
Mem. Fac. Sci. Eng. Shimane Unrv
Series A

34, pp. 95-103 (2000)

Safe Dynamics and Distributed Programming

Ken-etsu FUJITA

Shimane University

fujiken @ cis. shilnane-u. ac.fa

Abstract

For distributed programming, we introduce the notion of safe dynamics with dynamic types into ML-

like functional programming language. The notion of dynamic types is here parametenzed with a set of

monotypes, called a kind. The kind means an inductively defined set of monotypes . Hence, type case (dy-

namic type dispatch) mechanism can be naturally obtained as a recursive program over types, ~ la Martin-

L6f, via an elimination rule for the inductively defined kinds . From a viewpoint of client-server program-

ming, dynamic types under a constraint of the kinds provide a well-connected condition between a server

and a client, with respect to types. Moreover, this point makes it possible to statically check dynamic types,

such as ML-programs. A prototype of the system, called SDS (Safe Dynamics for Statically typed function-

al programming language) , has been implemented by using C-1anguage

1. Introduction

Network programming requires a mechanism of sending and receiving not only the so-called

data but also types. A pair of a term and its type is known as dynamics [ACPP9l] , and network

programming should support the dynamics as a first class as well as type of dynamics, l.e., dy-

namic types in a typed language. We say that a dynamic type is safe if it can be statically type-

checked, and dynamics with safe dynamic types is called a safe dynanucs. The notion of safe dy-

namics is originally introduced by Duggan [Dug99] . In this paper, for distributed programming

we introduce safe dynamics with dynamic types into ML-like functional programming. The dy-

namic type Dynamic is here parameterized with a set of monotypes, called a kind /c, which is

denoted by Dynamic (K) . The dynamic types are dependent types upon kinds, and the kinds are

inductively defined from monotypes . This natural definition leads to a useful mechanism such

that type case programs are generic and recursive functions over the kinds. The key difference

from Duggan [Dug99] is as follows

(i) Kinds and subkind relations are simultaneously and inductively defined, and hence in-

habitation of types and subkind relations are theoretically clear and simpler. Here, the subkind

relation plays a role of a well-connected condition between drstributed sites

(ii) Our underlying theory is the core-ML [Mil78], and the type inference algorithm ~

can be naturally extended to our case together with a theory of inductive kinds

96 Ken-etsu FUJITA

The second statement implies that our language is implicitly typed, i.e., in the style of Curry

rather than Church. Type theory LBar92] usually has a hierarchy of expressions such as a level

of kinds, type constructors, and objects in this order. However, the first statement above means

that kinds are no guarantee of the existence of type constructors, but that type constructors are

the basis of our kinds. Hence, a type case (dynamic type dispatch) mechanism can be naturally

obtained as a recursive program over types, ~ la Martin-Lof [ML84, NPS90, DS99], from an

elimination rule for the inductively defined kinds. This recursive function over types can be

regarded as a generic function with a generic type as the domain. From a viewpoint of client-

server programming, dynamic types under a constraint of inductively defined kinds provide a

well-connected condition between a server and a client, with respect to types. The well-connect-

ed condition on kinds gives flexibility such that a server and a client can be independently updat-

ed without type errors. A prototype of the system, called SDS (Safe Dynamics for Statically

typed functional programming language) , has been implemented by using C-language [FOOO]

2. Safe dynamics for statically typed language

We give the definition of typed language with safe dynamics, called ML*d*. The syntax of mono-

morphic types, polymorphic types, generic types, kinds, and terms are defined below

Monotypes T::=a I t(T1' ""T~) I Dynamic(rc)

We use ce for a metavariable of type variables, and t denotes a type constructor. We will in-

troduce pattern variables P Iatter, and pattern variables are type variables. For type construc-

tors, in the case of nil arity, we have base types such as int, string, bool, unit, and in the case of

non-nil arities, Iist (ce) , al~>a2, otl X a2, etc. A type of dynamics is denoted by Dynamic (lc)

parameterized with a kind lc defined latter

We next define a syntax of patterns p for monotypes, consisting of monotypes and type

constructors .

Patterns p::=t I T

Arrties of patterns are defined as follows

(1) * is an arity of monotypes (saturated patterns) .

(2) If al ' " " a~ (n ~ I) are arities, then (al' " " a~) is an arity of combined patterns

(3) If al and a2 are arities, then al ~~> a2 is an arity of unsaturated patterns

The arity (al' " " an) where n = I is simply written by oll

We assume given type constructors have arities such that list : * ->> *, x : (*, *) ->> *, =>

(*, *) -~> *, etc. Argument positions in patterns may be explicitly represented by using [I , such

as

pL 11･･･[l~: (*, ･･･, *) ->> *.

n

We consider only well-formed patterns with respect to arities, which are simply called patterns

As usual, well-formed monotypes are constructed from base types or Dynamic by the use of

type constructors.

Safe Dynamics and Distributed Programming 97

tbase : *

p[Il"' [

Dynamic (lc) : *

In : (*, "', *). ->>*

t: (*, "', *) ->> *

Pi: * (1 ~ i~n)

p[pl 1 1 " ' [p~ J~ : *

The saturated pattern pi[Tl] ' ' ' [1:~,] may be written by pi (Tl' " " T~,) '

Polymorphic types CT are defined exactly as in ML. On the other hand, a generic type ~ can

be considered as a generalization of monotypes, and be used for a type case program via an

elimination rule for a kind

Ploytypes Genenc Types
::=T I ~!a.a g ~ :: = ~a ::K.T

The syntax of kinds lc is defined from a set of patterns or Dynamic (rc) by using u

Kinds K::={p:(al' "" an) ~~> *} I {Dynamic(K) :*} I rc uK

Well-formed kinds and a subkind relation on well-formed kinds are simultaneously defined

as follows:

Inductive Definition of Kinds (Well-Formed Kinds)

(1-1) If T1 ' " " Tn (n > O) are monotypes excluding Dynamic, then the non-empty set {T1

, . . . , T~:} is a well-formed kind. The introduction rule is given as follows

Ti::{T1:*, "', Ir~'*} (mono)

(1-2) The next rules are introduction rules for kinds including Dynamic

T : :lc lc is well-formed T ::{Dynamic(K) : *} (Dyl) (Dy2) for ~frc' !~ rc Dynamic (K') : : {Dynamic (K) : *}

(1-3) The following rules are inductive definition of kinds. The step case is derived from

a set of unsaturated patterns (i.e., with arity ce ->> *)

T : :lcb
(base)

T ::Kb u {pl :al ~~ *, "', p~:a~ -~ *}

T'::lcb u {pl:al ~~ *, "',p~:a~ ~~ *} pi[Tl]"'[T~,] :*

J ' (step) where I ~j<n'. Pi[Tl]"'[T~,] ::/cb u {pl :al ~~ *, "',p~:a~ ->> *} ~ '

For well-formed rcl and lc2, a subkind relation K1 !~ K2 is defined as follows

(2-1) For any T~Dynamic(rc) , if we have T::rcl then T::lc2

(2-2) For any Dynamic (lc) , if we have Dynamic (rc) : :KI then Dynamic (K') : :rc2 for any

well-formed K' !~ lc.

From the defimtion, we have the following facts for well-formed kinds

(i) K !~ K

(ii) If /cl ~ K2 and rc2 ~~ rc3, then rcl ~ K3

(iii) If we have lr::/cl and K1 !~ K2, then T::K2

(iv) {Dynamic (Kl) :*} ~ {Dynamic (lc2) :*} if and only if rcl !~ K2

98 Ken-etsu FUJITA

Lemma I (1) Given lc, then it can be checked whether /c is wel/-formed

(2) Given a monotype T and a well-formed kind K, then it can be checked whether T::K.

(3) Given well-formed lcl and rc2, then we can check whether K1 !~ K2 Or not.

Proof. (1) Following the inductive definition

(2) By induction on the construction of lc.

(3) By induction on Kl and K2. We consider only the case where both K1 and lc2 are derived

from (base - step) . This case can be proved from the proposition below. Let Ki = Kbi u pi Where

Pi denotes a set of patterns with arities (i= I , 2) . Then one can verify the following proposition

L] Proposition I lcl ~ lc2 if and only if either /cl !~ Kb2 Or rcbl !~ /c2 and P1 ~P2.

A well-formed kind lc u {pl:al ~>> *, . . . , p~:a~ ->> *} may be simply written in the form of

a set-like notation; lc U {pl:al ~>> *, ..., p~:a~ =~ *} . ~::lc denotes fii: :lc where I ~i~n and ~=

(fil' " " ft~) called pattern variables. For instance, Iet rcl be {int:*, string:*, Iist:* =~ *, x : (*, *)

->> *} . Then K1 denotes a set of monotypes, which is inductively constructed from int and string

by the use of list and X . One has list (int*string) : :KI and int*list (string) : :K1' One also has {int

, string:} !~ lcl and {int:*, Iist:* -~ *} !~ rcl' Let rc be {Dynamic (K1) :*}. Then we have Dy-

namic (K1) : :lc and list (int) : :rc, but not list(Dynamic (rcl)) : :rc

A monotype T contains no greater kinds than those of T' , denoted by T ~ T' , is defined as

follows :

(O) T ~ T;

(1) If we have rcl !~ K2, then Dynamic (lcl) ~ Dynamic (lc2) ;

(2) If we have Ti ~ Ti' (1 ~i~n) andp ~ ->is an unsaturated pattern such thatp(T1' ""

T~) :* and p (T1' , T*') :*, thenp(al' "" Tn) ~ p(T1' , ..., T~');

(3) If we have Ti ~~ Ti' (1~i~2), then T1' ~> T2 ~ T1 ~> T2'

The binary relation on monotypes is called a subtype relation, and from the definition if T1 :~ T2

then both T1 and T2 have the same structure except for the occurrences of kinds appeared in Dy-

namrc
The syntax of terms (programs) M is defined as follows

Terms
M::=x I c I Ax.M i MM I <M, M> I fst(M) I snd (M) if M then M else M

I Iet x=M in M I gen x= Tycase in M I rec x.M I M[T:K]M

l dynamic (M, T:lc) I dyapp (M, M:lc)

Tycase {(xl'pl al) ~M" I "･･･" I "(x~,pm a~) ~M},, I "

･･" I "{(xl pl al) ~M" I " " I "(x~,p~ a~) ~~M}

Coercion of a dynamics, i.e., a type case (dynamic type dispatch) subprogram is written in the

form of { (xl' pl:al) ~ M1} I { (x2, p2:a2) ~ M2 1 (x3, p3:a3) ~ M3}. The type case subprogram

as a generic function is used locally in the in-part of gen like let-polymorphism. A dynamics con-

sisting of a pair of a type I and a term Mis denoted by dynamic (M, T:lc) with kind, and dyapp is

an open-operator of the dynamics and then applies a generic function to the components of the

dynamics, i.e., invoking coercion of a dynamics

Basrs for kinds and for types are respectively denoted by ~r and r

Safe Dynanucs and Distributed Programming 99

Kind Basis Type Basis
~::=< > I p::K,ff F::=< > I x:a,FI x ~a lc a->T F

where each kind in ~ and r is well-formed, and a ~FV(T) in the generic type ~ a::lc.a~>T

rl ~ r2 is defined as rl (x) ~ p2(x) for each xeDom (r2) =Dom (rl)

A judgement ~; p ~T: :rc states that type T has kind lc under ~r and P . We represent a con-

junction of judgements by R; we often write

R ~'F. HM.:T, ~l;rl HM1:T1"'~r~;F ~M T 1~i~~ i, , , ~; F ~M:T ' for ~; F HM:T

Kind assignment rules are defined as follows

Kind Assignment Rules

~r(p) !~ rc (varkd) T::rc
~; F ~ P::rc ~; F ~ T::K (conkd)

[pl ::K] ':' [p~ ::K]

R ~; F ~ Pi ::/c T ::K (kind) 1~i~~
J~; F h T ::lc

A binary relation on types, T~ ~r cel ' ' 'a~.T' is defined such that T = T' 6 under a simultane-

ous substitution O = [cel : = Tl' " " a~: = T.] for type variables excluding pattern variables. A jud-

gement ~ ;r HM:T states that term M has type T under ~ and r . We write ~ ;r HM:T: :/c for both

~;r HM:T and ~;r ~T::K. The definition of type assignment rules is given as follows

Type Assignment Rules

T~F(x) F2 ~ F1 ~;FI ~M:TI 1 ~~; F~x:T (var) T ~ T2 (subty)
~; F2 ~M:T2

~' F x:TI hM:T ~'FHMl:TI~>T2 ~'F~M2:T1
' ' 2 (abst) ' ' (app) ~; F H Ax.M: T1 ~> T2 ~r; F ~MIM2: T2

~'FhMl:TI ~'F~M2:T2
' ' (pair) ~r; F ~ <M1' M2> : T1 X T2

~' FHM:T XT ~' FHM:T XT2
' 1 2 (fst) ' 1 (sn d)

~; F ~ fst (M) : T1 ~; F H snd (M) : T2

~r;FHM1:bool ~;F~M2:T ~'F~M:T ' 3 (if) ~r; F H if M1 then M2 else M3 : T

~~'F~M1:TI ~'Fx:~a.TI~M2:T2
' ' ' (let) where ~~FV(F). ~; F ~ Ietx=MI inM2 : T2

~' F x: T ~M: T ~; F ~M:1c ::lc
~; F H rec x.M: T ~; F ~ dynamic (M, T : K) : Dynamic (K)

Let lc be a well-formed kind. Then we define a conjunction of judgements Judge (~; P ; K; T)

1 OO Ken-etsu FUJITA

and type case program Tycase (rc) simultaneously by induction on the construction of K

(1) /c= {T1:*, "', T~:*} is derived by (mono) :

def def {(xl' T1 : *) ~ M1
Judge(~; F; K; T) = R _ l<i~~~; r, xi:Ti ~Mi:T and Tycase(K) =

(x~, T~:*) ~M~}

for some Mi (1 ~i~n) .

(2) rc = {Dynamic (K1) :*} is derived by (Dy)

def

Judge(~; F; lc; T) = ~; r, x:Dynamic (K1) HM:TRJudge(~; F; Icl; T)

and

def { (x Dynamic (K1) : *) ~ M}
Tycase (/c) ' for some M. = I Tycase(K1)

(3) lc=lcl !~ {pl al ~>> * p~ a~ ->> *} rs derrved by (base step)

def

Judge(~; I~ K; T) = (R ~" ~...K. r,x, p (P) ~M T) R Judge(3r F, K1' T) 1~i~~Jb ,p"' ,

and
{ (xl' pl :al ~>> *) ~ M1

Tycase(/c) - I for someMi(1~i~n) . def

~ (x~, p.: a~ ->> *) ~ M~}

I Tycase(K1)

Judga(~; F, x: ~ot::rc.a~' T1; K; T1) ~r; r, x: ~a::K.a~> Tl ~M:T2
~; F H gen x= Tycase(K) in M: T2 (gen)

F(x) ~ot::K. ' a -> T 3r; F ~M:Dynamic(lc.) K. !~ K.
~; F ~ dyapp (x, M: Ic.) : T (dyapp)

F(x) = Va::K..a=> T1 ~;FhM:T2::/c. . ~~;FHx[T2:rc.]M:TI K !~ K. (tyapp)

where the side condition K* !~ lcs is called a well-connected condition

Noted that (gen) involves an elimination rule for the inductively defined K . For example, Iet

lc = {string x int:*, Iist:* -~> *}, and r' =r, ft ~a::lc.a => T1 where oe~FV(Tl) ' Then the appli-

cation of (gen) gives

~ F',xl:stringxint ~Ml:TI ~, fi2:: ; lc F',x2:list(fi2) ~M2:TI ~;F' ~M:T2

~; F ~ gen f= Tycase in M: T2

where Tycase is { (xl' string x int:*) ~ M1} I { (x2, Iist:* ->> *) ~ M2} which plays a role of a

recursrve program over types, 1.e., a type case program with a generic type

The use of (subty) and the subkinds relation ~~ enable us to write flexible programs. Our

intention is that a generic function with type P (x) = ~ oi: :K..a->T is waiting for programs to be

analyzed at a server site, and terms with a type whose kind is K. are sending from a client. The

side condition lc* ~~ K* can be checked statically before exporting terms to the server, and hence

Safe Dynamics and Distributed Programming I O1

the condition guarantees the type safety of network connections, as observed in [Dug99]. See

also examples in the next section

3. Applying Safe Dynamics to Network Programming

We give two srmple examples of network programming by the use of ML~d=. The one is a pro-

gram of network printer based on the client-server paradigm. Another is an example of sending

functions to access databases in a distributed site

(i) Network printer

Let lc* be {tl:*, . .., t*:*} u {sl:al =>> *, ..., s~:a~ ->> *}, and makedynamics be the follow-

ing subprogram where arities are omitted

{ (yl' sl) ~ dynamic (yl' sl(~l) : K)

makedyllamics - I ~, s~) ~ dynamic (y~, s~ (~) : /() } d*f (. y
~

{ (xl' tl) ~ dynamic (xl' tl: rc)

(x~, t*) ~ dynamic (x~, t* :lc) }

Then makedynamics packs dynamics with a term and a type as follows

gen f= makedynamrcs In [flT1 rcc]Ml' " " flT*:lcc]M~] : Iist (Dynamic (lc*))

To print it out, dynamics is sent to the server, and then at the server site, the dynamics is unpack-

ed and next analyzed by a type case program. Let rcs be {int:*, string:*, Iist:* -~> *, x : (*, *) ->>

*}. We define the following recursive subprogram opendynamics to unpack and analyze dy-

namics, where J~ V ce: :lc.a->unit with K = {Dynamic (rc*) :*}

{ (xl ' int) ~ output (int TO string xl)

(x2, string) ~ output x:~}

{ (x3, Iist (P3)) ~ if ~3 = nil

then output "nil"

d*f else (output (f [p3 : K,] (car x3)))

opendynamrcs = concatenate
(f [list (P3) : K,] (cdr x~))

(x4, fi4 X ft) ~ (output" ("; f [P4: lc.] (fst x4) ;

output " "'
''

f [p5 : lc,] (snd x4) ; output ") ") }

{ (x Dynamrc (K)) ~ dyapp (f, x:lc.) }

Then the program Printer can be obtained as follows

~l. gen f= opendynamics in

let g= (rec z.Ay. ify=nil then () else (f[Dynamic (K.)] (cary) z(cdry)))

in gl : Iist (Dynamic (rc.)) ~> unit

1 02 Ken-etsu FUJITA

Here, Printer is implemented as a function to print each element of list (Dynamic (rc*)) . If we

have K. !~ K., then every term with type list (Dynamics (K.)) gives no type error (type safe) and

hence can be sent to the serverforprinting. Moreover, Printer and the data to be printed can be

independently updated without type errors if the well-connected condition holds true

(ii) Database access

Let K be {list (int) -> int:*, Iist (string x int) -> string:*}. For simplicity, assume that we

have dl :list (int) and d2:list (string*int) at the server site. Let rl :ref (int) and r2:ref (string) . We

define the following function access to apply functions sent out to the database

d*f I { (xl' Iist (int) -> int) ~ rl == (xldl)

access = I (x2, Iist (string x int) ~> string) ~ r2 == (x2d2)}

Here, any term wrth the type contained in K can be sent to the server, and then at the server site,

the functions sent out can access dl and d2 by the program below:

genf= access in rec g.~/. if J=nil then () else (dyapp (f, car l:K) g(cdr l))

list (Dynamic (/c)) -> unit

4. Concluding remarks

For drstnbuted programming, we have provided the statically typed functional programming

language with safe dynamics ML*d*. In this paper, we described only outline of the idea and sim-

ple examples. In network programming , dynamic types as dependent types upon kinds can pro-

vide the type safety of network connection. A prototype of the system has been experimentally

implemented by using C-language [FOOO]

In a general approach of type theory, Dybjer and Setzer [DS99] have introduced the princi-

ples for mduction-recursion which allows simultaneous definitions of a function by structural

recursron on a specral type of codes for inductive-recursive definitions. The type dispatch pro-

grams can be explained as a special case of the general approach and can be regarded as a kind

of an elimination rule for the universe (the set of small sets) [NPS90] . We come to a conclusion

that the use of the universe practically has an interesting and important application area of net-

work programming with type safety

Forthcoming papers are going to be devoted to type inference, dynamic semantics, process

language, and relations to the explicitly typed system of Duggan [Dug99] , existential types

[MP85] and ML plus dynamics [ACPP91, LM93] without kinds

Acknowledgement I am grateful to Peter Dybjer for valuable and helpful comments on

mductron-recursion and polytypic programming, which gave a better perspective of this work

Reference

LACPP9l] Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G.: Dynamic typing in a statically-typed lan-

guage, ACM Transactions on Programming Languages and Systems, 13 (2) , pp. 237-268, 1991

Safe Dynamics and Distributed Programming 1 03

LBar92] Barendregt, H. P.: Lambda Calculi with Types, Handbook of Logrc m Computer Scaence Vol II

Oxford University Press, pp. 1-189, 1992.

[DM82] Damas, L. and R. Milner: Principal type-schemes for functional programs, Proc. ACM Symposi-

um on Principles of Programming Languages, pp. 207-212, 1982.

[Dug99] Duggan, D.: Dynamic Typing for Distributed Programming in Polymorphic Languages, ACM

Transactions on Programming Languages and Systelns, 21 (1) , pp. I 1-45, 1999.

[DS99] Dybjer, P. and Setzer, A.: A Finite Axiomatization of Inductive-Recursive Definitions, Springer

Lecture Notes in Computer Science Vol. 1581 (Typed Lambda Calculi and Applications) , Jean-Yves

Girard (Ed.), pp. 129-146, 1999

[LM93] Leroy, X. and Nauny, M.: Dynamics in ML, J. Functional Programming, 3 (4) , pp. 43 1-463,

1 993 .

[ML84] Martin-Lof, P.: Intuitionistic Type Theory, Bibliopolis, 1984

[Mil78] Milner, R.: A Theory of Type Polymorphism in Programming, Journa! of Computer and System

Sciences, 17, pp. 348-375, 1978.

[MP85] Mitchell. J. C. and G. D. Plotkin: Abstract types have existential type, Proc. 12th ACM Sylieposi-

um on Principles ofProgramming Languages, pp. 37-51, 1985.

[NPS90] Nordstr6m, B., Petersson, K., and J. M. Smith: Programming in Martin-L6f's Type Theory An

Introduction, Oxford University Press, 1990

[FOOO] Fujita, K. and Obara, S. : Safe Dynamics for Distributed Programming, Technical Report in Com-

puter Scrence and Systems Engineenng CSSE-8. Kyushu Institute of Technology, March I , 2000

