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It is shown that the constant-coupling approximation enables us to compute various 

thermodynamic quantities of the isotropic Heisenberg ferromagnets with the general spin 

magnrtude S. For the dilute case, the critical concentration for any S is derived 

Recently Oguchi and co-workersl) developed a heuristic method corresponding 

to the constant-coupling approximation2) for the Heisenberg spin systems but . only 

for the case of S = I /2. We extend the method to ' the case of general spin magnitude 

S, from which we obtain an improved molecular field theory for the regular and dilute 

isotropic Heisenberg ferromagnets with spin magnitude S on each magnetic lattice 
site. 

Regular Ferl'omagnet : We attach. a spin variable Si to each lattice site i. If only 

nearest neighbor spin-spin interactions are allowed, the crudest parital Hamiltonian 

and the nnproved one in the molecular field framework, respectively, are given by 

HI= ~ 

.ij = JSi ･ S2 -(zl ~ 1)~(S~ + S~) , -

where z I is the coordination number and ~ is the parameter of the molecular field 

According to the vector coupling formula of two spins S I and S2, the orthonor-

malized resultant state ISo m > is _ expressed in terms of one-spin states ISI ml>, 

IS2 m2> as follows : 

IS m> ~ 6~,~*+~ c(ml m21So m) ISI ml> IS2 m2> , (3) 
~*,~2 

where S and m's of labels denote the eigenvalues of the magnitude and z-component of 

each spin and C(Inl m21So m) is the Clebsch-Gordan (C-G) coefficient3) given by 

C(mlm2 1 'Som) 

_ d(So)(So !)2(2S-So) !(S0+m)~!(So~ni) ! 1/2 *2 - ' ~ (S0+2S+1)!(S-ml)!(S+ml)!(S-m2)!(S+ln2)! '~ '~K(1c) (4) 
'=~i 

-' d(So) = 2So + I ; 1(1 !~ Max (O, m), ' K2 ='Min (So' So + m) , _ 
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K(1c) - (~ 1)~+s+~,(So + S+ml - 1(:) !(S-ml + Ic) ! 

~ (So ~ Ic) !(So + m - Ic) !(1c - ln) !1c ! ' 

The straightforward combination calculations give the following identitles on the 

C-G coefiicients : 

C(ml m21So m)=(-1)s.C(-ml -m21Sd -m), (5) 
Ao(So)=Bo(So) = 1, Al(So) =B1(So) = S[1 - f(So)/f(O)] , (6) 

A2(So)=B2(So) +A1(So)' A3(So) =B3(So) + 3A2(So) ~2A1(So)"" 

where 

s.-s 
A.(So) ~~ [(2S+ 1)/d(So)] ~ s(S+ m2)"IC(.S m21So S+ m2)12 

~'=-

B~(So) ~ [(So + n) !(2S + 1) !]/[(So ~ n) !(2S + n + 1) !] 

and f(So) is an eigenvalue of S I . S2 given by 

S1 . S21So m> = f(So) I So m > , (7) 
f (So) = So(So + I )/2 - S(S + 1) . 

Now let us define' the normalized density matrices for (1) and (2), respectively, as 

follows : 

P ~:Z~I ~ exp(PAzllnl) I S1 ml > 
~* 

pn=ZI~11 ~ ~ exp [PJf(So) + p~(zl ~ i)m] I So m > 
s. ~ 

where 

ZI=Trexp(-PHI)' Zn=Trexp(-PHu) and p=1lkBT (10) 

Substituting (3) into (9) and taking the trace over all possible states of S2' we may 

demand that 

Tr(s,) Pn = pl' ( 1 1 ) 
Because of the linear independence of projection operators {lS1 ml > 

we have 2S + I identities for their coefficients, which are not independent of each 

other. If we pick up those for m I = d: S, that is, 

S~-s ' 

Zn/ZI=~ ~ IC(S m2[So S+m )1 exp[pJf(S )+fih~(m~] . - i (12) 
s. ~.=-s 
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s.-s 
Zn/ZI= ~ ~ IC(S - m21So ~ S-m2)12exp [pJf(S ) pA~(In )] 

s* ~.=-s 

~(m2) = (zl - 1) (S + m2) - zlS, (. 1 3) 
then, using (5), we obtam 

so~s 
~ exp [PJf(So)] ~ IC(S m21So S+m2)12sinh [pA~(m )] O (14) 

s. ~.=-s 
Inclusion of the external field H' = hl9/lB into the foregoing formulations is straight-

forwardly made by the following replacement in (1) and (2), respectively ; 

hzl - hhzl +h, A(zl ~ 1) - hh(zl -1)+h; (.15) 

hh = A + ~A(h) (~small field case) , 

where ~~(h) is the increment of ). induced by h . When the lattice rs Immersed m the 

very small external field, from (14) we have 

s*-s 
~:ePJf(s.) ~ I C(Sm2 1 SoS+m ) I m cosh [p~~(m )] 

6~(h) _ _ s .,.=-s . (16) "
 

h ~ s.-s ~ePJf(s*) ~ I C(Sm2 1 SoS+m ) I ~(m ) cosh [p~~(m )] 

s* ,~.=-s 
The result (14) allows us to determine ~h(p) for any S and use of the density matrices 

(8) and (9) provides the means to compute various thermodynamic quantities of the 

system such as the critical temperature, susceptibility, internal energy, specific heat and 

spin correlation function. It is convenient to let X denote Tr [Xpu] only if X is such 

a diagonal operator as satisfies X I So In > = X(So) I So m, > with the eigenvalue X(So) 

Then ~ and the value at T. and h = O, ~. are calculated by 

~ ~ X(So) exp [PJf(So) + pAh(zl - 1)m + phm] 
-_ s* ~ 
~ ~ ~ exp [ pJf(So) + fi~k(zl ~ 1)m + phm] ' 

s. ~ 

~ d(So)X(So) exp [P.Jf(So)] 

- s. ~ d(So) exp [p.Jf(So)] ' 
s. 

Letting h and h tend to O in (14) with use of (6) and (18), the equation for determining 

the critical temperature T. is derived as follows 

(z 1)A1'~zlS=0 or f S(S+1)/(z l) (19) 
Th~ formula (19) is a generalization 6f the well-known result for S = 1/2 and zl > 4, 

p.J = In [z _1 /(z I - 4)] I , 2). It - concludes that isotropic Heisenbcrg spin systems with 
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zl ~ 4 have no solution for the critical temperature and for the ferromagnetic phase 

in the case . of S = 1/2. The total energy is given by 

Et*t = - (Nzl/2)Jf - Nh Tr [S~Pl] ; ' (-'O) 
Tr [S~ pl] = S Bs[p(~hzl + h)S] 

= S Bs[p~zlS] + S2(zl6~ + h)B~[p~zlS] (small- field case)., ('-1) 

where Bs[･･･] and B~[･･･] are the Brillouin function and its derivative, respectively 

From (14), (16) and (21), we get the parallel susceptibility X// and the magnetization 

M in the vicinity of the critical temperature T* as follows : 

X/1(T> T.) = S(S+ 1)_'1N(g/1~)2 [AI * - S] X//( T;~ T.) = _7X//( T~ T.), 
3J[(z 1)(A J). - zlSf~.] (T- T.)/T. ' 

(22) 

M/ (Ng l/ B) 

_ S(S+1)zl 6P.J[zlSf.-(zl-1)(Alf).](T.-T)/T. 1/2 .1- 3- - - 2 - ~1 J 
- 3 (z 1) A3. 3zl(.-1 1) SA2*+'z3S3 

For S= 1/2, (22) grves 

Xl/(T ;~ T.) = N(g,lB)2/[J(zl - 4) (T- T.)/ T.] . (24) 

Dilute Ferromagnet : We suppose that two nearest neighboring sites I , 2 in the dilute 

ferromagnet happen to be occupied by S I , S2, respectively. Owing to the randomly 

distributed magnetical vacancies on the sites surrounding the 

 pair, the parame-ter of the molecular field associated with these surrounding sites should be diluted 

with the concentrations of magnetic ions p. Then we have the partial Hamiltonians 

HI= ~z ~S1' Hn= ~JSI ･ S2-(zi - 1)A(S~ + S~); (25) 

zi = I + p(zl ~ 1) . 

It rs concluded from (25) that the formulations for the dilute case are deduced formally 

from those for the regular case by merely replacing the coordination number 

zl - zl･ (26) Then as a matter of course, any thermodynamic variable such as T has to be sub-

stituted by that of the dilute system. From (19) and (26), the relation between the 

concentration p and the critical t~mperature T. is given by 

S(S+ 1) ~ d(So) exp [p.Jf(So)] 

' ' so - ' ~ P= (_zlT 1) ~d.(~~Q)f(So) e_xp [P.Jf(So)] ' (27) 

' ' so ' 
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Letting T* tend to O in (27), we obtain the value of the critical concentration as follows : 

p. = (S + 1)/[S(zl - 1)] , (28) 

which is the generalization of p. = 3/(zl - 1)1) for S = 1/2. The numerical results of 

p* for the cubic lattices are shown in Table I. The internal energy is given by 

Ei.t = - (NZ /2)p Jfd, (29) 
where f~d Stands for the f of the dilute system 

Table I The calculated cnucal concentratton p* for 

the cubic lattices. 

S
 6 (s.c.) 

zl 

8 (b.C.C.) 12 (f.C.C.) 

1 12 

1
 

3/2 
9
~
 

5/2 

0.600 

0.400 

0.333 

0.300 

o.,_80 

0.429 

0.286 

0.238 

0.214 

O . 200 

0.273 

O. 1 82 

O. 1 52 

0.136 

O. 1 27 

Finally we note that the present method can be generalized for the anisotropic 

case including the X Y model and Ising model with a general spin S. A full note will 

be published elsewhere 
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