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TOPOLOGIES ON EQUICONTINUOUS FAMILIES 

OF MAPPINGS 

By 

Takashi KARUBE 

Introduction 

It is well-known that equicontinuous families of mappings are important in 

Analysis through Ascoli's theorem. On the other hand, the topologies on them 

are fundamental to consider the problem when a locally equicontinuous group 

of transformations of a space becomes a locally compact transformation group. 

The problem will be treated in T. Karube [5] to which the present paper is 

a preliminary. Because a set-entourage uniformity on the family 0L all contin-

uous mappings of a uniform space into itself must be the uniformity of 

compact-convergence under natural conditions (T. Karube [4]), we will set 

importace on the compact-open topology. 

Notations 

X : a topological space. 

Y : a uniform space. 

~; : a family of subsets of X. 

~5. : the family of all compact subsets of X. 

~ (X; Y) : the family of all mappings of X into Y. 

~ : a subfamily of ~ (X ; Y). 

~; (X ; Y) : the family of all continuous mappings of X into Y. 

~; : a subfamily of ~~ (X ; Y). 

~~e; (X ; Y) : the family of all mappings of X into Y whose restriction to 

each set of ~ is continuous. 

r : a topology on ~ (X ; Y). 

rp : the point-open topology on ~ (X ; Y). 

r, : the compact-open topology on ~ (X ; Y). 

r~ : the uniform topology induced by the uniformity of ~-convergence. 

r~ : the uniform topology induced by the uniformity of pointwise-convergence. 
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2 ' Takashi KARUBE 
r~ : the uniform topology induced by the uniformity of corhpact-convergence. 

T (A, B) : the family of all u (~~ ~ (X ; Y) such that u(A) C B, where A and 

~ is a given subset of X and Y respectively. 

W(A, u) : the set of all pairs (u, v) such that u, v E ~ (X ;Y) and (u(x), v(x)) 

E u for any x E A, where A is a given subset of X and u is a given 

entourage of Y. 

These notations will keep the meanings throughout the paper. 

S I . Topological properties of Inapping spaces. 

Definition. (l~, r) is admissible if the mapping (u, x) ~> u(x) of ~; x X into Y 

is continuous with respect to the relative topology of r to f~ and the topologies 

of X and Y. 

LemrEaa I . I . If X is locally compact, then (~~, r,) is admissible. 

Proof. Since Y is a unifonn space it satisfies T3-axiom. Hence (~:, r,) is 

adrnissible by Lemma 2 . 3 of S. B. Myers [7]. 

Lemma I . 2 . (R. Arens [1]) If (~;, r) is admissible, th'en r is finer than r, 

on ~~. 

LemrBra I . 3 . (N. Bourbaki [3]) ~:~(X ; Y) is closed in ~(X ; Y) under r~. 

Definition. A topological space X is a k/_space (resp. k-space) if a subset 

of X intersecting each compact set (resp. each closed compact set) in a closed 

set is always closed. 

Proposition I . 4 . Consider the following conditions : 

(O) (~e;(X ; Y) ~(X ; Y), 

(1) every point of X is interior to at least , one set of (~, 

(2) in X, a subset intersecting each set of ~; in a closed set is always closed, 

(3) X is a kl_space, 

(4) X is a k-space, 

(5) X is a Hausdorff space which is locally compact or first countable, 

(6) X is a locally compact Hausdorff space, 

(7) X is a locally compact space. 

Then, (6) :> (5) :> (4) :> (3) :> (2) :> (O), (6) ~> (7), and (1) :> (2). If ~~ ~;., 

then (3) I> (2), and (7) ~ (1). If X is Hausdoliff, then (3) :> (4), and (7) :> (6). 

Proof. They are easy to see or trivial. 

Corollary I . 5 . Under each condition of (1), (2),..., (7), where ~; ~;,, 

~~(X ; Y) is closed in ~l-Ci (X ; Y) under any topology finer than rt 

Lemma I .6. (R. Arens Ll]) r~ r, on ~~. Andfor each u E ~;, 
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J TV(K 11)(u) n ~; I K is a compact subset of X alid u is an entoul age of Y} 

f07~ms a fundal7rental syste'n of neighbol'hoods of u in i~ under r.. 

Lemma I . 7 . r~ rp on ~(X ; Y). 

Proof. It is easy to see. 

S 2 . Fulldamental properties of equicontinuous families. 

Definition. ~; is equicontinuous if, for each entourage u of Y and each 

point x of X, there exists a neighborhood U of x in ~ such that (u(x), u(x/)) 

E u for any x/ E U and any u E ~~. 

Lemma 2 . I . If ~~ is equicontin.uozts. thell ((~, r) i,s admissible for any topology 

r finer than rp. 

Proof. Since (~~, r~ ) is admissible (c*,f. N. Bourbaki [3], Corollary 4 in p. 2~6), 

(~~, rp) is admissible also. 

Lemlm:a 2 . 2 . If ~~ is equicontinaous, then r, ' rp on ~~. 

This is well-known. It follows from Lemmas 2 . I and I . 2 also. 

Lemuna 2 . 3 . Let ~~ be al'l equicontinuous subfalnily of ~(X ; Y) an,d ~; be 

the closul~e of ~; u7ider r~ in ~(X ; Y). Then I~ is contained in ~;~(X ; Y). ' And 

if for alry fixed x E !Y the 77~appin.*" u ~ u(x) of ~~:(X ; Y) into Y is continuoe4s 

at alry u E ~~ with respect to r~, then ~~ is equicontinuous. 

Proof . The first assertion follows from Lemma I . 3 . Let xo be any fixed 

point of X, u be any entourage of Y, and u/ be an entourage of Y such 

that I~/2 C u. Since ~; is equicontinuous, there exists a neighborhood , U of 

xo such that 

(u(xo), u(x)) E u/ L0r any x E U and any u E ~; (1) 

By our assumption, for any u/ E ~; there exists a r~-neighborhood W of u 

in ~~~;(X ; Y) such that 

(u/(xo), u(xo)) E u/ for any u E W. . (2) 

For any directed set {u.} C ~~ converging to u/, there is a C~O Such that u. E 

W for any c~ > c~o' Then from (2) we have 

(u (x ) u^(xo)) E u/ for any clc > c~o' ' (3) 

From (1) and (3), we have 

(u/(xo), u~(x)) E 11/2 for any c~ > c~ and any x E U 
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Hence (u/(xo), u/(x)) E I~/2 C u for any x E U. 

And so (u/(xo)' u/(x)) E u for any x E U and any u/ E ~;. 

Lemnra 2 . 4 . I.et ~; be a family of subsets of X that covers X, f~ an equic-

ontinuous subfamily of ~(X ; Y), and l~ the closure of ~~ under r~ in ~(X ; Y). 

Then ~ is equicontinuous. 

Proof. Since (~;~; (X ; Y), r~) is jointly continuous on each member of (~ 

(cf. e. g. pp. 228, 229 of J. L. Kelly [6]) and (~ covers X, the condition in 

Lemma 2 . 3 is satisfied. 

By Lemm I . 7 and Lemma 2 . 4 we have the following 

Proposition 2 . 5 . Let ~: be an equicontinuoe.ts subfamily of ~(X ; Y) and ~~ 

be the closure of ~; in ~(X ; Y) under any topology finer than rp on ~(X ; Y). 

Then ~~ is equiconinuous. 

Lemua 2 . 6 . Let ~~ be an equicontinuous subfamily of ~(X ; Y) and r any 

topolo..tfy finer than rp on ~(X ; Y). Then th.e closure of ~; in ~(X ; Y) under 

r coincides with the closure of ~~ in ~~(X ; Y) under r. 

Proof. Note that the ' closure of ~~ in ~(X ; Y) under r is contained in 

~~(X ; Y) by Proposition 2 . 5 . 

Proposition 2 . 7 . Let ~~ be an equicontinuous subfamily of ~(X ; Y). Then 

the closures of (~ in ~;(X ; Y) under r., r~, rp, r~ , and the closures of ~~ in 

~(X ; Y) under r,, r~, rp, r~, are all equal, and equicontinuous. 

Proof. Use Lemmas 1.6, 1.7, 2.2, 2.6, and Proposition 2.5. 

S 3 . Equicontinuity and colnpactness . 

We will generalize Ascoli's theorem 

Theorem 3 . I . Consider the following two conditions : 

i) ~; is equicontinuous and (~(x) is covnpact for each x E X, and 

ii) the closure of ~~ in f~(X ; Y) under r, is compact. 

Then i) implies ii). If X is locally compact, then ii) implies i). 

Proof. i) implies ii) : By Tychonoff's theorem, the topo]ogical product of 

{ I~(x) I x E X} is compact under the relative product topology. Since the set 

contains the rp-closure Clpl~ of ~~ in ~(X ; Y), Clp~ is rp-compact. Clp~; is 

equicontinuous by Proposition 2 . 5, and so rp coincides with r, on Clp(~ by 

Lemma 2 . 2 . Hence Clp~: is r,-compact. On the other hand, the r.-closure C*1,(~ 

of ~; in ~(X ; Y) is contained in Clp~;. Hence' C1,~~ is r,-'compact. Consequently 

from the fact that Cl,(~ coincides with the r,-closure of (~ in (~(X ; Y), the 

condition ii) follows. 
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ii) implies i) : It is shown first that (~; is equicontinuous as follows. Let 

xo be any fixed point of X. For any given entourage u of Y take a symmetric 

entourage ul of Y such that uf C u. Since ((~, r,) is admissible (cf. Lemma 

l , l), for each u E ~: there exist a r,-neighborhood W(u) of u in 1~(X ; Y) 

and a neighborhood U~ of xo such that 

(u(xo), u/(x)) E ul for any u/ E W(u) and any x E U~. 

Since ~~ is compact, we can choose a finite covering {W(ui) I i-1, 2, . . . , n} 

of ~;. put U = n"~=1 Uui. Then 

(u/(xo), u/(x)) E u for any u/ E ~; and any x E U. 

Consequently ~~ is equicontinuous, a L0rtiori ~~ is equicontinuous. On the other 

hand, ~; (X ; Y) is admissible ce~nd ~~ is compact under t,. Hence ~~(x) is com-

pact. Since the closure of a compact set in a uniform space is compact, ~;(x) 

is compact. And so ~~(x) is compact. Q. E. D. 

Remark. Several generalizations of Ascoli's theorem are well-known under 

some additional conditions on X and Y (cf. e. g. J. L. Kelley [6], and H. 

Schubert [8]). Moreover the condition ii) implies the condition i) in the case 

where 

a) X is first countable, or 

b) X is a Hausdorff k-space and Y is a Hausdorff uniform space. 

This is a generalization of a result of S. B. Myers [7]. 

Definitiolu. A uniform space Y is uniformly locally complete if there exists 

an entourage u in Y such that u(y) is complete for any y E Y. 

Lemm:a 3 . 2 . Let X be a connected . space, and Y be a locally compact and 

uniformly locally complete umform space. If ~~ is equicontinuous and ~(xo) is 

compact for at least one xo E X, then I~ (x) is compact for each x E X. 

Proof. Let ~~ be the closure of ~: in ~(X ; Y) under r,. Since ~~ is equi-

continuous (cf. Proposition 2 . 5), (~~, r,) is admissible (cf. Lemma 2 . 1). Hence 

(~(xo) has compact closure. Let E be the set of all x E X such that ~~(x) has 

compact closure. E is not empty. If Y is locally compact, then E is open. 

In fact, Iet ~ be any point of E. There exists a compact neighborhood V of 

~)(3~) , and an entourage u of Y such that u [~:(3~)] C V. Since ~' is equiconti-

nuous, there exists a neighborhood U of ~ such that 

(u(~~), u(x)) E u for any u E ~~ and any x E U. 

And so ~:(x) C V for any x E U. Since V is compact, (~~(x) is corrLPact for any 

x E U i. e. U C E. If Y is uniformly locally complete, then E is closed also. 
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In fact, it is shown as follows that ~;(3~:) is totally bounded for any 3~ E E. 

Let uo be any entourage of Y, and u be a symmetric entourage of Y such 

that u4 C uo' 'Since' ~: is equicontinuous, there exists a neighborhood U of 3~ 

such that 

(u(3~), u(x)) E u for any u E ~; and, any ic E U._ 

There exists a point x,1 in U n E. As ~:(xl) has cor~lpact closure, there exist 

finite number of points yl" " ' y~ in ~)(xl)' such that {u(yi) I i - 1,. . . , n} cover 

~;(xl)' Then ~(~~) is covered by finite number of ~4-small and so uo~~mall 

sets u2(yi) (i 1,. . . , n). Now we may suppose without loss of baenerality that 

uo(y) is complete for any y E Y. Then Lrom the fact that ~~(~~) CI U ,~=1 uo(yi), 

we can show that ~;:,(3~) is complete. Consequently ~;(3~) is compact i. e. ~ E E. 

The set E is open, closed, and non-empty in the connected space. Therefore 

~: coincides with X. 

Corollary '3.3. If X is a locally compact connected space, and Y is a locally 

compact a/id umformly locally co'nplete uniform space, then the followin*cr t~vo 

conditions are equivalent : 

i) ~~ is equicontinuous and ~~ (xo) is compact for at least one xo E X, and 

ii) the closure of ~; in ~;~(X ; Y) under r, is compact. 

This corollary is more convenient than Theorem 3 . I to make compact 

topological transformation groups of many equicontinuous transformation groups 

by means of the compact-open topology. 

Proposition 3 . 4 . Let X be a connected space. Y be a locally conopact space, 

and ~; a subfalnily of ~:(.Y ; Y). If ~;(x) has compact closure f, or at least one 

x E X:, and if thel~e exists a umformly loccllly complete compatible umfol'mity 

of Y under which ~; is eqtticontinuous, then ~~ is equicontinuous for any compatible 

uniformity of Y. 

Proof. It is similar to that of S. B. Myers [7]. 
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