Mem. Fac. Sci., Shimane Univ., 13, pp. 23–29 Dec. 20, 1979

Automorphisms of Some Surfaces and Equivariant Line Bundles

Dedicated to Professor Tatsuji Kudo on his 60th birthday

Hiromichi MATSUNAGA

Department of Mathematics, Shimane University, Matsue, Japan (Received September 8, 1979)

In §1 it is proved that any elliptic surface without exceptional curve admits a canonical involution, which is an extension of the involution in [7]. Since a general elliptic curve admits the unique non trivial involutive isomorphism, then we will call this a canonical one. By making use of a lemma in III [2], it is easy to construct the involution, but in order to find invariant divisors, we make it concretely. Non singular surfaces of degree 4 in P^3 are K3 surfaces and one of them is a singular K3 surface. We deduce an information about the homotopical cell structure of a K3 surface. Automorphisms of this surface are constructed in §2. Some of them translate a global section to another section and others do not preserve the elliptic structure. In the last section some remarks are given about elliptic modular surfaces which are singular K3 surfaces.

§1. Some generalities

Let $\Phi: S \to P$ be an elliptic surface without any exceptional curve over a non singular algebraic curve free from multiple singular fibres. The period of a generic fibre can be represented as $(\omega(u), 1)$, where Im $\omega(u) > 0$. Denote by J the elliptic modular function, then the function $j(u)=J(\omega(u))$ is meromorphic in P. Denote by P' the set of points in P over which fibres are regular. The restriction $S|P' \to P'$ is a differentiable torus bundle and the locally constant sheaf $G' = \bigcup \{H_1(\Phi^{-1}(u), Z); u \in P'\}$ can be extended to a sheaf G over P. Each element β of $\pi_1(P')$ induces a transformation $\omega(u) \to (a_\beta \omega(u) + b_\beta) (c_\beta \omega(u) + d_\beta)^{-1}$. According to the notation in II [2], the surface S belongs to $\mathfrak{F}(j, G)$ and by a result in II [2], the family $\mathfrak{F}(j, G)$ admits a basic element B. Let U' be the universal covering manifold of P', then the restriction B' = B|P' is given by $B' = U' \times C/g$, where C is the complex number field and g is the group of transformations, $\pi_1(P') \times Z \times Z(Z)$ is the group of integers) such that

$$g(\beta, n_1, n_2)(\tilde{u}, \zeta) = (\beta \tilde{u}, (\zeta + n_1 \omega(\tilde{u}) + n_2)(c_\beta \omega(\tilde{u}) + d_\beta)^{-1})$$

for each $(\tilde{u}, \zeta) \in U' \times C$. For the transformation $\rho: (\tilde{u}, \zeta) \rightarrow (\tilde{u}, -\zeta)$, the diagram

Hiromichi MATSUNAGA

$$\begin{split} & (\tilde{u}, \zeta) \xrightarrow{g(\beta, n_1, n_2)} (\beta \tilde{u}, (\zeta + n_1 \omega(\tilde{u}) + n_2) (c_\beta \omega(\tilde{u}) + d_\beta)^{-1} \\ & \downarrow^{\rho} & \downarrow^{\rho} \\ & (\tilde{u}, -\zeta) \xrightarrow{g(\beta, -n_1, -n_2)} (\beta \tilde{u}, (-\zeta - n_1 \omega(\tilde{u}) - n_2) (c_\beta \omega(\tilde{u}) + d_\beta)^{-1} \end{split}$$

is commutative, then the involution ρ determines an involution $(\rho): B' \to B'$, which preserves the zero section 0. By the lemma 10.4 III [2], it can be seen that the involution (ρ) is extendible to an involution $[\rho]: B \to B$. But in order to find invariant divisors, we extend (ρ) conceretely according to the construction in §8, II [2].

(i) In the neighbourhoods of fibres of type I₁, using the representation of x, y by Weierstrass' functions $\mathfrak{p}(\zeta)$, $\mathfrak{p}'(\zeta)$ in p. 592, II [2], ρ induces an involution $(x, y) \rightarrow (x, -y)$, then the formula (8.40) in II [2] is invariant and so we have an involution [ρ], which leaves invariant fibres of type I₁. For fibres of type I_b, it induces $(\tau, w) \rightarrow (\tau, w^{-1})$, where $w = \exp 2\pi i \zeta$, $\tau = \exp 2\pi i \tilde{u}$, so the covering map given by (8.44) in II [2] admits a natural lift [ρ]: $B \rightarrow B$. Thus each fibre of type I_b is [ρ]-invariant.

(ii) For fibres of type IV*, by the relation (2_3) , p. 591–592 [2], we have

$$-\left(\frac{1}{3}\eta+\frac{2}{3}\right)=\left(\frac{2}{3}\eta+\frac{1}{3}\right) \mod Z[\eta]+Z,$$

then fixed points by the cyclic group c and so divisors $\{\Theta_{11}, \Theta_{12}\}$, $\{\Theta_{21}, \Theta_{22}\}$ are non invariant under the action $[\rho]$, and they are mutually transformed into others by $[\rho]$. For fibres of type IV the situation is quite similar ((2₃) p. 592-593 [2]).

(iii) For fibres of other types, by the checking in each case, we see that they are all $[\rho]$ -invariant.

Throughout this paper we treate elliptic surfaces without any exceptional curve. By Theorem 11.1, III [2], any elliptic surface free from multiple singular fibres can be obtaned by the pasting method from a basic element. Then by the results in § 14, [2], [7], we have

PROPOSITION 1. Any elliptic surface free from multiple singular fibres admits a non trivial involution.

REMARK. The involution constructed in [7] is a special one of the canonical involution.

By the result in \$4, [3], any elliptic surface is obtained by logarithmic transformations from an elliptic surface without multiple fibres. The transformation (33) (36) in \$4 [3] is compatible with the involution

$$(\zeta - \gamma(\sigma))(c\omega(\sigma^m) + d)^{-1} \longrightarrow (-\zeta - \gamma(\sigma))(c\omega(\sigma^m) + d)^{-1},$$

$$(\sigma, w))_i \longrightarrow ((\sigma, w^{-1}))_i$$

respectively. Then we have

COROLLARY. Any elliptic surface admits a non trivial involution.

§2. Hypersurfaces in P^3

We consider a non singular hypersurface of degree 4 in the three dimensional projective space P^3 ,

$$S: \Sigma_{\mu_0+\mu_1+\mu_2+\mu_3=4} t_{\mu} z_0^{\mu_0} z_1^{\mu_1} z_2^{\mu_2} z_3^{\mu_3} = 0,$$

where $\mu = (\mu_0, \mu_1, \mu_2, \mu_3)$ is a sequence of non negative integers and t is a complex number for each μ . Let $E \rightarrow P^3$ be the bundle given by transition functions $\{e_{ij} = z_j/z_i\}$. Then the divisor [S] determines the line bundle $E^{-4} \rightarrow P^3$. We have the following exact sequence of sheaves of germs of holomorphic sections,

$$0 \longrightarrow O(E^{-4}) \longrightarrow O(1) \longrightarrow O_{S}(1) \longrightarrow 0,$$

where 1 is the trivial line bundle over P^3 and O_s is the structure sheaf of S. By this we have an exact sequence of cohomology groups,

$$H^1(P^3, O) \longrightarrow H^1(S, O_S(1)) \longrightarrow H^2(P^3, O(E^{-4})).$$

Since the canonical bundle of P^3 is equal to $E^{-4} \rightarrow P^3$, then by Theorem 3 and Theorem 2 in [4]. We have

$$H^{1}(P^{3}, O) = H^{2}(P^{3}, O(E^{-4})) = 0$$
 and $H^{1}(S, O_{S}) = 0$.

On the other hand we have an exact sequence associated with the embedding $S \subset P^3$,

 $0 \longrightarrow T(S) \longrightarrow T(P^3) | S \longrightarrow \nu \longrightarrow 0,$

where we mean by $T(\)$ the tangent bundle and by v the normal bundle of the embedding. Since $v = [S] |S = E^{-4}|S$, then the canonical bundle of S is trivial. Thus the surface S is a K3 surface. The second Betti number of a K3 surface is 22, and its homology basis and the intersection numbers are known (for example [5]). Then by the duality between intersection numbers and cup products, and 12.2 (b) [10], it can be seen that the surface admits the following cell decomposition,

$$S \simeq K = (\bigvee_{i=1}^{22} S_i^2) \cup_{\beta} e^4,$$

where $\bigvee_{i=1}^{22} S_i^2$ denotes the bouquet of 2-spheres and $\beta: \partial e^4 = S^3 \rightarrow \bigvee_{i=1}^{22} S_i^2$ is the homotopy boundary of the 4-cell and its homotopy class is given by

$$[\beta] = \Sigma \varepsilon_{ij}[\iota_i, \iota_j], \text{ a sum of Whitehead products,}$$

and $\varepsilon_{ii} = \pm 1$ or zero, especially $\varepsilon_{ii} = -1$ for all i = 1, ..., 20.

By [6], there exists a non singular hypersurface of degree 4 in P^3 such that the

group of automorphisms is an infinite group. For a K3 surface S and its automorphisms f, g if f is homotopic to g, then the homomorphism

$$(g^{-1}f)_* \colon H_2(S, \mathbb{Z}) \longrightarrow H_2(S, \mathbb{Z})$$

is the identity, so by the proposition 2 in §2 [8], $g^{-1}f$ is the identity automorphism of S, thus f=g. Then we have

PROPOSITION 2. The set consisting of homotopy classes of homotopy equivalences $K \rightarrow K$ is an infinite set.

REMARK 1. By a result in [1], we have another cell decomposition,

$$(M_3 \cup e_1^2 \cup \cdots \cup e_r^2) \cup e^4,$$

where M_3 is a plane curve of genus 3 which is given by the equation $z_1^4 + z_2^4 + z_3^4 = 0$.

Now we consider a typical K3 surface with the Picard number 20, which is given by the equation,

$$S_0: z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0$$
 in P^3 .

Let us set

$$t = \frac{z_0^2 + iz_1^2}{z_2^2 - iz_3^2} = -\frac{z_2^2 + iz_3^2}{z_0^2 - iz_1^2}, i = \sqrt{-1},$$

then we have an elliptic structure of S_0 over the projective plane P which is given by

$$\Phi: S_0 \ni [z_0, z_1, z_2, z_3] \longrightarrow t \in P.$$

Singular fibres of Φ are given as follows:

$$t=0 \quad \cdots \ [z_{0}, \pm \sqrt{i} z_{0}, z_{2}, \pm \sqrt{i} z_{2}]$$

$$t=\infty \quad \cdots \ [z_{0}, \pm \sqrt{-i} z_{0}, z_{2}, \pm \sqrt{-i} z_{2}]$$

$$t=1 \quad \cdots \ [z_{0}, z_{1}, \pm \sqrt{i} z_{1}, \pm \sqrt{i} z_{0}]$$

$$t=-1 \quad \cdots \ [z_{0}, z_{1}, \pm \sqrt{-i} z_{1}, \pm \sqrt{-i} z_{0}]$$

$$t=i \quad \cdots \ [z_{0}, z_{1}, \pm \sqrt{-i} z_{0}, \pm \sqrt{i} z_{1}]$$

$$t=-i \quad \cdots \ [z_{0}, z_{1}, \pm \sqrt{i} z_{0}, \pm \sqrt{-i} z_{1}].$$
(L)

All of these fibres are of type I_4 . For other t than in the list (L), we have

$$z_0^2 = \frac{1}{2} \left(t - \frac{1}{t} \right) z_2^2 - \frac{1}{2} \left(t + \frac{1}{t} \right) i z_3^2, \quad z_1^2 = -\frac{i}{2} \left(t + \frac{1}{t} \right) z_2^2 - \frac{1}{2} \left(t - \frac{1}{t} \right) z_3^2,$$

and so set $a = \frac{1}{2}\left(t - \frac{1}{t}\right)$, $b = \frac{1}{2}\left(t + \frac{1}{t}\right)$, then we have

Automorphisms of Some Surfaces and Equivariant Line Bundles

$$z_0^2 = az_2^2 - ibz_3^2, \quad z_1^2 = -ibz_2^2 - az_3^2,$$

Further set $\lambda = \left(\frac{z_3}{z_2}\right)^2$, $\mu = \frac{z_0 z_1 z_3}{z_2^3}$, then the fibre over t is given by the equation,

$$\mu^2 = \lambda (a - \mathbf{i}b\lambda) (-\mathbf{i}b - a\lambda), \tag{E}$$

hence the surface S_0 is an elliptic surface. The second Chern class of a K3 surface is 24, then there does not exist other singular fibre.

Next we seek global sections of the elliptic structure Φ . Set $z_1 = \alpha z_0$, $z_3 = \alpha z_2$, then we have

$$z_0^2 + iz_1^2 = (1 + i\alpha^2)z_0^2 = t(z_0^2 - iz_1^2) = t(1 - i\alpha^2)z_0^2,$$

$$t(z_2^2 - iz_3^2) = t(1 - i\alpha^2)z_2^2 = -(z_2^2 + iz_3^2) = -(1 + i\alpha^2)z_2^2$$

and so

$$\frac{z_0^2}{z_1^2} \frac{1+i\alpha^2}{t(1-i\alpha^2)} = -\frac{z_0^2 t(1-i\alpha^2)}{z_2^2(1+i\alpha^2)} \,.$$

Thus we have $t^2 = \frac{(1+i\alpha^2)^2}{(1-i\alpha^2)^2}$, $t = \pm i \frac{1+i\alpha^2}{1-i\alpha^2}$, and $\alpha = \pm \sqrt{\frac{1 \pm t}{1+it}}$. On the other hand, by the equation $z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0$, we have

$$(1+\alpha^4)(z_0^4+z_2^4)=0,$$

hence we obtain 16 sections given by $[z_0, \alpha z_0, (\exp n\pi i/4)z_0, \alpha(\exp n\pi i/4)z_0], n = \pm 1, \pm 3$. In the case t = +i, we have $\alpha = \infty$ and take $[0, 1, 0, \exp n\pi i/4]$ as sections.

The second algebraic homology basis is given by 18 divisors in the list (L) and a generic fibre, and a global section. Then by Theorem 1.1 in [9], the surface S_0 is a singular K3 surface, i.e. the Picard number is 20. By Lemma 10.3, 10.4 III [2], the above 16 sections determine 16 automorphisms of the surface S_0 . In these automorphisms, the ones corresponding to the translations by exp $n\pi i/4$ keep the divisors invariant, but the others by α 's do not. By the proposition 1, we have

PROPOSITION 2. The surface S_0 admits 32 automorphisms which preserve the elliptic structure. The equivariant Picard number is smaller than 20.

REMARK 2. The symmetric group S_4 acts on P^3 , and the surface S_0 is invariant by this action, but the action does not preserve the elliptic structure. Further the surface S_0 admits actions given by

$$[z_0, z_1, z_2, z_3] \longrightarrow [i^{\varepsilon_0} z_0, i^{\varepsilon_1} z_1, i^{\varepsilon_2} z_2, i^{\varepsilon_3} z_3],$$

where $\varepsilon_i = 0, 1, 2, 3$ and j = 0, 1, 2, 3. Set $\varepsilon = \varepsilon(\varepsilon_0, \varepsilon_1, \varepsilon_2, \varepsilon_3)$. These actions give a

27

Hiromichi MATSUNAGA

transformation group of order 4³. The ε -type action does not preserve the elliptic structure. For example, let $\Phi_1: S_0 \rightarrow P$ be the elliptic structure given by

$$t_1 = \frac{z_0^2 + iz_1^2}{z_2^2 + iz_3^2} = -\frac{z_2^2 - iz_3^2}{z_0^2 - iz_1^2} ,$$

then we have the commutative diagram,

where $\varepsilon_*(1, 0, 0, 0)$ is given by the mapping $t \to \frac{1}{t}$.

§3. Some elliptic modular surfaces

1 Let $\Gamma(4)$ be the principal congruence subgroup of level 4 in SL(2, Z). Consider the action of $\Gamma(4)$ on the upper half plane. There are 6 cusp points. By the aspect of the representation of isotropy groups, we have a singular K3 surface $B_{\Gamma(4)}$ [9]. It has 6 singular fibres of type I_4 and it is an elliptic surface, and admits 16 global sections, $s_m(\exp \pi i z/2) = ((\exp \pi i (m_1 z + m_2)/2))_0 \in W_0$ [9]. The automorphisms induced by the translations of m_1 do not leave divisors invariant, but the ones corresponding to the variation of m_2 leave them invariant. These automorphisms do not include the canonical one in § 1.

2 let $\Gamma'_0(7)$ be the subgroup of SL(2, Z) given by $\Gamma'_0(7) = \begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z) : c \equiv 0 \\ \mod 7, \left(\frac{a}{7}\right) = 1 \end{cases}$, where $\left(\frac{a}{7}\right)$ denotes the Legendre symbol. Then the corresponding elliptic modular surface $B_{\Gamma'_0(7)}$ is a singular K3 surface with singular fibres I₁, I₇, IV*, IV*. The canonical automorphism $[\rho]$ does not leave divisors in the fibres of type IV* invariant as we have seen in § 1.

REMARK. By the formula (E) in §2, the involution $\iota: [z_0, z_1, z_2, z_3] \rightarrow [z_0, z_1, -z_2, z_3]$ gives an involution $(\lambda, \mu) \rightarrow (\lambda, -\mu)$ of a generic fibre. A generic fibre is an elliptic curve and a general elliptic curve admits unique involutive isomorphism.

References

- [1] R. Bott, On a theorem of Lefschetz, Mich. Math. J. 6 (1959), 211-216.
- [2] K. Kodaira, On compact complex analytic surfaces, II-III, Ann. of Math. 77 (1963), 563–626, 78 (1963), 1–40.
- [3] K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math. 86 (1964), 751-798.

Automorphisms of Some Surfaces and Equivariant Line Bundles

- [4] K. Kodaira, On a differential-geometric method in the theory of analytic stacks, Proc. N.A.S. 39 (1953), 1268–1273.
- [5] K. Kodaira, Theory of complex analytic surfaces, Lecture note, Univ. Tokyo, 1974, in Japanese.
- [6] H. Matsumura and P. Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3-3 (1964), 347-361.
- [7] H. Matsunaga, On equivariant line bundles over some surfaces, Mem. Fac. Sci. Shimane Univ. 12 (1978), 15-18.
- [8] I. I. Pjateckii-Šapiro and I. R. Šafarevič, A Torelli theorem for algebraic surfaces of type K3, Math. USSR. Izvestija, 5-3 (1971), 547-588.
- [9] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1) (1972), 20-59.
- [10] J. H. C. Whitehead, On simply connected 4-dimensional polyhedra, Comm. Math. Helv. 22 (1949), 48-92.