切換によって生ずる自励振動

野 坂 弥 蔵

Yazo Nosaka : SELF-EXCITED OSCILLATION SET UP BY SWITCHING

ABSTRACT: During an experiment of compressed air and water flowing in a 1/2 in. diameter gas pipe with a small hole (about 1/10 in. diameter) on its wall, an interesting self-excited oscillation took place by accident. Air and water spurted out of the hole alternately.

The oscillation is represented alternately two distinct linear differential equations which are of the third order and have constant coefficients.

This paper presents a simple method of analysing these mutually switching differential equations of the third order by the trajectories on the phase-plane.

§1緒 言

定数係数の線型常微分方程式の接続によって表わされる系が自励的に振動する例は, リレー (4) 式自動制御系に多く見られる。また或種の真空管発振器や純流体素子を使用した発振器などは これを積極的に利用した例と云えよう。著者らは、管路の一方に圧縮空気、他方に加圧された 水が入ってその境界を接している場合に、管壁に明けた小孔から、空気と水が交互に噴出して 生ずる振動現象を偶然に発見したが、これも定数係数線型常微分方程式の組合せで表わし得る ものと考えられる。しかし、これは係数も切換る3次系であるため取扱が簡単ではなく、目下 検討中であるが、位相平面の取扱いについて工夫したので、現象の説明と合せて中間報告する。

§ 2 実験装置および振動発生の経過

圧力タンク(直径40cm,高さ1m)と配管(½吋ガス管)よりなる実験装置を第1図に示す。 タンクには水を入れ、上部より圧力 pw(一定)の圧縮空気を導入して加圧しておく。配管の

右方は弁 V を介してタンクに、左方は小孔 dの明けてある仕切板を介して別の圧縮空気源に 接がれている。 この空気源の圧力 p_1 (一定) は p_w よりも大きくしておく。仕切板の右方の 管壁に、別の小孔 D がある。 D は d より直径 が大きい。(例えば、d = 1 mm, D = 2 mm) 弁 Vが閉じている間は、孔 d を通った空気は D

より大気へ噴出するから, $d \geq D$ で境された部分(空気室と呼ぶことにする)の圧力pはほ ゞ大気圧に近い。勿論 $p < p_w$ である。 弁を開くと,水は配管中を左方に流れて行き遂に Dを塞ぐ。そうするとDよりの空気の噴出は止み,代りに水が噴き出し,空気室内の圧力pは 急上昇して $p > p_w$ となる。このため水は右方に押し返され,Dは開き,再び空気が噴出する。 同時にpは下り始め,やがて再び $p < p_w$ となる。すると水はまた左方に進み,以後同様な経 過を繰返して管路内を往復しつつDを開閉する。空気室内の空気は周期的に蓄積,放出され,Dからは水と空気が交互に噴出する。

§3 実験結果

空気室,および 弁 V に近い管路の部分にそれぞれ抵抗線歪計の圧力ピックアップを取付け て,変動圧力を電磁オツシログラフに記録させて見ると,この2箇所の圧力は波形も位相も全 く相等しいから,この系は集中定数系として取扱ってよいことが分った。

実験は、空気室の長さ $L_a = 31 \sim 528 \text{ cm}$, 孔 D からタンクまでの管路の長さ $L = 86 \sim 776 \text{ cm}$, 孔 d の面積 s と、孔 D の面積 S との比 $S/s = 1 \sim 25$, $p_1 = 1.5 \sim 6 \text{ kg} / \text{ cm}^2$, $p_w = 0.2 \sim 5 \text{ kg/cm}^2$ の種々な組合せについて行った。

この結果,発振可能な範囲は大凡次のようであった。

- (I) 4 < S/s < 9
- (II) 31cm < La < 528cm
- (III) 86cm $< L_w$
- (IV) $p_w < p_1$

空気室圧力 pの電磁オツシログラフ写真を第2~6 図に示す。第8 図にLa,および Lと振

	La (cm)	L (cm)	D (mm)	d (mm)	$\stackrel{p_1}{(\mathrm{kg}/\mathrm{cm}^2)}$	$\stackrel{pw}{(\mathrm{kg}/\mathrm{cm}^2)}$	f (c/s)
第2図	37	776	3	1.5		0.3	1.34
3	37	776	3	1.5	3.7	1.2	1.47
4	37	776	3	1.0	4.7	1.2	1.73
5	37	776	3	1.5	4.0	2.5	2.18
6	37	776	3	1.5	4.7	4.0	2.84

動数 f c/s との関係, 第9図にタンク圧力 p_w とf との関係を示してある。 これらの結果から次の実験式を得た。

ここでkはS/sによって変る定数でS/sが小さい程,小さくなる。 実験の範囲内では,空気源圧力 p_1 はfに直接関係しないようである。

§ 4 系を記述する微分方程式

記号

- A = 管路の断面積 (cm²)
- ρ = 水の密度 (kgs²/cm⁴)
- *l* = 管路内の水柱の長さ (cm)
- L = 孔 D よりタンクまでの管路の長さ (cm)
- La = 空気室の長さ (cm)
- x = 管路内の水の前端の位置座標(孔Dより右方を正方向とする) (cm)
- $p_w = タンク内の水圧 (ゲージ圧) (kg/cm^2)$
- $p_1 = 空気源の圧力(ゲージ圧) (kg/cm²)$
- p = 空気室の圧力(ゲージ圧) (kg/cm²)
- P = 空気室の平均圧力(絶対圧) (kg/cm^2)
- n = 空気の Polytrope 指数
- (I) 管路内の水の運動方程式

管路内の水は一体となって運動すると考えられるので、管路の抵抗を無視すれば

 $\rho A l \ddot{x} = A (p - p_w) \cdots (2)$

を得るが、更に $l \div L$ と見做すと

(Ⅱ) 空気室内の空気の状態変化の式

空気室へ孔dより流入する空気量を $Q_1 cm^3/s$, 孔Dより流出する空気量を $Q_2 cm^3/s$ とし、 水の前端が管路内を右方に移動するために、空気室の空気が $Q_3 cm^3/s$ だけ流出するものとす る。差引き Δt 秒間に ($Q_1 - Q_2 - Q_3$) Δt だけの空気が空気室に蓄積され、そのため室内の圧 力が Δp だけ上昇するものとする。その間の状態変化を polytrope 変化と考えると

$$\Delta p = \frac{nP}{ALa} (Q_1 - Q_2 - Q_3) \ \Delta t \cdots (4)$$

孔dとDとの admittance をそれぞれ, k_1 , K_1 とすれば

$Q_1 = k_1 \left(p_1 - p \right) \dots $
$Q_2 = K_1 p \cdots (6)$
$O_{2} = A \dot{x} \dots \dots$

となる。この式はx > 0の時に成立つ。x < 0の時は、孔Dが水で塞がれているからK = 0である。

(Ⅲ) 纏 め

式(3)と(8)が系を表わす方程式として得られたが、この2式からpを消去すると次式を得る。

 $\ddot{x} + (k+K) \ddot{x} + \frac{\alpha}{\rho L} \dot{x} = \frac{\alpha}{\rho L} \left\{ \frac{k}{\alpha} (p_1 - p_w) - \frac{K}{\alpha} p_w \right\} \dots \dots \dots \dots (9)$ 但し x < 0 の時は K = 0 とする。

 $\zeta \subset \mathcal{C} \frac{\alpha}{\rho L} = \omega_0^2, \quad k = 2 \lambda \omega_0, \quad k + K = 2 \mu \omega_0,$

$$\frac{k}{\alpha} (p_1 - p_w) = \xi, \quad \xi - \frac{K}{\alpha} p_w = -\eta$$

とおき, xの正負に従って(9)を別けて書くと,

$$\ddot{x} + 2\lambda\omega_0\ddot{x} + \omega_0^2\dot{x} = \omega_0^2\xi \qquad x < 0$$

$$| \ddot{x} + 2\mu\omega_0\ddot{x} + \omega_0^2\dot{x} = -\omega_0^2\eta \qquad x > 0 \qquad (11)$$

となる。即ち,この系は x=0 を切換線として \ddot{x} の係数と,入力 $\omega_0^{2\xi}$, $-\omega_0^{2\eta}$ とが非対称的 に切換わる積分性の 3 次線型系である。

以下の議論では λ, μ, ω, ξ, η はすべて正数とする。ξ, η を正数とするのは

$$1 < \frac{p_1}{p_w} < \frac{k+K}{k}$$
とするのと同等である。

§5 安 定 判 別

(5-1) $\lambda = \mu$, $\xi = \eta$ の場合

式(0),(1)のまゝでは取扱いが面倒なので,特に $\lambda = \mu$, $\xi = \eta$ の場合について安定性を調べ てみよう。この系のブロック線図は第10図のように線形要素 $G(s) = 1/s (s^2 + 2\lambda\omega_0 s + \omega_0^2)$ と,リレー要素 Nの結合で表わされる。リレー要素の記述関数は $4\omega_0^2 \xi/\pi a$ であるから,線型

10

要素の周波数伝達関数 $G(j\omega)$ のベクトル軌跡が $-\pi a/4\omega_0^2\xi$ を取囲まなければ安定である。 $G(j\omega)$ と $-\pi a/4\omega_0^2\xi$ のベクトル軌跡を第11図に示す。 これで見ると M点が安定なリミット サイクルの状態を示し、振動数 ω は

であることが分る。

[注] 式 (12) より

を得る。P∝pw と考えてよければ(14)は

と書ける。これと実験式(1)とを比較してみると比較的よく合っている。但し (15) は $\lambda = \mu, \xi = \eta$ の場合であり, (1)は $\lambda < \mu, \xi \neq \eta$ の場合である。

(5-2) 一般の場合

位相平面を使ってリミットサイクルの存在条件を調べてみよう。式(10), (11)で $\dot{x} = y$ とおけば, $\begin{cases} \ddot{y} + 2\lambda\omega_0 \dot{y} + \omega_0^2 y = \omega_0^2 \vdots \dots x < 0 \dots (10') \\ \ddot{y} + 2\mu\omega_0 \dot{y} + \omega_0^2 y = -\omega_0^2 \eta \dots x > 0 \dots (11') \end{cases}$

となる。 $y - \dot{y}$ 位相面軌道はよく知られているので,これより $x - \dot{x}$ 面軌道の概形を推定することができる。今,t = 0 の時, 状態点が $x - \dot{x}$ 面では点 A_0 (0, \dot{x}_0) に, $\dot{x} - \ddot{x}$ 面では A_0' (\dot{x}_0 , \ddot{x}_0) にあり,且つ, $\dot{x}_0 < 0$, $\ddot{x}_0 < 0$ であったとする。

 $(A) \lambda \ge 1$, $\mu \ge 1$ の場合 (第12*a*, *b*図)

第12*a* 図で A_0' *B' C' D' P* は (10') 式, *D' E' F'* A_1' *Q* は (11') 式の軌道である。第 12*b* 図の A_0 , *B*, *C*.....はそれぞれ *a* 図の A_0' *B' C'*.....に対応している。即ち, $y-\dot{y}$ 面の $\widehat{A_0'B'}$ 間は $\ddot{x} < 0$ であるから, $\dot{x} \le x \le \ddot{x}$ してあるので, $x - \dot{x}$ 面では $\widehat{A_0B}$ の如く下降 する。*B'* 点で は $\ddot{x} = 0$ であるから, これに対応する *B* 点は \dot{x} の極小点である。 $\widehat{B'C'}$ では $\ddot{x} > 0$, $\dot{x} < 0$ であるから, \dot{x} は増加し, x は減少して \widehat{BC} となる。*C'* 点では $\dot{x} = 0$ である から *C* 点で*x*が極小になる。 $\widehat{C'D'}$ では $\ddot{x} > 0$, $\dot{x} > 0$ であるから $\dot{x} \le x \le \ddot{u}$ 加して \widehat{CD} と なる。*D'* 点で x = 0 となったとすると, 軌道は式 (11') に対応した *D' E' F'* A_1' に切換 る。*E'* 点では $\ddot{x}=0$ であるから, *E* 点は \dot{x} の極大点であり, *F* 点は $\dot{x}=0$ に対応している から xの極大点である。以下同様な経過を辿って A_1' 点で再び x = 0 となる。 A_1' 点は A_0' 点 (出発点) より も

(i) Q 点に近づくか

(ii) A₀[']点に一致するか

第12 a 図

 $\lambda \ge 1$, $\mu \ge 1$ の場合

第12図 b

(iii) Q点より遠のくか

のいずれかである。いずれになるかは出発点 $A_0'(x_0, \ddot{x}_0)$ の位置如何による。(i)(ii)(iii) に対応して $x - \dot{x}$ 面では, \dot{x} 軸上で A_1 点は A_0 点より

(i) 左方にくるか

(ii) 一致するか

(iii) 右方にくるか

のいずれかである。

(i) の場合には、 A_1' 点を出発して再び $\dot{x} - \ddot{x}$ 面を時計廻りに一巡する軌道がまたx = 0に なる点 A_2' は更にQ点に近づく[®] 同様に A_3', A_4' …… はこの順に次第にQ点に近づくが、 Q点を越すことはない。何とならばQ点は平衡点であるから。従って A_1', A_2' …は或一定点 A'に収束する。A'はリミットサイクル上の点である。即ち状態点は内側からリミットサイク ルに近づく。 (ii) の場合は, A₀ 点が丁度リミットサイクル上の点である。

(iii) の場合には、 $A_1' A_2'$ …は順にQ点より遠のく。これに対応してx - x面では $A_1 A_2$ …はこの順でx軸上を原点Oに向って移動するが、原点Oは不安定点であるから、(この系は(10)、(11)式より明らかなようにxの項を欠いでいるので静的不安定な系である。)O点に一致することはない。従って或一定点Aに収束しなければならない。A点はリミットサイクル上の点である。即ち状態点は外側からリミットサイクルに収束するのである。

(ロ) $\lambda < 1$, $\mu \ge 1$ の場合 (第13*a*, *b* 図)

第13 a 図

 $\lambda < 1$, $\mu \ge 1$ の場合

第13b 図

x < 0に対応する $y - \dot{y}$ 面軌道が P点を焦点とした渦巻線になるのが(4)の場合と異なるだけ で $x - \dot{x}$ 面軌道の形は変らない。 ただ, x = 0 となるのが D'点であるか F'点であるかに よって, \dot{x} が極大になる点 Eの位置が第13b図の如く異なる。

(パ) $\lambda \ge 1$, $\mu < 1$ の場合(第14図)

x = 0 になるのが A' 点であるか C' 点であるかによって, $x - \dot{x}$ 面上で \dot{x} が極小になる点

野 坂 弥 蔵

Bの位置が異なるだけで、 $x - \dot{x}$ 面軌道の形は(4)のものと変らない。

(ニ) $\lambda < 1$, $\mu < 1$ の場合(第15図)

14

x = 0 になるのが A' 点であるか C' 点であるかによって, $x - \dot{x}$ 面で \dot{x} が極小になる点 B が異なり, また E' 点であるか G' 点であるかによって, \dot{x} が極大になる点 F の位置が異なる だけで,軌道の形は(4)のものと変らない。

(5-3) リミットサイクルの存在条件

以上より、リミットサイクルが成立するための必要条件は $y - \dot{y}$ 面軌道の結節点 (または焦 点) および切換点 (即ち x = 0 となる点) が \dot{y} 軸の両側に1つづつあることである。このた めには ξ , η , λ , μ はすべて正数でなければならない。

 $\lambda \ge \mu$ の大小はリミットサイクルの形成には無関係である。 但し、前述のような、管路内の水 と空気の振動の場合には、 ξ 、 η が λ 、 μ の関数であって、 $\xi > 0$ 、 $\eta > 0$ であるためには

$$1 < \frac{p_1}{p_w} < \frac{k+K}{k} = \frac{\mu}{\lambda}$$

でなければならないから $\lambda < \mu$ が必要である。従ってこの場合には上述の(*)は起らない。

§ 6 アナログ電子計算機による解析

式 (3)(8) を直接に解くために第16図の回路を使った。スイッチ Sは x = 0 の時に切換え,

第16図

x < 0の時 off, x > 0の時 on とする。第17,18図の(h)(n)(h)は結果の一例である。(h)の圧 力波形を第2~6図に示す水一空気系の圧力波形と比較してみると良く似ており、 p_w を増す と振動数が変ったり、波形が変ったりする傾向も一致している。第19図は発振の過程を示す。 内側から次第にリミットサイクルに近づく様子がよく分る。式(h),(h)の形で解いて§5の所論 を検討するには第20図の回路がよいであろう。

§ 7 電子計算機による解析

アナログ電子計算機では、パラメータを簡単に変えることができる長所がある反面、精度その他に短所があるので、電子計算機でも検討することにした。一例として $\lambda > 1$ 、 $\mu > 1$ の場合を述べよう。 t = 0の時 x = 0, $\dot{x} = \dot{x}_0$, $\ddot{x} = \ddot{x}_0$ なる初期値より出発し、接続法によってリミットサイクルを求めるのである。計算時間をなるべく短縮するために次のような工夫をする。即ち式(10)より

第20図

$$\dot{x} = \xi - \frac{2\lambda \omega_0 \ddot{x} + \ddot{x}}{\omega_0^2} \qquad (16)$$

上述の初期条件の下でこの式の両辺を積分すると,

を得る。また

とおき C₁, C₂を任意定数とすれば (10')の一般解は

$$y = \dot{x} = C_1 e^{a_1 t} + C_2 e^{a_2 t}$$
(20)

これより

よって,先ず与えられた ω_0 , λ の値を使って $a_1 a_2$ を計算し,次式によって C_1 , C_2 を求める。

次に $t \ge 0.1$ 秒 づつ増し、その都度 x, \dot{x} , \ddot{x} の値を(17)、(20)、(21)によって計算する。 $\dot{x}_0 < 0$ の 場合は、xの値は初め負であるが、やがて正に変る。変る前後の xの値を使い、内押によっ てx = 0の時の t, \dot{x} , \ddot{x} の値を求め、これを初期値として次式の場合 (x > 0)に切換える。

$$b_{1} \equiv -\omega_{0} (\mu - \sqrt{\mu^{2} - 1}) \dots (24)$$

$$b_{2} \equiv -\omega_{0} (\mu + \sqrt{\mu^{2} - 1}) \dots (25)$$

$$D_{1} = \frac{\ddot{x}_{0} - b_{2} (\dot{x}_{0} + \eta)}{b_{1} - b_{2}} \dots (26)$$

$$D_{2} = \frac{-\ddot{x}_{0} + b_{1} (\dot{x}_{0} + \eta)}{b_{1} - b_{2}} \dots (27)$$

$$x = -\eta t - \frac{2\mu\omega_{0} (\dot{x} - \ddot{x}_{0}) + (\ddot{x} - \dot{x}_{0})}{\omega_{0}^{2}} \dots (28)$$

$$\dot{x} = D_{1}e^{b_{1}t} + D_{2}e^{b_{2}t} - \eta \dots (29)$$

$$\ddot{x} = D_{1}b_{1}e^{b_{1}t} + D_{2}b_{2}e^{b_{2}t} \dots (30)$$

これ等の式によって 0.1秒毎の x, \dot{x} , \ddot{x} を計算し, やがて x < 0 に変ったら,前と同様に内 押によって x = 0 に対する t, \dot{x} , \ddot{x} の値を求め, これを初期値として再び(20), (20), (20), (20)による計算に切換える。このような操作を繰返し, x = 0 の時の \dot{x} の値が毎回一定の値を 取るようになったら停止すれば,リミットサイクルが求まる。実際のプログラムを次に示す。

電子計算機のプログラム

IBM DATA CENTER

7090 FORTRAN CODING FORM

PROBLEM	JOB NUMBER	
CODED BY	DATE	DECK ID.
STATEMENT		DECK PAGE LINE
NUMBER 3	FORTRAN STATE	TE MENT 50 60 70 70 72 74 7890
: 30	<u> </u>	
<u>c</u>	FINDING THE LIMIT CYCLE OF SELF EXCIT	TED OSCILLATION OOO
Ć	WHEN BOTH LAMBDA AND MU ARE LARGER TH	
. 9,1	$R \in AD(1, 5) P, Q, M, G, Y, X H, X 2H$	1,0,0
	IF(P.EQ.99.99) GO TO 90	1,5,0
	WRITE(3,8)	2,0,0
e	WRITE(3,6) P, Q, W, G, Y, X/H, X2H	2,5,0
	WRITE (3, 9)	3.0.0
5	FORMAT(2(2X, F4, 2))	3.5.0
8	FORMAT(IH) / PX / HP / PX / HQ / PX / HW / P	9 X //HG // 9 X //HY // 8 X /3 HX //H //7 X /3 400
	H(X,2,H)	450
	EQRMAT(1H, 17X, E6, 2, 6 (14X, E6, 2))	50.0
	FORMATCING LOX INT LAX 24X & 12X 24X	1/2/X 2/4X 2 1/2X 2/45/1 /2X 2/45/2
	$\Delta I = m * (-p + (p p T (p * * 2 - (p)))$	<u> </u>
	$\Delta 2 = \overline{\mathbf{W}} \ast (1 - 2) \ast (0 - 2) \ast (1 - 2) $	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
		7.00
H		<u> </u>
<u> </u>	PM=0,0	8,0,0
<u>L</u>	PN=0.0	8,5,0
Lul	QM=0.0	9,0,0
Lud		9,5,0

IBM DATA CENTER

7090 FORTRAN CODING FORM

PROBLEM	JOB NUMBER	
CODED BY		OF
C FOR COMMENT		Tana Internet Color
NUMBER 0	FORTRAN STATE MENT	ID.
<u>1 567 10 20 3</u>	30 40 50 60 70	73 76 7880
$6, \phi, \phi = C I = (X 2 H - A 2 * (X I H - G)) / (A I)$	- 42)	0,0,0
$C_2 = (-X_2H + A_1 * (X_1H - G_2))/(A_1)$	/ - /A / 2)	0,5,0
$T = \phi \cdot \phi$		1,0,0
$J_{\mu}\phi,\phi T = T + \phi \cdot I$		1,5,0
$E_{I} = E_{X} P(A_{I} * T)$		2,0,0
$E_{2} = E_{X} P (A_{2} * T)$		2,5,0
X / = C / * E / + C 2 * E 2 + G		3,0,0
X2=C1*A1*E1+C2*A2*E2		3,5,0
$X \phi = G * T - (2, \phi * P * W * (X I - X I H))$)+X2-X2H)/W**2	4,0,0
IF(XØ) 12, 35, 35		4,5,0
, 1,2 WRITE(3,60) T, X0, X1, X2,	Ε Ι , Ε 2	5,0,0
$\mathbf{X} \not = \mathbf{M} = \mathbf{X} \not = \mathbf{M}$		5,5,0
x / M = x /		6,0,0
$x_2 M = x_2$		6,5,0
TM = T		7,0,0
, GO TO /ød		7,5,0
$35 = -x \phi m (x \phi - x \phi m)$		8,0,0
T = TM + 0.7 * S		8,5,0
X 1 H = X 1 M + (X 1 - X 1 M) * S		9,0,0
X2H = X2M + (X2 - X2M) * S		9,5,0

18

IBM DATA CENTER

7090 FORTRAN CODING FORM

PROBLE	м										_				_	_							_	2	JO	81	٩U	M	ΒE	R			_																																				
CODED	ВΥ	_						_	_							_						_	_	1	DA	ΤE												_										D	ECI	кI	D.	L				_		F	AG	εį	_		3		OF	-		_	
STATEMEN	२ C नी	OM T	ME	.NT												_						_				_	_		_	_		_	_	_																																			
NUMBER	3	_		,	~																							1	FC	DR	T	RA	IN	5	ST	A	ΓE	1	ИE	N	Т																							1	D.	ľ	AGE	-	NE
<u> -</u>	뿌	ĸ	- 1	÷	÷	T	-	Ċ.	-		-	-	-	20	-	-	T	-	-	-	-	-	3	0	T	T	T	-	Т	-	-	-	4	0	T		-	-	-	-	-	-	5	<u>0</u>	-	-	-	-	_	_	_	6	0	-	_	-	-	-		_	_7	0	_	7:	3	Z	6	78	80
Hur	1	W	R	I	E	(3		2	0	2	_	T	,	X	1	н	4	х	2	н	1	4	4	1	1	1	1	1	4	4	4	_	4	1			1	1		1			1											1	ŀ										1		0,0	0,0
Hun		I	F	(1	P		L	E	·	P	N	2		Ģ	0		Т	0			ø				1	L																																					i.			I		0.	5,0
Huu		Р	N	=)	41	н							_																												Τ	T	Τ	T		T	Τ					Τ	T	T							T	T	T	T	.	Ť	<u> </u>	1.0	0.0
Lin		Ģ	0	1	-0		1	5												ł		Ι	Ι			Τ		Ţ	T			Τ	Τ	T	Τ	Ι	T	T	Т	T	T	T		T	Τ	T						1	T	T	T	T				T	T	T	T		*	•	1	1.	5.0
1.14	5	P	М	=)	1	н											1	T			Τ	T	T	1	I		T	T	T	1	1	1	1	T	T	1	T	T	T	1	1	T	T	T	T	T	T	T	Π	Π		T	T	T	T	T			T	1	1	t	t	ľ	*	t		2.0	2.0
1,5		I	F	$\langle \rangle$	B	\$	C	Þ	Μ	-	P	N	>		L	т		7		0	5	- 2	2	5	1	à (2	ŀ	1	d	1	9	/	T	T		T	T	T	I	T		T		T	T		T	Π	Π		T	T	T	t	T			T	1	t	t	t			t		2.4	5.0
		D	1	= (x	2	H	~	в	2	*	d	x	1	н	+	Y	7	2	1	d	3	-	. 1	3	2		T	T	1	T	T	T	T	T	T	T	T	T	T	T		T	T	T	T		T				T	T	T	t				T	T	T	t	t			*	1	20	20
	Ľ	D	2	= ([]-	x	2	н	+	в	1	*	(x	1	н	+	Υŀ	5)	1	1	3	1	- 1	32		>	T			T	T	T	T		T	T	T	T	T		T	1	T	T	T	1				T	T	T	T	T		Π	1	1	t	t	T	1			-	3.4	5.0
Lui		7	=	d.	c													T	1	Τ		Τ	T	T	T	T	Τ	T	T	1				T	T		T	T	T	T	T	T	T	T	T	1	T				1	T	T	Ť	t			Π	1	1	1	t	T			T		40	10
3.9		Т	=	T I	-10		1													Τ				T	Τ	T		T	Τ	T		1	T	T	T	1	T		T	T	Ì	T	T	T	T	t	Γ						T	T	T				T	t	T	t	t			t		4.4	5.0
Lu		Ε	1	= 6	x	Р	\langle	в	1	*	т	k								1				Τ	Γ	Γ	Τ	Τ	Τ	Τ	Τ	Τ	T	Ι	T		Τ		T	Τ	T	Ι	T	Τ	T	T		Γ					T		t			Π	T	Ť	T	t	t		—	t	Ċ	5.0	20
Hun	Ŀ	E	2	= 6	×	Р	(в	2	*	т	2						Ι						Ι		Ι		Τ	Τ	Τ	Τ	Τ	Τ	Τ	T	Τ	Τ	T	Τ	T	T	T	T	T	1	Τ						1	T	Γ	T				T	T	T	t	T		•			5 4	50
Lu		х	1	= [1	*	E	1	+	D	2	*	E	2	-	Y		T	Τ	T	T	T	Τ	T	T	T	Τ	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T		T	T	T					1	t	t	t	t	Π	٦	Π	1	1	t	t	t		4	Г		60	10
Lu		х	2	= l	1	*	В	1	*	E	1	+	D	2	*	в	2	* E	E,	z		T	Τ	Τ	Ι	Ι		T					T	T	T	T	T	T	T		T	T	T	T							1	t	T	T		Π			1	t	t	t	t			t	Ξ,	6.5	10
Lin		х	ø	-	Y	*	т	-	(2		0	*	۵	*	w	*	$\overline{\mathbf{d}}$	x	1-	.)>	d	1	1) +	×	12	2 -	-),	4	21	1	\rangle	1	τ,	*:	*	2	t	T	T	T	T	t	T	Ţ		Π			1	1	t	t		Η	1	T	1	t	t	t	t		*	t.		7.0	10
Tur		I	F	(x)	ø	b		5	ø	ø	,	5	ø	ø		2	ø	ø	Ţ	T	T	T		Τ	T	Τ	T	T	Ţ	T			T	Ť	T	T	T	T	T	T	t	T	T	T	T	T		Π		1	1	1	T	t	Γ		1	1	T	t	t	t	t			t	Ť	7.5	0
7,0,0		w	R	t 17	E	\langle	3	,	6	ø)	ŀ	τ	, I	x	ø	, I:	x.	/	, ,		2	E		1	E		2	T	T	T	T	T	T	T	T	T	T	T	T	t	T	T	T	T							T	T	Г			1		t	t	t	t	t			h	Ċ,	20	10
		х	ø	4=	x	ø		Τ		Τ		T		T	T		Τ	T	T	T	T	T	T	Ť	ľ	T	Г	T	t	T	T	T	T	t	t	t	T	t	t	t	t	t	t	t	t	T	Π	Η		1	1	1	1	h		Η	1	T	t	t	t	t		1.	2	Г	Ë,	0,0	
		x	//	1=	x	1		Τ	1	Τ							T	T		T	T		T	T	T	T	T	T	T	T	T	T	T	T	T	T	t	T	T	1	t	t	t	t	T	T	Π	H		1	1	t	t	h		H	+	+	t	t	t	t		1	۰.	F		20	5
Lu		X,	2/	1=	X	2	ļ			Ι	I							Ι										Í		I		I	Í	I	Ì		Ī			I		ľ		T						1		1							İ	t	t	L	Ľ			H	5	2,5	0

IBM DATA CENTER

7090 FORTRAN CODING FORM

PROBLEM	JOB N	JMBER	4	· · ·
CODED BY	DATE		DECK ID.	PAGE 4 OF
STATEMENT 2	· · · · · · · · · · · · · · · · · · ·			DECK PAGE LINE
NUMBER 3 1 567 10 20	30	FORTRAN STATE M	ENT 60 60	10.
				70 73 76 7880
				0,0,0
GO TO 39	┽┽┾╎╎┥┿┾╎╷	┽┼┼┼┼┼┼┽┽┽┥		0,5,0
$5,\phi,\phi$ $S = X\phi M / (X\phi M - X\phi)$				1,0,0
$T = TM + \phi \cdot / * S$				1,5,0
X 1 H= X 1 M + (X 1 - X 1 M)*5			2,0,0
X2H = X2M + (X2 - X2M))*s			.5,0
WRITE(3,70) T, X	1H, X2H			300
IF (QM.GE,QN) GO	TO 50			350
QN=X/H				400
GO TO 25			╶┊╄╫┊┫╏┝╋╿┥┥	4,0,0
5.0 QM=X/H				4,5,0
25 TELABSION-OND I	T // 05-12) CO		╶┶┑╾┥┫╏┥┥┥┥┥┥┥┥┥	<u></u>
	1.1.05 61 40	-1971	╶ ╞╞┼┼╏┇╪┽┼╎┥┥┊┊╏┊╽╎ ┽┽	5,5,0
			╶┼ ┊╞╞╞┥╏┍╹┥╹┥╹┥╹┥╹┥	6,0,0
10,0 FORMATCH / 4X, F	11.8,5X,E15.	8,4(4X,E/5.8	22	6,5,0
1, 12, P F O KMAT (1 HO, 4X, F	11.8,24X,E/S	· & , 4x, E/ 5 · & X	╶╶╴╡╗┥┝╺┥╡╃┥╿┥┥┥┥┥┥┥	7,0,0
9,0 STOP	<u> </u>	╺╅╍┥┥╿┝╌┥┥┥┥		7,5,0
END				8,0,0
				8,5,0
				9.0.0
				9.5,0

第21a,b図はこのプログラムによって計算した \dot{x} – \ddot{x} 面,x– \dot{x} 面軌道であり,第22a,b,c図 はx, \dot{x} , \ddot{x} の波形である。式(3)より分るように

 $p = p_w + \rho L \ddot{x} \cdots (3')$

であるから,pの波形は直流分 p_w を除けば \ddot{x} の 波形と同じである。

[注]

初期値 (\dot{x}_0 , \ddot{x}_0) より出発する $\dot{x} - \ddot{x}$ 面軌道を Liénard の方法によって作図し、軌道上 の各点に対応する時刻を

$$\lambda < 1 \text{ の時は } t_{AB} = \frac{\theta}{\omega_0 \sqrt{1 - \lambda^2}} \dots (31)$$

$$\lambda > 1 \text{ の時は } t_{AB} = \int_{\dot{x}_{1A}}^{\dot{x}_{1B}} \frac{d\dot{x}_1}{\ddot{x}_1} \dots (32)$$

または $t_{AB} = -\int_{\ddot{x}_{1A}}^{\ddot{x}_{1B}} \frac{d\ddot{x}_1}{2 \lambda \omega_0 \dot{x}_1 + \omega_0^2 \dot{x}_1} \dots (33)$

によって求め, $x \in (n \circ r)$ 算する方法によれば卓上計算機によってもリミットサイクルを求め ることができるが,相当の日数を要し実用的とは云えない。ここで t_{AB} は軌道上の A 点から B 点まで状態点が移動する時間であり, θ は焦点 $F \ge A$, B を結ぶ線分 FA, FB のなす角 (radian) である。(第23図参照) \dot{x}_1 , \ddot{x}_1 は軌道上の点(\dot{x} , \ddot{x})の坐標を,結節点を原点とし て測った値であって $\dot{x}_1 = \dot{x} - \xi$

$$\ddot{x}_1 = \ddot{x}$$

なる関係がある。

§8結 び

(I) ここに紹介した水一空気系の自励振動は、 偶然に発見したもので、 その応用面は未開発 であるが、機械的可動部分が全くないのに生ずる、周期1秒前後、振幅 3kg/cm² 前後の安定し た間欠的圧力変化であり、しかも液体と気体を交互に噴出するので、洗滌装置や内燃機関の冷 却などに利用できる可能性がある。

(Ⅱ) 系を記述する方程式(8)(8)を求め、アナコンで解いてみると、実験結果とよく一致した解

が得られるので、(3)(8)は妥当なものと思われる。

(Ⅲ) このタイプの振動は他にも例があると考えられるので、(3)(8)を一般化した式(0)(1)について、その parameter と安定性、周期、振幅ならびに波形との関係を明らかにする必要があるが、未だ十分検討しておらず、今回は電子計算機による計算結果の一例を挙げたに過ぎない。

§ 9 謝 辞

この現象を発見された多久和興起氏(当時島大学生),大国博昭助手,アナコンを製作され た金築久雄,田原実,太田正直(いずれも当時島大学生),懇切な御指導をいただいた東大工, 藤井澄二教授をはじめとする同研究室の方々,貴重な文献と御指導を賜った関東学院大工,山 桝雅信教授,また電子計算機プログラミングを指導していただいた上に,使用その他に多大の 御迷惑をおかけした佐藤造機株式会社電子計算機課の森山吉郎課長,須田和男氏をはじめとす る課員の方々に厚くお礼申上げます。

§10 文 献

- (1) イ・ペ・ポポフ(関根智明訳)自動制御
- (2) ヤ・ゼ・チプキン(林順雄訳) リレー式自動制御系の理論
- (3) N. MINORSKY : INTRODUCTION to Non-Linear Mechanics
- (4) 野坂弥蔵:純流体素子を使用した発振器について(計測自動制御学会主催第一回純流体素子シンポジ ウム資料)
- (5) 野坂·大国·多久和:日本機械学会関西支部第39期定時総会講演会前刷(1964.3)
- (6) 田原・金築・太田:島根大学卒業論文(1966.1)
- (7) 野坂:日本機械学会第44期全国大会前刷集 No. 158 p.29 (1966.10)
- (8) 吉田鐐一:自動制御 p.141 (森北出版)