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UNIFORMITIES FOR FUNCTION SPACES AND 

CONTINUITY CONDITIONS 

By 

Takashi KARUBE 

Usm>' uniform structures, Dieudonn6 [3] systematized a number of results 

on topologies for homeomorphism groups which had been published till 1947. 

Since then, as to properties on continlrity, only sufficient conditions have 

been given under special uniformities. 

Let X be a set, Y be a uniform space endowed with a uniform structure 

u, ~; be a family of subsets of X, and c~ be the family of all mappings of 

X into Y. For each set AE~ and each entourage UF_u, Iet ~r(A, U) de-

note the set of all pairs (z,t, v) of mappings of X into Y such that (u (x) , 

v (x) ) EU for all xEA. Then { W(A, U) I AE~;, UEu} form a fundamental 

system of entourages of a uniformity ~~ on ~ under the proper conditions on 

~; (Theorem 1) . 

The purpose of this paper is to find the most general conditions possible, 

expressed by the properties of ~; and u, that satisfy the following basal 

conditions on continuity with respect to the uniformity ~~; : i) the mapping ('u, 

x) ~u (x) of i~ X X into Y is continuous, where X is a topological space and 

~; is a family of continuous mappings of .Y into Y (Theorems 2 and 3) , ii) 

the mapping (u, v) ~ uv of ~~ X ~; into ~; is continuous, where X and Y are 

the same uniform space and ~;~;CI~~ (Propositions 4 and 5 ; Theorems 4 and 

5) . These are the basal conditions often required to be satisfied for semi-

group~* of continuous transformations of a uniform space. 

From our results, it is conjectured that if a uniformity ~~ on ~ satisfies 

these basal conditions for the family of all continuous mappings of a space 

into itself which has several properties similar to those of euclidean spaces, 

then ~~ must be the uniformity of compact convergence. In fact it is affirm-

ative (cf. Karube [5]). 

For topological terms and notations we follow the usage of N. Bourbaki [2]. 

S 1. Ulniformizability comditions. 

Theorem 1. Let X be a set ; Iet Y be a set endowed with a uniform structure 

sokyu
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ll ~()hich is 7rot th,e coarsest ; Iet ~5 be a family of sl'tbsets of X ; an,d let oi_.~)" be 

the fa,mil_v of all mapping.' of X into Y. For each AE~5 and each U H.,___'~~'11., Iet 

W(A, U ) denote the set of all pa,i,rs (u, v) of mappin,gs of .Y into Y such, that 

(1't. (x) , v (x) ) F_ U for all x(~~A. Then, as A runs thl'ough ~; alid U 1-uns 

thr'ou*"'h u, the sets VV(A, U) form a fundamental system of entoul-a,ges of a 

l'tnifol-mity on ~ if and only if 

1) ~; .is n,on-empty, and 

2) for any two sets A1' A2~'~_~; the7'e exists a set A3(L.__~~5 such that A31)A1 

tJA2. 

In the case ~vhere u is the coarsest uniformity, the condition 2) is su,perfl'uous, 

a,nd the correspo'iding uniformity on ~ is th,e coa7'sest one. 

Proof Put >~~;+ { ~r(A U) I AE~5, UElt} . It is easy to see' that the above two 

conditions l) and 2) are sufficient for b~-*~ to be a fundamental system of en 

tourages of a uniformity on ~. We shall show the necessity. In fact 

a) the condition 1) is equivalent to the fact that every W(A, U) E~Si contains 

the diagonal set in ~ x c~~5, and 

b) if l~L is not the coarsest uniformity, then the condition 2) is equivalent 

to the following 

2) / for any two sets W(A1' U1)' W(A2, U2) E~; there exists a set W 

(A8, U3) E~S; sttch that W(A3, U3)(lW(A1, U1) n W(A2, U2). 

We shall only prove that 2) / implies 2) . Since ll is not the coarsest 

uniformity, there exists an entourage UEu different from Y X Y. For the 

entourage U and any two s~ts A1' A2E~;, there exist an entonrage U / Eu 

and a set A3E~; such that W(A3, U/) C W(AiUA2, U). IL AIUA2 is not 

contained in A8, take a point aEAI UA2 A8 and two points p and q of Y 

such that (p, q) ~E U. There exist two functions u, VE~ such that u and v 

coincide on A3 and u(a) -p, v(a) q. Then (u, v) el~ W(AIUA2, U) while 

(u, v) E W(A3. U/). The contradiction shows that A31)AIUA2. 

Definition 1. Each family of subsets of X which satisfies conditions l) and 

2) in Theorem I is called a u-family. 

The following Proposition I shows that our uniformity on ~ is essentially 

the same as the uniformity of ~5-convergence on ~ (cf. N. Bourbaki [2]). The 

former is rather more direct than the latter for us to define uniformities on 

function spaces. 

Proposition l. Let X, Y, It and ~ be the same as those in Theorem 1. Let 

~; be a u-family of subsets of X ; Iet ~;* be the family of all sets that are 

f,inite unions of sets belonging to ~; ; Iet ~;** be the family of all s'ubsets of 

sets belonging to ~5*. As A ru,ns thr'ough ~5, ~;* ~nd ~;** respectively alid U 

rules thl-ough u, the sets W (A, U) form a fundamental system of entourages 
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of a unifol~mity olz ~:. Let ~;, ~~* and ~~~~;** d,e"rote the l't,nifol';7zity respectively. 

Moreover let ~;, ~;* and ~;** denote the l'tniformity of e;-, ~;*- an,d ~;**-

cr)nvergence on ~ re."pectively, and for each A E (~ Iet ~;A denote th.e unif07-'lnity 

of {A} -convergence on ~, 1~vhere {A} is the fal'lily consi,sting of the set A only. 

The/ Z 

~~; ~~;*=~~;**=~~;_~~;*-~;** UAee; ~;A. 

~ ~ ~ Proof. It is well-known that ~;=~~;* - ~;** and it is easy to show that 1) 

UA~e5 ~~;A is a uniformity on ~, 2) UAe~; ~~;A is the least upper bound of {~;A 

J AE~5} in the family 0L all uniform structures ordered by the relation c'incl-

usion", consequently it coincides with ~;, 3) ~~=~;, and 4) ~~;* = ~~;* and ~;** 

= ~~** as well. 

As simple cases where ~~; determines ~; and ll, we consider the case where 

~~; is the coarsest or the finest uniformity in the following Proposition 2 and 

Proposition 3, where the notations keep the same meanings as in Proposition 1. 

Proposition 2. The followinbd conditions are equivalen,t 

1 ) ~~; i,s the coarsest waiformity on ~, 

2) the topol,ogy ~Sc~ on ~ indnced by ~~~ is the coa7~sest one, 

3) ~5 consists of the e7npty set only or u is th,e coarsest unif07~mity on Y. 

Proof. It is evident that 1) implies 2), and 3) implies 1). To show that 2) 

implies 3) , suppose that ~5 has a non-empty set A. If there exists an entourage 

UEu different from Y X Y, we can take two points p; q of Y such that (p, q) 

~lE U, then for any Lixed point a of A we can define two functions u, VE~ 

with value p, q at a respectively and the same value otherwise. Now by 2) , 

we have W(A, U) (u) ~ and in particular (u (a) , v (a) ) - (p, q) E U, which 

is a contradiction. 

Proposition 3. If the space Y contains m07~e than one point, then the follol~v-

in,g coliditions al-e equivaleltt : 

' I ) ~~ is the finest unifol-mity, 

2) th.e' topology ~5c~{, on o/~5' induced by ~ is the finest one, 

3) .Y*E~5 and u is the finest uniforlnity on Y 

If the space Y consists of only one point, both ~~3 alid 11 consist of only one 

point, and of, course they al~e both the finest and the 'coarsest unif07~mity. 

Proof. It is evident that 1) implies 2) , and 3) implies 1). We shall show 

that 2) implies 3) . By 2) , for any fixed uo eE ~ there exist a set AE~ and an 

entourage U Eu such that 

if (uo (x) , u (x) ) EU (uE~) for all xEA, then u=uo' (1) 
The set A must coincide with the space X. In fact if a point a of .Y does 

not belong to A, we can choose a function 1.tE~ whose value at a is not 

u.o (a)' but coincides with that of uo otherwise. This is a contradiction. 
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The entoura*ae U must coincide with the diagonal set in Y X Y. In fact if 

p and q are distinct points such that (p, q) E U, then for the constant maps 

uo and u with value p and q respectively, the relation (1) does not hold. 

It is natural that the uniformity ~~; depends on both ~; and u, and in 

general any uniformity on ~ can not always be defined by ' giving only ~5 

adequate properties (cf. Proposition 3), while most uniformities on ~ in the 

literature have been defined so. 

S 2. Sirnu~.taneous contiuuity. 

Notation 1. Let X be a topological space, Y be a uniform space endowed 

with a uniform structure It, e5 be a u-family of subsets of .Y, and ~; be the 

family {AIAE~5}. Let ~ (X ; Y) be the family of all mappings of X~ into Y, 

~; (X ; Y) be the family of all continuous mappings of X into Y, and ~ (resp. I~) 

be any non-empty subLamily of ~ (X ; Y) (resp. ~~ (X ; Y)). Let ~; (resp. ~~;) 

be the uniformity on ~ (X ; Y) defined by ~; (resp. ~;) as in Proposition 1. 

These notations will keep these meanings throughout this section. 

Definition 2. A uniformity on ~ (X ; Y) is called a uniformity ~)hich gives 

sillutltan_'ous continuity fol- ~~ in brief an s. c.-uniformity for ~;, if for each 

uOE~~ and each xo E･¥' the L0110wing condition holds : for any entourage U 

of Y there exist an entourage W of ~ (X ; Y) and a neighborhood V 0L xo 

in X such that 

the relation ((ucr W(1'10) and xEV" implies the relation "u (x) ~~ U(uo) (x )) o " 
(1) 

A uniformity on ~ (X ; Y) is called an admissible uniformity which gives simul-

taneous continuity for (~ in brief an a. s. c.-uniformity for i~, if the similar 

condrtron that "uEW(uo) " rs replaced by "uEW(u ) n~~" in (1), holds 

It is evident that an s. c.-uniformity for ~~ implies an a. s. c.-uniformity 
for ~;. 

Theorem 2. Let X, Y, I~, ~;, ~; and I~ be the same as those in Notation 

1. Let ~~;c be the unifol-mity of compact conve7~gence on ~ (X ; Y) . If u is not 

the coarsest l'tn:iformity on Y, the following conditions are equivalent : 

1 ) every po'int of X is interiol- to at least one set of ~;, 

2) ~~~ is an s. c.-uniformity for ~;. 

Moreover if X is locally compact, each of 1) and 2) is equivalent to the 

following : 

3) ~~; is finer than ~;c ' 

P1-00f. 1) implies 2) : (Dieudonn6 [3] had shown without the proof that 1) 

implies that ~; is an a. s. c.-uniformity for ~~ (X ; Y) in our terminology) . 

For the sake of completeness we give a proof. For each XJ EX, choose a set 

AE~; and a neighborhood V orc xo in X such that VCA. For any entourage 
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UEII, choose an entourage UIEu such that Ul2CU. For each ,uoE~~, there 

exists a neighborhood V1 of xo in X such that uJ (V1) C Ul (uo (xo) ) ' If XE 

VnV1 and uE W(A, Ul) (uo) , then u (x) E U(uo (xo) ) ' 

2) implies 1) : Since IX is not the coarsest uniformity, there exist an ento-

urage U/ ~ Y X Y and a symmetric entourage Uo such that U02CU/. If Uo 
(yo) - Y for some yoEY, then Y X YCU/, which is a contradiction. Therefore 

Uo (y) ~ Y for any yEY. 

Suppose that there exists a point xo Which is not interior to any set belonging 

to ~;. Take a mapping uoE~~ and a point p such that p~I~Uo(uo(xo) ) ' By 2), 

there exist a neighborhood V of xo in X, a set AIE(~ and an entourage Ul 

Eu such that 'CXEV and uEW(A1, Ul) (uo) " implies acu (x) EUO (uo (xo) ) "' 

Take a point xl of V-AI and let ul be a mapping belonging to ~ (X ; Y) 

whose value is p at xl and the same as uo on Al' Then ul'E W(Al' U1) (uo) 

but ul (xl) ~ Uo (uo (xo) ) ' This is a contradiction. 

The remaining part of our proof is similar to the proof of Arens' theorem 

([1], p. 482) for the compact-open topology. 

1) implies 3) : Let K be any compact subset of X and U be any entourage 

of Y. For each x E K take a set A (x) E ~5 which has the point x in its 

interior. From the covering {A (x) I x EK} of K we can choose a finite 

subcovering, say {A(xi) Ixi F__K, i-1, 2, ･･･, n}. Take a set AE(~ such that 

A (xl) [J A(x2) U "･ UA(xn) ~A, then W(K, U) [) W(A, U) . 

3) implies 2) : (The local compactness of X is used only in this case.) Let 

uo be any mapping of ~~ and xo be any point of X. For any entourag"e U(~~1~t, 

there is an entourage UIEu such that U12CU. Take a compact neighborhood 
V of _xo in X such that uo ( V) (lU1 (uo (xo) ) ' By 3) , there exist a set AE~; and 

an entourage U2Eu such that V~r(V, Ul) [) W(A, U2) ' Then for uEW(A, 
U2) (uo) and xEV, we have u (x) EU(uo (xo) ) ' 

Remarks. In the case where u is the coarsest uniL0rmity, both ~; and ~;. 

are the coarsest uniformity, the conditions 2) and 3) hold trivially, and the 

condition 1) is independent of them. 

Lemmra 1. Uniformities ~; and ~1~ coincide on ~~ x ~;. 

P1-00f. The similar proof as in Bourbaki [2], Proposition 6, p. 280, is valid. 

Thec)rem 3. If X is a uniformizable topological space and Y a unifor77~ space 

w/'1ich contains a non-degene/~ate drc, then the follozving coliditions al-e equivalent : 

1) every point of X is il'tteri07- to at least one set of ~5, 

2) ~; is an s. c.-uniforlnity for ~~ (X ; Y) , 

3) ~~; is an a. s. c.-uniforn~ity for (~ (X ; Y) , 

4) ~~; is an a. s. c.-umfonnity for ~: (X ; Y) . 

P1-00f. By Theorem 2, 1) and 2) are equivalent. It is evident that 2) implies 

3) . By Lemma 1, 3) and 4) are equivalent. We shall prove that 3) implies l). 
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For any two distinct points p and q of a non-degenerate arc in Y, there is 

an entourage U~u such that q~I~U(p) . Let uo be the constant mappins" of 

X into {p} . Suppose that a point a of X exists that is not interior to any set 

of ~;. Since uoE~;(X ; Y) , there exist a neighborhood V of a m X a sef 

A(~~~ and an entourage 'UIEu such that 

the relations ('xEV and uEW(A, Ul) (uo) n~;(X ; Y) " inrply the relation 

((u (x) E U (p) ". 

Take ' a point b of V-/~. Since X is uniformizable (cf. [2], p. 144) , there exists 

a real-valued continuous function f defined on X such that 

f(A) O, f(b) I and O < f(x) <C I for every x~._~X. 

Moreover there exists a continuous mapping ~"' of the closed interval [O, I] 

into Y such that 

g(O) p and g(1) =q. 
Let u be the composition *"" f. Then 

bE V and uE W(A; Ul) (uo) n~~:(.Y ; Y) , 

but u (b) ~E U (p) , which is a contradiction. 

Corollary. If ~; consists of closed subsets of X, then ~~; is an a. s. c. -

uniformity for ~~ (X ; Y) if an,d only if it is all s. c.-unif07~mity for ~~ (X ; 

Y). 

Renearks. When we replace ~; (X ; Y) by ~~, Theorem 3 and its corollary 

don't hold in general. In fact, the uniformity ~;p of pointwise convergence is 

an a. s. c.-uniL0rmity for an equicontinuous family ~~e of mappings of X into 

Y (cf. Bourbaki [2], p. 286, Corollary 4) , and all finite subsets 0L X are 

closed iL X is a Tl~space. On the other hand, ~~;p is not an s. c.-uniformity 

for ~;e by Theorem 2 if X is not a discrete space and u is not the coarsest 

unif ormity. 

S 3. Sufficient conditions for the continuity of uv. 

Notation 2. Let X be a uniform space endowed with a uniL0rm structure 

ll, ~; be a u-family of subsets of X, and ~; be the family {jj: I AE~;} . Let 

~ (X) be the family of all mappings 0L _~ into itself, ~~ (/Y) be the family of 

all continuous mappings of X into itself, and ~ (resp. ~;) be any non-empty 

subfamily of ~ (X) (resp. ~~ (/1') ) . Let ~~; (resp. ~;) be the uniformity on ~ 

(X) defined by (~ (resp. ~5) as in Proposition 1. For any two mappings u, v 

belonging to ~ (X) , uv will always be the composite mapping x~u (v (x) ) 

(xEX) . These notations will keep the meanings hereafter throughout the 

pa per. 

Definition. 3. Let ~~:~5 be a non-empty subfamily of ~ (/Y) . A uniformity ~~~ 

on ~~ (X) is called a p.-un,if07"lnity fol- ~, if the mappin>0' (u, v) ~uv is 
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continuous at every point (uo' vo) ~~ ~ x ~ with respect to the topologies on ~ 

(X) X ~ (X) that are induced by the uniformity ~~;. Let c~~5'/ be another 

non-empty subfamily of ~ (X) which is closed under the function composition. 

A uniformity ~~; on ~ (X) is called an a. p.-umf07~mity for ~/, if the mappin.-g. 

(u, v) ~uv is continuous at every point (uo, vo) E ~/X~/ with respect to the 

relative topologies on ~/X~/ and ~/ that are induced by the uniformity ~~;. 

It is evident that a p.-uniL0rmity for ~/ implies an a. p.-uniformity for ~. 

Lemma 2 (Dieudonn6 [3]). Let uo and vo be two fixed mappings belonginb~ 

to c~:~5 (X). If, fol' an arbitrary set AE~;, the/~e exist a set ~;E~; and an 

entoul~age U(c~ u: such that : 

1) U (vo (A) ) C~, and 2) uo is umformly colttin'uous ou E}, 

then the Inapping (u, v) ~>uv of ~ (X) x ~ (X) into ~ (X) in bontinuous at (uo, 

vo) w ith respect to the topologies induced by the uniforn~ity ~;. 

From this Lemma the following Proposition 4 follows directly. 

Proposition 4. Let ~ be any non-e77rpty subfamily of ~ (X) . If 

1) f07~ each mapping uE~ and each set AE~;, there exists a set E;E~; s'uch 

that u (A) (]B, 

2) for each set AE(~, there exist an entol't7-age UEIX and a set CE~; suc/'~ 

that U(A) CC, and 

3) each mapping uE~ is uniformly contilmous on every set AE~, 

then the uniformity ~~; is a p.-uniforn~ity for ~. 

Remal~ks. i) If the identity mapping of X is contained in ~, the unified 

condition of 1) and 2) in Proposition 4 is equivalent to the condition l) for 

any voh._~~ in Lemma 2. 

ii~ If the condition (closely related to the fact that ~~~ is Hausdorff 

Bourbaki [2], p. 318) 

4) X is covered by ~, 

is conrbined with the conditions 1), 2) , and 3) in Proposition 4, it is easily 

seen that 

a) the condition 2) implies that ~ coincides with ~~;, 

b) the conditions 2) and 4) imply that every point of X is interior to at 

least one set of ~;, and 

c) the conditions 2) , 3) , and 4) imply that ~Cl~;(X) . 

Proposition 5. Let I~ be any n07~-empty subfal7~ily of ~~ (X) -which is closed 

under t/'1e f'unction composition. If 

1) / for each mapping uE~~ and each set AE~, there exists a set ~;E~; such 

that u (A) CB, 

2) / for each set AE~;, the/~e exist an entou7-age UEll and a set CE~~ such 

that U(A) CIC, alid 
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3) / every mapping uE~; is umfon71ly continuous on A for eve/~y set AE~;, 

then the uniformity ~~ is an a. p.-1'Iniformity for ~~. 

Proof. By conditions 1) /, 2) /, and 3) /, the conditions 1), 2) , and 3) in 

Proposition 4 are valid for ~; and (~ in place of ~ and ~ respectively. So ~~; 

is an a, p.-uniformity for ~~ by Proposition 4 and Lemma 1. 

Rema7 ks It rs easy to see that "the condrtrons 1) 2) and 3) for ~-1~ in 

Proposrtron 4 ('unply" the conditions l) /, 2) /, and 3) /" 

S 4. Necessary conditions for the colltinuity of uo p.-umiforrnlty 

In this section we shall show that the conditions in Proposition 4 are also 

necessary conditions - in a natural sense. 

Lemma 3. Let ~ be any sl'tbfanzily of c~~5' (X) which contains the identity 

Inapping of X, and 11 be a 1'1'on-coarsest unifol~mity on /Y. If ~~; is a p.-uni-

fon7zity for ~, then the conditions I ) , 2) , alid 3) in Proposition 4 hold. 

P7-00f. Since u is a non-coarsest uniformity, there exists an entourage UIEu 

such that U12~XxXand Ul~1 U1' Then 

Ul(x) ~X for any xEX. (1) Let ul be any fixed mapping belon*'ing to ~, and vl be the identity mapping 

of X. Since ~; is a p.-uniformity L0r ~, L0r uo, voE~, AoE~5, and UOEIX 

that are given arbitrarily, there exist Bl' B2E~; and Vl' V2Eu; such that 

if u, v Ec~~5' (/Y) , (u,o' u) E W(~) . V1) and (vo' v) E W(B"", V2) ' then (uovo' uv) 

We shall consider three cases for uo' vo, Ao' and Uo' 

Case a) . Suppose that there exist a mapping v2E~ and a set AIE~5 such 

that 

v2 (Al) CIIA for any set AEe;. (3) 

For u.o ul'vo~v2, /io A1' and Uo U1' choose ~1'B2E~; and V1' V2EIT such 

that the relation (2) holds. Take a Point p Ev2 (A1) B1 (cf. (3) ) , a point q 

Ev2~1(p) nA1 , and a point re~UI (ul (p) ) (cf. (1)) . There exist two mappings u, 

vE~(X) such that 
u(x) -ul (x) for xEB1' l't(p) -r ; v(x) -v2(x) for xEB2U {q}. 

Then (ul (v2 (q) ) , u (v (q) ) ) ~ Ul ' but the prernise of (2) is satisfied. This is a 

contradiction. 

Case b) . Suppose that there exists a set A2E~; such that 

(4) U (A2) Cll~ for any UEu and any ~E~. 

For uo-ul' vo-vl' Ao-A2' and Uo--U1' choose B1' B2H,__~~5 and Vl' V2Eu such 

that the relation (2) holds. Take a point pEV2 (A2) B1 (cf. (4) ) , a point 

qEA2 such that (q, p) E V"", and a point 1~~iEUI (ul (q) ) (cf. (,1)). There exist 

two mappings u, v E~(X) such that 
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u (x) ul (x) for xEB1' u (p) -r ; v (x) 'vl (x) for xEB2 {q} , v (q) p. 

Then (ul (vl (q) ) , u (v (q) ) ) ~l~ Ul ' which 'is a contradiction.~' 

Cas e c) . Suppose that a mapping u2E~ is not uniformly continuous on a 

set A3H.__~~;, i. e. there exists an entourage U""Eu such that for each entourage 

Ua Eu there are two pornts xa' yoiEA3 as follows 

(xa:' yoi) EUa and (u2 (xc~) ' u2 (ya) ) ~E U2' (5) 
For uo u2'vo vl' Ao A3, and Uo-U2, choose Bl'B2E~5 and V1' V2El~ such 
that the relation (2) holds and ~ll)A3 ' For U* V"_ , Iet x*, y* be the corres-

pondmg xc~' ya in (5) . There exist two mappings u, vE~(X) such that 

u (x) --u2 (x) for XEBI ; v (x) =vl (x) x for xEB2 {x*}, v (x*) -y*. Then 

(u2 (vl (x*) ) , u (v (x*) ) ) ~l~ U2 which is a .contradiction. 

From Proposition 4 and Lemma 3, we have the following theorem. 

Theorem 4. Let X be a umfol-m space endowed with a non-coarsest uniform 

structure u, and ~ (-~C) , ~;, and, ~~; be the same as those in Notation 2. Let ~ 

be any subfan~ily of ~ (X) which contains the idelltity m;appi7lg of X. Then ~~; 

is a p.-umformity for ~ rf alid only if the following th7-ee conditions hold : 

l) fol- each Inapping uE~ and each set AE~;; there exists a set L:E~ such 

that u (A) CE:, ' 2) for each set AE~, there exist an entourage UEu and a set CE~; such 

that U (A) CC, alid 

3) each 7napping u E o:~5' is unifon7ely' continuous on eve7-y set AE~;. 

S 5. Necessary conditions for the contuuity of uv . . a p -uniformity. 

In this section we shall show that the three conditions in Propbsition 5 are 

also necessary conditions in a sense. 

Lemma 4. Let X be a unifol~m space that contains a non-degenerate arc, a7id 

~~ (X) be the family of all continuous 7nappings of X into itself. If ~ is an 

a. p.-uniform:ity for ~: (X) , then, for each mapping u E ~~(X) and each set A 

E(~, there exists a set E:E~; such that u (A) C~: -

Proof. Take two distinct points p and q on a non-degenerate arc in X, and 

an entourage UIEu such that (p, q) ~E U1 ' Let ul be the constant mapping of 

X into p. Now suppose that there exist a mapping vlE~:(X) and a set AIE~5 

such that vl (A]) CllA for any set AE~5. Since ~~; is an a. p.-uniformity for ~~ 

(X) , for ul' vl' A1? and U1' there exist A2, A3E~; and U.", U3Eu such that 

if uEW(A2' U2) (ui) n~;:(X) and vEWr(A3' U"") (vl) n~;(X) , then uVEW 
(A1' U1) (ul vl) n ~; (X) . 

Take a point rEVI (Al) A2 and a point SEAI such that 1--vl (s) . Since X is 

uniformizable, there is a continuous mapping f of X into the closed interval 

[O, I] such that f(A2) O and f(1-) I (cf. Bourbaki [2], p. 144) . Moreover 



10 Takashi KARUBE 
there is a contiunous mapping g of the closed interval [O, I] onto an arc ;~ 

such that g (O) p and g (1) q. Then for u=g~f and v vl' we have (ul (vl 

(s) ) , u (v (s) ) ) (p, q) ~iE U1' which is a contradiction. 

For the proof of the remaining two conditions in Proposition 5, we need an 

auxiliary concept ('uniform deformability" as follows. 

Definition 4. A uniform space X with a uniformity u is u7liformly deformable 

if for any entourage U~u there exists an entourage U* Eu as follows : for 

any two U*-close points p and q, there exists a continuous mapping f of X 

into itself such that f(p) q and (x, f(x) ) EU L0r any xEX. 

L. R. Ford, ir. [4] defined the similar notion testrong local homo*"eneity" 

which is stronger than ours in those points that f must be a ho'meomorphi*sm 

and fixes the complement of a neighborhood of x, while weaker than ours 

since the uniform scale of such neighborhoods is not required. There are 

several examples common to his and ours. 

Exalnples. The following spaces i) , ii) " ' v) are uniformly deformable 
,, uniform spaces, whereas the space vi) is a ' manifold that is not uniformly 

deformable : i) Iocally euclidean, uniformly locally connected, uniform spaces, 

ii) Iocally euclidean, compact, uniform spaces, iii) convex subsets of a normed 

space, iv) the set 0L all rational points in a euclidean space, v) discrete uniform 

spaces, and vi) the set of all points (x, y) in the euclidean plane such that (x2 

+ 1) y2 > x. (The uniformities of iii) , iv) , and vi) are the usual ones.) 

Now we prove a lemma for Theorem 5 in the next page. 

Lemma 5. Let X be a uniformly deformable space that contains a non-d,ege-

nerate arc, and ~: (X) be the family of all continuous mappings of X into itself. 

If ~~; is an a. p.-umformity for ~ (X) , then conditions 2) / and 3) / in Propo-

sition 5 hold for ~; (X) . 

Proof. Since ~; and ~ coincide on i~ (,~) x ~~ (X) by Lamme 1, ~~; is an 

a. p.-uniformity for (~ (X) . Hence, for uo, voE(~(X) , AoE~;, and UoEu that 

are given arbitrarily, there exist Al ' A2 E~; and U1 ' U2 Eu such that 

if uEW(A1, Ul)(uo) n~(X) and vEW(A2, U2)(vo)f~f~(;~~), then uv EW 

(Ao. Uo) (uovo) n~~(X) . (1) Since X is uniformly deformable, we can choose an entoura*~'e U3Eu as follows 

: for any U".-close two points x* and y*, there is a mapping v E~;(X) such 

that 

1) v (x*) =y* and 2) v (x) is U2-close to x for any xEX. (2) 
Let e be the identity mapping of X. We shall consider two cases for u,o, vo, Ao , 

and Uo' 

Case a) . Let pq be any non-degenerate arc in X, and choose an entourage 

VEll such that (p, q) ~E V. Let k be the constant mapping of X into p. I¥;Tow 
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suppose that there exists a set ~;E~; such that 

U(E:) C!lJ~ for any UEll and any AE~;. (3) 
For uo-k, vo-e, Ao-L;, and Uo V, choose A1' A2E~5 and U1' U""Eu such that 

the relation (1) holds. For U._ , choose an entourage U."Eu such that (2) holds. 

Take a point rEU3 (E:) A1 (cf. (3) ) , and a point SE~ such that (s, 1') EU"~,. 

By (2) , we can choose a mapping vE~~(X) L0r x* s and y* r. Since X is 

unifonuizable, there exists a mapping uE~~(X) such that u (A1) p and u (7~) 

q. Then (k (e (s) ) , u (v (s) ) ) = (p, q) ~l~ V, which is a contradiction (cf. (1)) . 

Case b) . Suppose that a mapping fE~~(X) is not uniformly continuous on 

a set BE(~, i. e., there exists an entourage VEll such that for each entourage 

U~Eu there are two points xa' -~'oiE~j as follows : (xct' ycli) EUa and (f(xa)' 

f(yc~))~IEV. For u0=f, vo-e, Ao ~, and Uo V, choose Al'A2E~; and U1' 
U"_EI~ such that the relation (1) holds. For U"" , choose an entourage U3El~ 

such that (2) holds. Moreover we can choose 'two points x* and y* in B such 

that (x*, y*) EU3 and (f(x*) , f(y*) ) ~E V. For these U3-close points x* and 

y*, there is a mapping vE~;(X) such that (2) holds. Then (f(e (x*)), f (v 

(x*) ) ) (f (x*) , f (y*) ) ~l~ V, which is a contradiction (cf. (1) ) . 

By Proposition 5, Lemma 4 and Lemma 5, we have 

Theorem 5. Let X be a uniformly deformable ."pace endowed with a umfor'n 

stl~ucture u which contains a non-degenerate arc, a/id ~: (X) be the fam:ily of 

all contllluous 1'zappmg of X into itself. Then ~~; is an a. p.-unifol-mity for ~ 

(X) if a.1id only if the foll07;ving three conditions hold : 

1) fol~ each Inapp'ing u E~~(X) al'id each set AE~;, th.e/'e exists a set L}Ee; 

such that' u (A) C]B, 

2) for each set AE~;, the/~e exist all entou,7'age UE~5 and a set C (c~~5 such 

that U(A) CC, and 
3) every f7~apping u E I~ (X) is uniformly covttilluous ol~ A fol' any set A E(~. 

Corollary 1. Let X, u, alid ~~ (X) be the salne as those in Theol-em 5. The 

following two coliditions i) and ii) are equivalent : 

i) ~~; is an a. p.-uniformity for f~ (X) , 

ii) ~; is a p.-unifol~mity fol- (~ (X) . 

P1-00f. The condition i) implies conditions 1) , 2) , and 3) in Theorem 5. Now 

in 1) , u (A) C B implies u (A) CB= by the continuity of u, and in 2) , if we take 

an entourage VEu such that V2CU, we have V (A) CC. Hence the condition 

ii) holds by Proposition 4. Conversely, the condition ii) implies that ~ is an 

a. p.-uniformity, and so we have i) bv. Lemma 1. 

Corollary 2. Let X, Il and ~~ (X) be the sal'l.e as those in Theol'em 5. If all 

sets in ~5 a/~e closed, then ~~; is an a. p.-uniforll~ity f07- ~; (X) if and only' if it 

is a p.-u,niforrn.ity for ~~ (X) . 

sokyu
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S 6. Uniforlnities which satisfy our continuity conditions. 

In conclusion, we shall summarize several results in this paper in a form. 

To what extent ~; and u are restricted by the following conditions imposed 

on ~~; ? 

1) ~~; is a uniformity that is defined directly by ~; and 1~ only, and coincides 

with the usual one, 

2) ~~; ensures the joint continuity and the continuity of the product opera-

tion for a semi-group ~: of continuous transformations of a uniform space X. 

In this point of view, it seems to us from our results that the following five 

conditions are t.o be satisfied 

l) for any two sets A9 L;Ee; there exists a se;t CE~; such that AUBCC, 

2) ~; covers X, 

3) for each mapping uE,1~ and each set AE~, there exists a set E;E~ such 
that u (A) C]J~:, 

4) for each set AE~;, there exist an entourage UEu and a set CE~; such 

that U (A) CC, 

5) every mapping uE~; is uniformly continuous on A for every set AEe;. 

We have examined these conditions in various cases in each 0L which ~5 is 

a family of all subsets of a euclidean space that have a particular topological 

property. After the trial, we have conjectured that if X is a euclidean space 

ahd ~ is ~ (X) , then ~; must be the uniformity o{ compact convergence. In 

fact it is affirmative in more general cases where X is either any locally 

euclidean, uniformly locally connected, metric space or any convex subset of a 

normed space (cf. Karube [5]) . The fact together with many results on the 

compact-open topology shows that the compact-open topology for ~~ is the 

most natural set-open topology (cf. e. g., Kelley [6], p. 230) . 

References 

[1] Arens, R. : A topology for spaces of transformations. Ann. Math. 47, 480-495 (1946) 

L2] Bourbaki, N. : General Topology, Part 2, translated trom French. ~ans-Readrng-Palo 

Alto-London-Don Mills : Hermann and Addison-Wesley 1966 

[3] Dieudonn6, J. : On topological groups of homeomorphisms. A7ner. J. Math. 70, 659-680 

(1948) . 

[4] Ford, L. R. jr. : Homeomorphism groups and coset spaces. Trans. Amel~. I~lat/'7. Soc. 77, 490 

-497 (1954). 

[5] Karube, T. : On a kind of uniqueness of set-entourage uniformities for functlon spaces 

Proc. Japan Acad. 44, 204-206 (1968). 

[6] Kelley, J. L. : General Topology. Toronto-Nev York-London : D. van Nostrand 1955 


