Almost Periodic Functions on Topological Semigroups

Takasi Kayano

Department of Mathematics, Shimane University, Matsue, Japan (Received September 8, 1979)

In this paper, an almost periodic function on a topological semigroup will be characterized by *e*-almost periods. A weakly almost periodic function will be characterized by a Banach space and its dual space.

§1. Introduction

Let S be a topological semigroup with identity e, equipped with a Hausdorff topology \mathscr{T} in which multiplication is separately continuous, that is, for each $s \in S$ the maps $x \to sx$ and $x \to xs$ are continuous. Let C(S) be the space of all bounded continuous functions on S with the norm $||f|| = \sup_{x \in S} |f(x)|$ and let \mathscr{U} be the system of neighborhoods of e. For $f \in C(S)$ and $s \in S$, let us put $f_s = f(xs)$ and ${}_sf(x) = f(sx)$. For $f \in C(S)$ we denote $O_R(f) = \{f_y: y \in S\}$ and $O_L(f) = \{yf: y \in S\}$. We say that a function $f \in C(S)$ is almost periodic (resp. weakly almost periodic) if $O_R(f)$ or $O_L(f)$ is relatively compact in the norm (resp. weak) topology on C(S). Note that $O_R(f)$ is relatively compact in the weak (resp. norm) topology if and only if $O_L(f)$ is so in the weak (resp. norm) topology (cf. [2]). A subset A of S is right (resp. left) totally bounded if, for every $V \in \mathscr{U}$ there exists a finite subset $\{y_1, \ldots, y_n\}$ of A such that

$$\bigcup_{i=1}^{n} y_i V \supset A \text{ (resp. } \bigcup_{i=1}^{n} V y_i \supset A \text{).}$$

The topology \mathscr{T} on S is called *right* (resp. *left*) translation invariant if $\mathscr{U}x = \{Vx: V \in \mathscr{U}\}$ (resp. $x\mathscr{U} = \{xV: V \in \mathscr{U}\}$) is the system of neighborhoods of x for every $x \in S$. We shall say that \mathscr{T} is translation invariant if it is left and right translation invariant. In case \mathscr{T} is right translation invariant we shall say that a function $f \in C(S)$ is right quasi-uniformly continuous on A if, for every $\varepsilon > 0$ there exists $V \in \mathscr{U}$ such that

$$|f(\eta x) - f(x)| < \varepsilon$$
 for $\eta \in V$ and $x \in A$.

In case \mathcal{T} is left translation invariant, the *left quasi-uniform continuity* of f is similarly defined. In case \mathcal{T} is translation invariant, a function $f \in C(S)$ is called *quasi-uniformly continuous* if it is right and left quasi-uniformly continuous on A.

REMARK. If S is in particular a topological group, \mathcal{T} is translation invariant

and a quasi-uniformly continuous function on S is uniformly continuous.

We shall prove in §2 that an almost periodic function on a topological semigroup is characterized by a family of totally bounded subsets of S. The existence of an " ε -almost period" in every translated set of a totally bounded set will be shown in §3 in the case where S is a commutative group. Note that a topological semigroup does not have such a uniform structure as in [1]. We shall give in §4 some examples of almost periodic functions in case S is an ordered space or metric space. A characterization of a weakly almost periodic function on S will be given in §5.

The author wishes to express his deepest appreciation to Professor J. Wada, who gave him encouragement and many valuable suggestions.

§2. Almost periodic functions on topological semigroups

Let \mathscr{A} be a family of subsets of S. We define the following several conditions. We shall say that a function $f \in C(S)$ satisfies condition (B) with respect to \mathscr{A} if, for every $\varepsilon > 0$ there is $A_{\varepsilon} \in \mathscr{A}$ such that

$$A_{\varepsilon}(f, y) = \{ \sigma \in A_{\varepsilon} \colon ||f_{yx} - f_{\sigma x}|| < \varepsilon \text{ for all } x \in S \} \neq \emptyset \text{ for each } y \in S.$$

We shall also say that a function $f \in C(S)$ satisfies condition (B_R) with respect to \mathscr{A} if, for every $\varepsilon > 0$ there is $A_{\varepsilon} \in \mathscr{A}$ such that

$$A_{\varepsilon}^{R}(f, y) = \{\tau \in S : y \in A_{\varepsilon}\tau \text{ and } ||f_{\tau} - f|| < \varepsilon\} \neq \emptyset$$
 for each $y \in S$.

Condition (B_L) with respect to \mathscr{A} is defined by replacing $A_{\varepsilon}\tau$ and f_{τ} by τA_{ε} and $_{\tau}f$ respectively. We shall say that a function $f \in C(S)$ satisfies condition (B_{RR}) with respect to \mathscr{A} if, for every $\varepsilon > 0$ there is $A_{\varepsilon} \in \mathscr{A}$ such that

$$A_{\varepsilon}^{RR}(f, y) = \{ \sigma \in A_{\varepsilon}y \colon ||f_{\sigma} - f|| < \varepsilon \} \neq \emptyset \quad \text{for each} \quad y \in S.$$

Conditions (B_{RL}), (B_{LR}) and (B_{LL}) with respect to \mathscr{A} are defined by replacing the pair $(A_{\varepsilon}y, f_{\sigma})$ by $(A_{\varepsilon}y, {}_{\sigma}f)$, $(yA_{\varepsilon}, f_{\sigma})$ and $(yA_{\varepsilon}, {}_{\sigma}f)$ respectively.

We have the following:

THEOREM 1. If f is almost periodic, then there exists a family $\mathscr{A} = \{A_{\varepsilon}\}$ of finite subsets of S such that f satisfies condition (B) with respect to \mathscr{A} . (cf. [4])

PROOF. Let $f \in C(S)$ be an almost periodic function on S. Then $O_R(f)$ is relatively compact in the norm topology on C(S), whence it is totally bounded. For any $\varepsilon > 0$, there exists a finite subset $\{x_1, ..., x_n\}$ such that

$$\bigcup_{k=1}^{n} U(f_{x_k}, \varepsilon/4) \supset O_R(f), \text{ where } U(f, \varepsilon) = \{g \in C(S) \colon ||g-f|| < \varepsilon\}.$$

Note that $f_{yx_i} \in O_R(f)$ for every $y \in S$ and $i \in Z_n = \{1, ..., n\}$. Let J be the set of all mappings of Z_n into Z_n , and put

Almost Periodic Functions on Topological Semigroups

$$V_j = \{ y \in S \colon \|f_{yx_i} - f_{x_{j(i)}}\| < \varepsilon/4 \quad \text{for all} \quad i \in \mathbb{Z}_n \} \quad \text{for} \quad j \in J.$$

Then $\bigcup_{\substack{j \in J \\ j \in J}} V_j = S$. Choose one element y_j from each V_j , and let A_{ε} be the set $\{y_j\}$. Clearly A_{ε} is a finite set. Let $y \in S$. Then there exists $j \in J$ such that $y \in V_j$, so that

$$\|f_{yx_i} - f_{y_jx_i}\| \leq \|f_{yx_i} - f_{x_{j(i)}}\| + \|f_{x_{j(i)}} - f_{y_jx_i}\| < \varepsilon/2.$$

Let $x \in S$ and choose $x_i \in U(f_x, \varepsilon/4)$. Then we have

$$\|f_{yx}-f_{y_{ix}}\| \leq \|f_{yx}-f_{y_{x_{i}}}\| + \|f_{y_{x_{i}}}-f_{y_{jx_{i}}}\| + \|f_{y_{jx_{i}}}-f_{y_{jx}}\| < \varepsilon.$$

Namely f satisfies condition (B) with respect to $\mathscr{A} = \{A_{\varepsilon}\}$.

THEOREM 2. Assume that the topology \mathcal{T} of S is right (resp. left) translation invariant and let $\mathscr{A} = \{A_e\}$ be a family of subsets of S. If a function $f \in C(S)$ satisfies condition (B) with respect to \mathscr{A} and if f is right (resp. left) quasi-uniformly continuous on each A_e , then f is right (resp. left) quasi-uniformly continuous on S.

PROOF. For any $\varepsilon > 0$, there is $V \in \mathcal{U}$ such that

$$|f(\eta\rho) - f(\rho)| < \varepsilon/3$$
 for $\eta \in V$ and $\rho \in A_{\varepsilon/3}$

by the quasi-uniform continuity of f on $A_{\varepsilon/3}$. Let $y \in S$. Then there exists $y_0 \in A_{\varepsilon/3}(y)$ by condition (B) with respect to \mathscr{A} , that is,

$$|f_{yx}(z) - f_{y_0x}(z)| < \varepsilon/3$$
 for every $x, z \in S$.

Now, set x = e. Then

$$|f(zy)-f(zy_0)| < \varepsilon/3$$
 for $z \in S$.

For $\eta \in V$, we have

$$|f(\eta y) - f(y)| \le |f(\eta y) - f(\eta y_0)| + |f(\eta y_0) - f(y_0)| + |f(y_0) - f(y)|$$

<\varepsilon / 3 + \varepsilon / 3 = \varepsilon.

Therefore, f is right quasi-uniformly continuous.

Note that in case \mathscr{T} is right (resp. left) translation invariant, a continuous function is right (resp. left) quasi-uniformly continuous on any finite subset of S. Then, by Theorem 1 and Theorem 2 an almost periodic function f is right (resp. left) quasiuniformly continuous on S.

THEOREM 3. Let \mathscr{T} be right (resp. left) translation invariant. If $f \in C(S)$ is right (resp. left) quasi-uniformly continuous, if there exists a family $\mathscr{A} = \{A_e\}$ of left (resp. right) totally bounded sets of S and if f satisfies condition (B) with respect to \mathscr{A} , then f is almost periodic. Takasi KAYANO

PROOF. For each $\varepsilon > 0$ and $y \in S$, let $\rho \in A_{\varepsilon/2}(f, y)$. Then we have

 $|_{\rho}f(x) - _{y}f(x)| < \varepsilon/2$ for $x \in S$.

Since f is right quasi-uniformly continuous on S, there exists $W \in \mathcal{U}$ such that

 $|f(\eta x) - f(x)| < \varepsilon/2$ for $\eta \in W$ and $x \in S$.

For $x \in S$ we have

$$|_{\eta y}f(x) - _{y}f(x)| = |f(\eta yx) - f(yx)| \leq \sup_{z \in S} |f(\eta z) - f(z)| \leq \varepsilon/2.$$

Since $A_{\epsilon/2}$ is left totally bounded, there exists a finite subset $\{y_1, ..., y_n\}$ of $A_{\epsilon/2}$ such that $\bigcup_{i=1}^{n} Wy_i \supset A_{\epsilon/2}$. There exist $i \in \mathbb{Z}_n$ and $\eta \in W$ such that $\rho = \eta y_i$. It follows that

$$\|_{y}f - _{y_{l}}f\| = \sup_{x \in S} |_{y}f(x) - _{y_{l}}f(x)| \le \sup_{x \in S} |_{y}f(x) - _{\rho}f(x)| + \sup_{x \in S} |_{\rho}f(x) - _{y_{l}}f(x)| \le \varepsilon.$$

Hence $O_L(f)$ is totally bounded and the function f is almost periodic on S.

§3. Almost periodic functions on groups

Replacing the inequality $\|_{\tau}f - f\| < \varepsilon$ in condition (B_L) by the inequality $\|_{\tau}f - f\| \le \varepsilon$, we define condition (B'_L).

LEMMA 1. Let S be an algebraic group, $f \in C(S)$ and let $\mathscr{A} = \{A_{\varepsilon}\}$ be a family of subsets of S.

(a) If f satisfies condition (B) with respect to \mathscr{A} , then f satisfies conditions (B_R) and (B'_L) with respect to \mathscr{A} .

(b) f satisfies condition (B_R) (resp. (B_L)) with respect to \mathscr{A} if and only if f satisfies condition (B_{RR}) (resp. (B_{LL})) with respect to the family $\mathscr{A}^{-1} = \{A_{\varepsilon}^{-1}\}$, where $A_{\varepsilon}^{-1} = \{x^{-1}: x \in A_{\varepsilon}\}$.

PROOF. (a) First we show that $A_{\varepsilon}(f, y) \neq \emptyset$ implies $A_{\varepsilon}^{R}(f, y) \neq \emptyset$. Let $\sigma \in A_{\varepsilon}(f, y)$. Then

$$\sup_{z\in S}|f(zy)-f(z\rho)|=\|f_y-f_\rho\|<\varepsilon.$$

Setting $\sigma^{-1}y = \tau$, we have

$$y = \sigma \tau \in A_{\varepsilon} \tau$$
 and $||f_{\tau} - f|| < \varepsilon$.

Next we shall show that f satisfies condition (B'_L) with respect to \mathscr{A} . It is easy to see that for each $x \in S$ and $\sigma \in A_{\varepsilon}(f, y)$, $\sup_{z \in S} |f(zyx) - f(z\sigma x)| < \varepsilon$. Then it yields the following

$$\sup_{z\in S} \|_{zy}f - _{z\sigma}f\| = \sup_{z\in S} \sup_{x\in S} |_{zy}f(x) - _{z\sigma}f(x)| = \sup_{x\in S} \sup_{z\in S} |f(zyx) - f(z\sigma x)| \le \varepsilon$$

Setting $y\sigma^{-1} = \tau$, similarly we have $y = \tau\sigma \in \tau A_{\varepsilon}$ and $\|_{\tau}f - f\| < \varepsilon$.

(b) This is obvious.

LEMMA 2. Let S be a topological group. A subset A of S is right totally bounded if and only if A^{-1} is left totally bounded.

PROOF. Let A be right totally bounded. For each $V \in \mathscr{U}$ we can choose $W \in \mathscr{U}$ such that $W^{-1} \subset V$. There exists a finite subset $\{y_1, \dots, y_n\}$ of A such that $\bigcup_{i=1}^n y_i W \supset A$. Then we have $\{y_1^{-1}, \dots, y_n^{-1}\} \subset A^{-1}$ and

$$\bigcup_{i=1}^{n} V y_{i}^{-1} \supset \bigcup_{i=1}^{n} W^{-1} y_{i}^{-1} = \bigcup_{i=1}^{n} (y_{i}W)^{-1} = (\bigcup_{i=1}^{n} y_{i}W)^{-1} \supset A^{-1}.$$

Thus A^{-1} is left totally bounded.

We introduce the following conditions for $f \in C(S)$:

 (I_a) f is almost periodic.

 (I_b) There exists a family \mathscr{A} of finite subsets of S and f satisfies condition (B) with respect to \mathscr{A} .

 (I_c) (resp. (I_d)) There exists a family \mathscr{A} of right (resp. left) totally bounded subsets of S and f satisfies condition (B) with respect to \mathscr{A} .

 (II_b) (resp. (II'_b)) There exists a family \mathscr{A} of finite subsets of S and f satisfies condition (B_R) (resp. (B_L)) with respect to \mathscr{A} .

 (II_c) (resp. (II'_c)) There exists a family \mathscr{A} of right (resp. left) totally bounded subsets of S and f satisfies condition (B_R) (resp. (B_L)) with respect to \mathscr{A} .

(III_b) (resp. (III'_b)) There exists a family \mathscr{A} of finite subsets of S and f satisfies condition (B_{RR}) (resp. (B_{LL})) with respect to \mathscr{A} .

(III_c) (resp. (III_c), (III_d), (III_e)) There exists a family \mathscr{A} of right (resp. left, left, right) totally bounded subsets of S and f satisfies condition (B_{RR}) (resp. (B_{LL}), (B_{RL}), (B_{LR})) with respect to \mathscr{A} .

THEOREM 4. (a) Let S be an algebraic group. Then we have

$$(\underset{a}{(III'_{b}) \Longrightarrow (III'_{c})} (\underset{(I'_{b})) \Longrightarrow (II'_{c})}{(I'_{b}) \Longrightarrow (II'_{c})}$$
$$(I_{a}) \Longrightarrow (I_{b}) \underset{(II_{b})) \Longrightarrow (II_{c})}{(II_{b}) \Longrightarrow (III_{c})}$$

(b) Let S be an algebraic group, and let \mathcal{T} be right (resp. left) translation invariant. Then we have

(III_d) (resp. (III_e)) and f is right (resp. left) quasi-uniformly continuous \Rightarrow (I_a).

Takasi KAYANO

(c) Let S be an Abelian group, and let \mathcal{T} be translation invariant. Then we have

 $(I_a) \Leftrightarrow (I_b) \Leftrightarrow (I_c)$ and f is quasi-uniformly continuous $\Leftrightarrow (II_b) \Leftrightarrow (III_b) \Leftrightarrow (III_c)$ and f is quasi-uniformly continuous.

(d) Let S be a topological group. Then we have

$$(III'_{b}) \Longrightarrow (III'_{c})$$

$$(II'_{b}) \Longrightarrow (II'_{c})$$

$$(I_{a}) \longleftrightarrow (I_{b}) \iff (I_{c}) (or (I_{d})) and f is uniformly continuous on S$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$(II_{b}) \Longrightarrow (II_{c})$$

$$\Leftrightarrow \qquad \Leftrightarrow \qquad (III_{b}) \Longrightarrow (II_{c}).$$

§4. Ordered topological semigroups and metric semigroups

Let P be a subsemigroup of S such that $e \in P$ and xP = Px for every $x \in S$. For a, $b \in S$ we write $a \geq b$ if $a \in Pb$. Then this relation " \geq " is a preorder in S which is compatible with the multiplication, that is,

- (1) $a \geq a$ for every $a \in S$.
- (2) $a \ge b, b \ge c \Rightarrow a \ge c$
- (3) $a \ge b \Rightarrow ac \ge bc, ca \ge cb$ for every $c \in S$.

Suppose that S is an upper and lower directed set, that is, for every $a, b \in S$ there exist $c, d \in S$ such that $c \geq a \geq d$ and $c \geq b \geq d$. For $a, b \in S$ we put $[a, b] = \{x \in S : b \geq x \geq a\}$. We say that S satisfies condition (R*) (resp. (L*)) if [x, y] is right (resp. left) totally bounded for every $x, y \in S$ with $y \geq x$.

THEOREM 5. Assume that S satisfies condition (L*) (resp. (R*)), that \mathscr{T} is right (resp. left) translation invariant and that f is a bounded right (resp. left) quasiuniformly continuous function. Then f is almost periodic if and only if, for every $\varepsilon > 0$, there exist $\lambda(\varepsilon)$, $\mu(\varepsilon) \in S$ such that $\lambda(\varepsilon) \geq \mu(\varepsilon)$ and f satisfies condition (B) with respect to the family $\mathscr{A} = \{[\mu(\varepsilon), \lambda(\varepsilon)]\}$.

PROOF. If f is almost periodic, then by Theorem 1 there exists a family $\{A_{\varepsilon}\}$ of finite subsets of S such that f satisfies condition (B) with respect to $\{A_{\varepsilon}\}$. Since A_{ε} is a finite set, there exist $\mu(\varepsilon)$, $\lambda(\varepsilon) \in S$ such that $\lambda(\varepsilon) \geq \mu(\varepsilon)$ and $[\mu(\varepsilon), \lambda(\varepsilon)] \supset A_{\varepsilon}$. It is clear that f satisfies condition (B) with respect to the family $\{[\mu(\varepsilon), \lambda(\varepsilon)]\}$. Since $[\mu(\varepsilon), \lambda(\varepsilon)]$ is left totally bounded by the assumption, we can see from Theorem 5 that f is almost periodic.

COROLLARY 1. Assume that S and f satisfy the same conditions as in Theorem

50

4 and that S is an algebraic group. Then f is almost periodic if and only if, for every $\varepsilon > 0$, there exists $\mu(\varepsilon) \in S$ such that $e \ge \mu(\varepsilon)$ and f satisfies condition (B) with respect to the family $\{[\mu(\varepsilon), e]\}$.

COROLLARY 2. Assume that S and f satisfy the same conditions as in Theorem 4 and that S is an Abelian group. Then f is almost periodic if and only if, for every $\varepsilon > 0$, there exists $\mu(\varepsilon) \in S$ such that $e \geq \mu(\varepsilon)$ and f satisfies condition (B_{RR}) with respect to the family {[$\mu(\varepsilon)$, e]}.

REMARK. Let f be a function on S and let $\varepsilon > 0$. We call $\tau \in S$ a right (resp. left) ε -almost period of f if

$$\sup_{x\in S} |f(x\tau) - f(x)| < \varepsilon \text{ (resp. } \sup_{x\in S} |f(\tau x) - f(x)| < \varepsilon \text{)}.$$

In case S is a topological semigroup as in Theorem 4 and is an Abelian group, we have shown that a quasi-uniformly continuous function f is almost periodic if and only if for every $\varepsilon > 0$ there exists an interval $[\mu(\varepsilon), e]$ such that for all $y \in S$ $A_{\varepsilon}y = [\mu(\varepsilon)y, y]$ contains an ε -almost period τ (cf. [3]).

The following example shows that our characterization of an almost periodic function is effective in case S is not locally compact.

EXAMPLE. Set $S = Q^n = \{x = (x_1, ..., x_n): x_i \in Q, \text{ for } i = 1, ..., n\}$, where Q denotes the usual additive group of the rational numbers. Then S is an Abelian group and is a topological semigroup equipped with the usual sum operation and the usual topology. Set $P = \{x = (x_1, ..., x_n) \in S: x_i \ge 0, \text{ for } i = 1, ..., n\}$. For every $x, y \in S$ such that $y \ge x$, the interval [x, y] is totally bounded. Therefore, a function $f \in C(S)$ is almost periodic if and only if f is uniformly continuous and for every $\varepsilon > 0$ there exists an element $\lambda = (\lambda_1, ..., \lambda_n)$ such that for every $y \in S$ there exists $\tau \in [0, \lambda] + y$ which satisfies $\sup_{x \in S} |f(x+\tau) - f(x)| < \varepsilon$.

Now we consider the case where S is a metric semigroup, that is, the topology \mathscr{T} coincides with the topology induced by the distance d on S. We assume that the distance d is translation invariant, that is, d(a, b) = d(ac, bc) = d(ca, cb) for all a, b and $c \in S$. Then in its topology \mathscr{T} multiplication is jointly continuous, that is, the map $(x, y) \rightarrow xy$ is continuous. We shall say that a metric semigroup S satisfies condition (*) if every closed ball $B(x, r) = \{y \in S : d(x, y) \le r\}$ is totally bounded.

We have

THEOREM 6. Assume that S is a metric semigroup which satisfies condition (*), that \mathcal{T} is translation invariant and that f is uniformly continuous. A function $f \in C(S)$ is almost periodic if and only if for every $\varepsilon > 0$ there exists $r(\varepsilon) > 0$ such that f satisfies condition (B) with respect to the family {B($e, r(\varepsilon)$)}.

PROOF. Assume that f is almost periodic. Then there exists a family $\{A_{\varepsilon}\}$ of

finite subsets of S such that f satisfies condition (B) with respect to $\{A_{\varepsilon}\}$. Writing $r(\varepsilon) = \max \{d(e, x): x \in A_{\varepsilon}\}$, we can easily see that $A_{\varepsilon} \subset B(e, r(\varepsilon))$ and f satisfies condition (B) with respect to $\{B(e, r(\varepsilon))\}$.

COROLLARY. Assume that S and f satisfy the same conditions as in Theorem 6 and that S is an algebraic group. Then f is almost periodic if and only if for every $\varepsilon > 0$ there exists $r(\varepsilon) > 0$ such that f satisfies condition (B_{RR}) with respect to the family {B(e, $r(\varepsilon)$)}.

PROOF. By Theorem 4, it suffices to show that conditions (B_{LR}) and (B_{RR}) with respect to $\{B(e, r(\varepsilon))\}$ are equivalent. Since $d(yxy^{-1}, e) = d(yxy^{-1}, yy^{-1}) = d(yx, ye)$ $= d(x, e) \le r$ for every $x \in B(e, r)$, B(e, r) also contains yxy^{-1} . Then $yx = (yxy^{-1})y$ $\in B(e, r)y$ and $yB(e, r) \subset B(e, r)y$. Thus yB(e, r) = B(e, r)y. Therefore, conditions (B_{LR}) and (B_{RR}) with respect to $\{B(e, r(\varepsilon))\}$ are equivalent.

§5. Weakly almost periodic functions on topological semigroups

We shall give a characterization of a weakly almost periodic function on a topological semigroup. To this end, we consider a quartet (X, τ, ρ, x_0) of a Banach space X with norm $\| \|$, a mapping τ of S into the dual space X^* of X, a mapping ρ of S into X and $x_0 \in X$. Assume that X^* is equipped with the weak* topology $\sigma(X^*, X)$.

THEOREM 7. A function $f \in C(S)$ is weakly almost periodic if and only if there exists a quartet (X, τ, ρ, x_0) with the properties:

- (1) τ is continuous and $\sup_{\tau} \|\tau t\| < +\infty$.
- (2) The range $\rho(S)$ is relatively compact in the weak topology.
- (3) $\langle \tau(ts), x_0 \rangle = \langle \tau t, \rho(s) \rangle$ for $t, s \in S$.
- (4) $f(t) = \langle \tau t, x_0 \rangle$.

PROOF. Assume that there exists a quartet (X, τ, ρ, x_0) with the properties (1)– (4). Define a mapping T of X into C(S) by $(Tx)(t) = \langle \tau t, x \rangle$. Then $|(Tx)(t)| = |\langle \tau t, x \rangle| \le ||\tau t|| ||x||$ and $||Tx|| \le \sup_{t \in S} ||\tau t|| ||x||$. Thus T is $\sigma(X, X^*) - \sigma(C(S), C(S)^*)$ -

continuous. Then we have

$$f_s(t) = f(ts) = \langle \tau(ts), x_0 \rangle = \langle \tau t, \rho(s) \rangle = (T\rho(s))(t)$$

for $t \in S$ and $f_s = T\rho(s)$. Note that $O_R(f) = T\rho(S)$. Since $\rho(S)$ is relatively $\sigma(X, X^*)$ compact, $O_R(f)$ is relatively $\sigma(C(S), C(S)^*)$ -compact. Thus f is weakly almost periodic.

Next we assume that a function $f \in C(S)$ is weakly almost periodic. Let X = W(S) be the Banach space of all weakly almost periodic functions on S and let $x_0 = f \in W(S)$. Define a mapping τ of S into X* by $\langle \tau t, g \rangle = g(t)$ for $t \in S$ and $g \in X$. Then we have

52

Almost Periodic Functions on Topological Semigroups

$$\sup_{t\in S} \|\tau t\| = \sup_{t\in S} \sup_{\substack{g\in X\\ \|g\| \le 1}} |\langle \tau t, g \rangle| = \sup_{t\in S} \sup_{\substack{g\in X\\ \|g\| \le 1}} |g(t)| \le 1.$$

We can easily see that τ is a continuous mapping of S into X* in the weak* topology. Further we define a mapping ρ of S into X by $\rho(t)=f_t$. Then $\rho(S)$ is relatively $\sigma(X, X^*)$ -compact and $\langle \tau(ts), x_0 \rangle = f(ts) = f_s(t) = \langle \tau t, \rho(s) \rangle$. Thus we have $f(t) = \langle \tau t, f \rangle = \langle \tau t, x_0 \rangle$. Namely the quartet (X, τ, ρ, x_0) satisfies the properties (1)-(4).

The "if" part of Theorem 7 was proved in a special case where $\tau t = \phi U_t$ ($\phi \in X^*$), $\rho t = U_t x_0$ (cf. Burckel [2]).

References

- E. M. Alfsen and P. Holm, A note on compact representations and almost periodicity in topological groups, Math. Scand., 10 (1962), 127-136.
- [2] R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach, 1970.
- [3] Y. Katznelson, An introduction to harmonic analysis, Dover, 1976.
- [4] L. H. Loomis, An introduction to abstract harmonic analysis, van Nostrand, 1953.