\eta(x, y)(xH) = yH$. q.e.d.

Let $\tilde{G} = (\tilde{G}, \tilde{\eta})$ be a homogeneous system. A homomorphism of G into \tilde{G} is a map $f: G \to \tilde{G}$ satisfying $f\eta(x, y, z) = \tilde{\eta}(fx, fy, fz)$ for $x, y, z \in G$. If $f: G \to \tilde{G}$ is a homomorphism, then it is clear that the image (resp. inverse image) of any subsystem of G (resp. \tilde{G}) under f is a subsystem of \tilde{G} (resp. G).

LEMMA 2. Let $f: G \rightarrow \tilde{G}$ be a homomorphism of homogeneous systems. For some

Michihiko Kikkawa

fixed $e \in G$, set $H = f^{-1}(\tilde{e})$, $\tilde{e} = f(e)$. Then H is a subsystem of G and $xH = f^{-1}(\tilde{x})$, $\tilde{x} = f(x)$ for any $x \in G$.

PROOF. Since the subset $\{\tilde{e}\}$ of a single element forms a subsystem of \tilde{G} , $H = f^{-1}(\tilde{e})$ is a subsystem of G. Now, let $u \in H$ and $w \in f^{-1}(\tilde{x})$ for $\tilde{x} = f(x), x \in G$, and set $v = \eta(x, u, w)$. The element v belongs to H since $fv = \tilde{\eta}(fx, fu, fw) = \tilde{\eta}(\tilde{x}, \tilde{e}, \tilde{x}) = \tilde{e}$. Hence $w = \eta(u, x, \eta(x, u, w)) = \eta(u, x, v) \in \eta(H, x, H) = xH$ and $f^{-1}(\tilde{x}) \subset xH$. On the other hand $xH \subset f^{-1}(\tilde{x})$ holds since $f(xH) = f\eta(H, x, H) = \tilde{\eta}(\tilde{e}, \tilde{x}, \tilde{e}) = \tilde{x}$. q.e.d.

PROPOSITION 1. A non-empty subset H of a homogeneous system G is a normal subsystem of G if and only if there exists a homomorphism $f: G \to \tilde{G}$ of G into a homogeneous system \tilde{G} such that $H = f^{-1}(\tilde{e})$ for some $\tilde{e} = f(e)$, $e \in H$.

PROOF. Suppose that $f: G \to \tilde{G}$ is a homomorphism of G into \tilde{G} and $H = f^{-1}(\tilde{e})$ for $\tilde{e} \in \tilde{G}$. Then, by Lemma 2 above, we see that H is a subsystem of G and xH = $f^{-1}(\tilde{x}), \tilde{x} = fx$ for any $x \in G$. For x, y, $z \in G$ we have $\eta(xH, yH, zH) \subset \eta(x, y, z)H$ since $f\eta(xH, yH, zH) = \tilde{\eta}(fx, fy, fz) = f\eta(x, y, z)$. If $u, v \in H$ and $x, y, z \in G$, we have $f\eta(\eta(y, x, u), z, \eta(y, x, v)) = \tilde{\eta}(\tilde{\eta}(fy, fx, \tilde{e}), fz, \tilde{\eta}(fy, fx, \tilde{e})) = fz$ and we get $\eta(\eta(y, x, v)) = \tilde{\eta}(\eta(y, x, v)) = \tilde{\eta}(\eta(y, x, v))$ $(x, u), z, \eta(y, x, v)) \in zH$. This fact implies $\eta(H, \eta(x, y, z), H) \subset \eta(xH, yH, zH)$. In fact, $\eta(u, \eta(x, y, z), v) = \eta(x, y)\eta(\eta(y, x, u), z, \eta(y, x, v)) \in \eta(x, y, zH) \subset \eta(xH, yH, zH)$ hold for $u, v \in H$ and $x, y, z \in G$. Thus, (1.2) is shown and hence H is a normal subsystem. Conversely, let H be a normal subsystem of G. By Lemma 1, H is an in invariant subsystem, and $y \in xH$ if and only if xH = yH (Lemma 2 of [3]). For x, $y \in G$ we define an equivalence relation \sim on G as $x \sim y$ if $y \in xH$. The quotient set $\tilde{G} =$ G/\sim is the collection of subsets of G given by $\{xH \mid x \in G\}$. If we set $\tilde{\eta}(xH, yH, zH)$ $=\eta(x, y, z)H$ for x, y, $z \in G$, then, by (1.2), we get a well defined homogeneous system $\tilde{G} = (\tilde{G}, \tilde{\eta})$ so that the natural projection $f: G \to \tilde{G}$ is a homomorphism of G onto \tilde{G} . and $H = f^{-1}(\tilde{e})$ for $\tilde{e} = f(H) \in \tilde{G}$. q.e.d.

If H is a normal subsystem of a homogeneous system G and $\tilde{G} = \{xH \mid x \in G\}$, the homogeneous system (\tilde{G} , $\tilde{\eta}$) defined in the proof above will be called a *quotient homogeneous system* of G modulo H, and denoted by G/H.

§2. Analytic homomorphisms

Let $G = (G, \eta)$ be an analytic homogeneous system whose underlying space G is a separable analytic manifold of dimension n. In the followings we assume that G is a geodesic homogeneous system (cf. [3]). We denote by \mathfrak{G} the tangent Lie triple algebra at some fixed point $e \in G$. Suppose that H is a closed invariant analytic subsystem of G containing e. Then H is an auto-parallel submanifold with respect to the canonical connection of G, and hence the tangent Lie triple algebra \mathfrak{H} of H at e is an invariant Lie triple subalgebra of \mathfrak{G} (cf. the proof of Theorem 5 in [3]). For each $x \in G$, xH is also an invariant subsystem of G obtained as the image of H under an analytic automorphism $\eta(e, x)$ of G, and xH is an integral manifold of the distribution $\mathfrak{S}: x \mapsto \mathfrak{S}_r = \eta_*(e, x)\mathfrak{H}$ on G. Since G is assumed to be separable and H is closed, there exists a cubical coordinate neighborhood U around e such that $xH \cap U$ is a single slice of U whenever $xH \cap U \neq \emptyset$ (cf. p. 94 in [1]). Let $\tilde{G} = G/\sim$ be the quotient set of G under the equivalence relation; $x \sim y$ if $y \in xH$. Then, from the results of [5] (Theorem X, p. 20) it follows that \tilde{G} has an analytic structure determined by an atlas consisting of local coordinate systems $\{(\tilde{U}_x, \phi_x) | x \in G\}$ such that $\tilde{U}_x = f \circ \eta(e, x) U$ and $\phi_x \circ f = p \circ p(x, e)$, where $f: G \to \tilde{G}$ is the natural projection and $p: U \to R^h$ is defined by $p(x) = (x^1, \dots, x^h)$ when $xH \cap U$ is expressed in the cubical coordinate system (U; u^1, \dots, u^n) as a slice defined by $u^1 = x^1, \dots, u^h = x^h$ $(h = n - \dim H)$. Moreover, the projection f is analytic. If H is normal, then, in the same way as in the case of the factor group G/H of a Lie group G by a closed normal subgroup H, it is shown that the operation $\tilde{n}: \tilde{G} \times \tilde{G} \times \tilde{G} \to \tilde{G}$ of the quotient homogeneous system $\tilde{G} = G/H$ is analytic and f is an analytic homomorphism of G onto \tilde{G} . Thus we have;

THEOREM 1. Let (G, η) be an analytic homogeneous system defined on a separable analytic manifold G. Suppose that G is geodesic and H is a closed normal analytic subsystem of G. Then the quotient homogeneous system $\tilde{G} = G/H$ of G modulo H is an analytic homogeneous system and the natural projection $f: G \rightarrow G/H$ is an analytic homomorphism.

PROPOSITION 2. Let G and \tilde{G} be analytic homogeneous systems and f an analytic homomorphism of G onto \tilde{G} . Suppose that the rank of f is maximal at each point of G. If G is geodesic, then so is \tilde{G} .

PROOF. For some fixed point $e \in G$, denote by Λ_e the left inner mapping group (or holonomy group) of G at e, i.e., Λ_e is the subgroup of Aut (G) generated by all diffeomorphisms of the form;

$$\lambda_{x,y} = \eta(x \cdot y, e) \circ \eta(x, x \cdot y) \circ \eta(e, x), \quad x, y \in G,$$

where $x \cdot y = \eta(e, x, y)$. The group A_e is contained in the isotropy subgroup of Aut (G) at e (cf. § 3 in [2]). Let K_e be the closure of the left inner mapping group A_e in the affine transformation group of the canonical connection of G, and $A = G \times K_e$ be the Lie group identified with the subgroup $\{\eta(e, x) \circ \alpha \mid x \in G, \alpha \in K_e\}$ of Aut (G) under the map $(x, \alpha) \mapsto \eta(e, x) \circ \alpha$ (cf. [2] and §1 in [3]). By Proposition 5 in [2], the homogeneous system G is geodesic if and only if the 1-parameter subgroup $\exp tX, t \in \mathbb{R}$, of A is contained in $G \times \{1\}$ for each $X \in \mathfrak{G}$ in the decomposition $\mathfrak{A} = \mathfrak{G} + \mathfrak{K}$ of the Lie algebra \mathfrak{A} of A, i.e., $\eta(e, x(t)), t \in \mathbb{R}$, is a 1-parameter subgroup of Aut (G) for each geodesic $x(t) = (\exp tX)e$ of G tangent to X at e, since $G = A/K_e$ is a reductive homogeneous space and the canonical connection of G is the canonical connection of the second kind on A/K_e (cf. Theorem 1 in [3]). Let $\tilde{A}_{\tilde{e}}, \tilde{K}_{\tilde{e}}$ and $\tilde{A} = \tilde{G} \times \tilde{K}_{\tilde{e}}$ denote the transformation groups corresponding to the homogeneous system \tilde{G} . Suppose that f is an analytic homomorphism of G onto \tilde{G} with maximal rank, $f(e) = \tilde{e}$ and let \mathfrak{G} (resp. $\tilde{\mathfrak{G}}$) be the tangent Lie triple algebra at e (resp. \tilde{e}). For any $\tilde{X} \in \mathfrak{G}$ choose $X \in \mathfrak{G}$ such that $(df)_e(X) = \tilde{X}$. If G is geodesic, then $t \mapsto \eta(e, x(t))$ for $x(t) = (\exp tX)e, t \in \mathbb{R}$, is a 1-parameter group of transformations on G. Since f is a homomorphism, $f \circ \eta(e, x(t)) = \tilde{\eta}(\tilde{e}, \tilde{x}(t)) \circ f$ for $\tilde{x}(t) = f \circ x(t)$ and $\tilde{\eta}(\tilde{e}, \tilde{x}(t))$ is a 1-parameter subgroup of Aut (\tilde{G}) , that is, $t \mapsto (\tilde{x}(t), 1)$ is a 1-parameter subgroup of \tilde{A} . The tangent vector $\frac{d}{dt}\Big|_{0}(\tilde{x}(t), 1)$ at the identity $(\tilde{e}, 1)$ is identified with $(df)_e X = \tilde{X} \in \mathfrak{G}$ in the decomposition $\mathfrak{Y} = \mathfrak{G} + \mathfrak{K}$ of the Lie algebra \mathfrak{Y} of \tilde{A} since $\tilde{G} = \tilde{A}/\tilde{K}_{\tilde{e}}$ is a reductive homogeneous space. Thus we have $(\tilde{x}(t), 1) = \exp t\tilde{X}$ and we see that \tilde{G} is a geodesic homogeneous system. q.e.d.

THEOREM 2. Let (G, η) and $(\tilde{G}, \tilde{\eta})$ be two analytic homogeneous systems. Assume that both of G and \tilde{G} are geodesic. If f is an analytic homomorphism of G into \tilde{G} sending $e \in G$ to $\tilde{e} \in \tilde{G}$. Then $F = (df)_e : \mathfrak{G} \to \mathfrak{G}$ is a Lie triple algebra homomorphism, where \mathfrak{G} (resp. \mathfrak{G}) is the tangent Lie triple algebra of G (resp. \tilde{G}) at e (resp. \tilde{e}).

PROOF. For each $X \in \mathfrak{G} = T_e(G)$, denote by X^* the analytic vector field on G defined as;

$$X^*(x) = \eta_*(e, x)X, \quad x \in G,$$

which will be called the vector field associated with the tangent vector X at e. In the same manner we define an analytic vector field \tilde{X}^* on \tilde{G} associated with $\tilde{X} = F(X)$ $\in \tilde{\mathfrak{G}} = T_{\tilde{e}}(\tilde{G})$. We first show that X^* and \tilde{X}^* are f-related. In fact,

$$\begin{split} \widetilde{X}^*(f(x)) &= \widetilde{\eta}_*(\widetilde{e}, fx) \widetilde{X} = \widetilde{\eta}_*(fe, fx) (df)_e X \\ &= d(\widetilde{\eta}(fe, fx) \circ f)_e X = d(f \circ \eta(e, x))_e X = F \circ \eta_*(e, x) X \\ &= F(X^*(x)), \quad x \in G. \end{split}$$

For any analytic curve c(t), $t \in I$, on G defined on an open interval I of **R**, put $\tilde{c}(t) = f \circ c(t)$, $t \in I$. The original definition that G is geodesic is the following (cf. [3]); If c(t) is a geodesic curve with respect to the canonical connection \mathcal{V} of G, the parallel displacement $\tau(t_1, t_2)$ of tangent vectors along c from $x_1 = c(t_1)$ to $x_2 = c(t_2)$ is given by $\tau(t_1, t_2) = \eta_*(x_1, x_2)$: $T_{x_1}(G) \to T_{x_2}(G)$. In particular, if G is geodesic, the tangent vectors $\frac{dc}{dt}$ to the geodesic curve c satisfy

$$\frac{dc}{dt}(t_2) = \tau(t_1, t_2) \frac{dc}{dt}(t_1) = \eta_*(c(t_1), c(t_2)) \frac{dc}{dt}(t_1).$$

In this case, the corresponding curve $\tilde{c} = f \circ c$ on \tilde{G} satisfies

On Homogeneous Systems III

$$\begin{aligned} \frac{d\tilde{c}}{dt}(t_2) &= (df)_{x_2} \frac{dc}{dt}(t_2) = (df)_{x_2} \eta_*(x_1, x_2) \frac{dc}{dt}(t_1) \\ &= \tilde{\eta}_*(\tilde{x}_1, \tilde{x}_2) \ (df)_{x_1} \frac{dc}{dt}(t_1) \\ &= \tilde{\eta}_*(\tilde{x}_1, \tilde{x}_2) \frac{d\tilde{c}}{dt}(t_1), \end{aligned}$$

that is, \tilde{c} is an integral curve of the vector field $\tilde{C}_1^*(\tilde{x}) = \tilde{\eta}_*(\tilde{x}_1, \tilde{x})\tilde{C}_1$, $\tilde{x} \in \tilde{G}$, for $\tilde{C}_1 = \frac{d\tilde{c}}{dt}(t_1) \in T_{\tilde{x}_1}(\tilde{G})$. If \tilde{G} is geodesic, the curve \tilde{c} is a geodesic curve with respect to the canonical connection $\tilde{\mathcal{P}}$ of \tilde{G} . Thus, we see that the homomorphism f sends geodesic curves in G to geodesic curves in \tilde{G} . Now, by using this fact we show that the vector fields $\mathcal{V}_{X^*}Y^*$ and $\tilde{\mathcal{V}}_{\tilde{X}^*}\tilde{Y}^*$ are f-related if X^* and \tilde{X}^* (resp. Y^* and \tilde{Y}^*) are f-related vector fields. For an arbitrarily fixed point $x_0 \in G$, we consider a geodesic curve c(t), $|t| < \varepsilon$, such that $c(0) = x_0$ and $\frac{dc}{dt}(0) = X^*(x_0)$. Let $\tau(t, 0)$ denote the parallel displacement of vectors along c from c(t) to x_0 . Then;

$$(\mathcal{V}_{X^*}Y^*)_{x_0} = \lim_{h \to 0} \frac{1}{h} (\tau(h, 0)Y^*(c(h)) - Y^*(x_0)).$$

From the fact just proved above, it follows;

$$\begin{aligned} (df)_{x_0} \tau(h, 0) Y^*(c(h)) &= (df)_{x_0} \eta_*(c(h), x_0) Y^*(c(h)) \\ &= d(f \circ \eta(c(h), x_0)) Y^*(c(h)) \\ &= \tilde{\eta}^*(\tilde{c}(h), \tilde{x}_0) (df)_{c(h)} Y^*(c(h)) \\ &= \tilde{\eta}^*(\tilde{c}(h), \tilde{x}_0) \tilde{Y}^*(\tilde{c}(h)) \\ &= \tilde{\tau}(h, 0) \tilde{Y}^*(\tilde{c}(h)), \end{aligned}$$

where $\tilde{c} = f \circ c$ and $\tilde{x}_0 = f(x_0)$. Therefore, we get

$$(df)_{x_0}(V_{X^*}Y^*)_{x_0} = (\tilde{V}_{\tilde{X}^*}\tilde{Y}^*)_{\tilde{x}_0}.$$

Let X^* , Y^* and Z^* be the vector fields associated with X, Y and Z in \mathfrak{G} , respectively. The torsion S and the curvature R of \mathcal{P} have their respective values for these vector fields as follows:

$$S(X^*, Y^*) = [X^*, Y^*] - \mathcal{V}_{X^*}Y^* + \mathcal{V}_{Y^*}X^*,$$

$$R(X^*, Y^*)Z^* = \mathcal{V}_{[X^*, Y^*]}Z^* - \mathcal{V}_{X^*}\mathcal{V}_{Y^*}Z^* + \mathcal{V}_{Y^*}\mathcal{V}_{X^*}Z^*.$$

Hence, if \tilde{X}^* , \tilde{Y}^* and \tilde{Z}^* are vector fields on \tilde{G} associated with $\tilde{X} = F(X)$, $\tilde{Y} = F(Y)$ and $\tilde{Z} = F(Z)$, respectively, then each of the pairs $S(X^*, Y^*)$ and $\tilde{S}(\tilde{X}^*, \tilde{Y}^*)$; $R(X^*, Y^*)$

Michihiko KIKKAWA

 Y^*)Z* and $\tilde{R}(\tilde{X}^*, \tilde{Y}^*)\tilde{Z}^*$ is *f*-related. Hence we have

$$F S_e(X, Y) = \tilde{S}_{\tilde{e}}(\tilde{X}, \tilde{Y}),$$

$$F R_e(X, Y) Z = \tilde{R}_{\tilde{e}}(\tilde{X}, \tilde{Y}) \tilde{Z}$$

i.e., $F: \mathfrak{G} \to \mathfrak{G}$ is a homomorphism of the tangent Lie triple algebras (cf. [3]). *q.e.d.*

Combining Theorem 1 with Proposition 2 and Theorem 2, we have the following;

THEOREM 3. Let $G = (G, \eta)$ be an analytic homogeneous system and H a closed normal subsystem of G. Suppose that G is geodesic. Then, at any point $e \in H$, the tangent Lie triple algebra \mathfrak{H} of H is a Lie triple algebra ideal of the tangent Lie triple algebra \mathfrak{G} of G, and the tangent Lie triple algebra \mathfrak{G} of the quotient homogeneous system G/H at the origin is isomorphic to the quotient Lie triple algebra $\mathfrak{G}/\mathfrak{H}$.

PROOF. Let $\tilde{G} = G/H$ be the quotient homogeneous system of G modulo H. By Theorem 1, \tilde{G} is an analytic homogeneous system and the natural projection $f: G \to \tilde{G}$ is an analytic homomorphism. Then Proposition 2 and Theorem 2 imply that \tilde{G} is a geodesic homogeneous system and $F = (df)_e: \mathfrak{G} \to \mathfrak{G}$ is a Lie triple algebra homomorphism of the tangent Lie triple algebras at e and $\tilde{e} = f(e)$. Since the kernel of any homomorphism of Lie triple algebras is an ideal, we see that $\mathfrak{H} = \operatorname{Ker} F$ is an ideal of \mathfrak{G} and \mathfrak{G} is isomorphic to the quotient Lie triple algebra $\mathfrak{G}/\mathfrak{H}$. q. e. d.

References

- [1] C. Chevalley, Theory of Lie Groups, Princeton Univ. Press, 1946.
- [2] M. Kikkawa, On the left translations of homogeneous loops, Mem. Fac. Lit. Sci., Shimane Univ., Nat. Sci. 10 (1976), 19-25.
- [3] —, On homogeneous systems I, Mem. Fac. Lit. Sci., Shimane Univ. Nat. Sci. 11 (1977), 9-17.
- [4] —, On homogeneous systems II, Mem. Fac. Sci., Shimane Univ. 12 (1978), 5-13.
- [5] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957).