Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 3, pp. 1-8, March 20, 1970

Generalized Brandt Semigroups

Miyuki YAMADA

Department of Mathematics, Shimane University, Matsue, Japan Dedicated to Professor Keizo Asano on his Sixtieth Birthday (Received November 24, 1969)

A semigroup S is said to be regular if it satisfies the following condition: (C. 1) For any $a \in S$, there exists an element $a^* \in S$ such that $aa^*a = a$ and $a^*aa^*=a^*$.

In this case, such an element a^* is called an inverse of a. In general, for an element a of a regular semigroup, an inverse of a is not necessarily unique.

It is well-known that an inverse of a is unique for every element a of a regular semigroup S if and only if S is an inverse semigroup. For an inverse semigroup S, we shall denote the inverse of $a \in S$ by a^{-1} . Let S be a regular semigroup, and B the set of all idempotents of S. Then B is not necessarily a subsemigroup of S. If B is a subsemigroup of S, then S is said to be strictly regular. Moreover, in this case B is called the band of idempotents of S. The main purpose of this paper is to study the structure of semigroups Ssatisfying the following (C. 2):

(C. 2) $\begin{cases} (1) & S \text{ is a strictly regular semigroup with zero, and} \\ (2) & \text{every non-zero idempotent of } S \text{ is primitive (see [2]).} \end{cases}$

Now, let S be a semigroup satisfying (C. 2). Since S is a primitive regular semigroup, it follows from Preston [3] that S is a 0-direct union of $\{S_i: i \in$ I}, where each S_i is a completely 0-simple semigroup in which the set of idempotents constitutes a subsemigroup. Hence our problem is reduced to the problem of determining the structure of semigroups S satisfying the following condition :

- (1) S is completely 0-simple, and
- (C. 3) $\begin{cases} (2) & \text{the set } B \text{ of idempotents of } S \text{ is a subsemigroup of } S \text{ (i. e., } B \text{ forms a band).} \end{cases}$

We shall call a semigroup satisfying (C. 3) a generalized Brandt semigroup.

Remark. It is well-known that a semigroup S is a Brandt semigroup if and only if S satisfies (1) of (C. 3) and the following :

(C. 3, 2^*) The set B of idempotents of S forms a semilattice.

In the following sections, we shall mainly deal with generalized Brandt semigroups.

 \S 1. Characterizations of generalized Brandt semigroups. At first, we have the following theorem :

Theorem 1. A semigroup S is a generalized Brandt semigroup if and only if S satisfies

- (1. 1) $\begin{array}{c|c} (1) & S \text{ is a strictly regular semigroup with zero 0,} \\ (2) & every non-zero idempotent of S is primitive, and \\ (3) & for any non-zero idempotents e, f, <math>eSf \neq \{0\}. \end{array}$

Proof. Let S be a generalized Brandt semigroup. Since S satisfies (1) of (C. 3), it is obvious from Clifford and Preston [2] that S satisfies (2) and (3) of (1, 1). Further, it also follows from (C. 3) that S is strictly regular. Hence S satisfies (1) of (1.1). Conversely, let S be a semigroup satisfying (1.1). Since S is strictly regular, S satisfies (2) of (C. 3). Further since S is regular and since S satisfies (2) and (3) of (1. 1), S is completely 0-simple (see [2]). Hence, S is a generalized Brandt semigroup.

Next, we shall show another characterization of generalized Brandt semigroups.

Lemma 1. If S is a generalized Brandt semigroup, then (1) efe = e and fef = f or (2) ef = fe = 0 for every non-zero idempotents e, f of S.

Proof. Since efe is an idempotent and efee = eefe = efe, we have efe = 0 or efe = e. Similarly, fef = f or fef = 0.

Case 1 (efe = 0). In this case, efef = 0 and fefe = 0. Hence $ef = (ef)^2 = 0$ and $fe = (fe)^2 = 0$, and hence ef = fe = 0.

Case 2 (efe = e). If fef = 0, then we have ef = fe = 0 by an analogous way to Case 1. Hence we have efe = 0, which contradicts to our assumption efe = e. Therefore $fef \neq 0$, and hence fef = f.

Lemma 2. Let B be the band of idempotents of a generalized Brandt semi-Then B is a normal band¹⁾, and accordingly S is a generalized group S. inverse semigroup²⁾.

 $\mathbf{2}$

¹⁾ A band G (that is, an idempotent semigroup) is said to be normal if it satisfies the polynomial identity xyzw = xzyw. It has been proved by [5] that a band G is normal if and only if it satisfies the polynomial identity xyzx = xzyx.

²⁾ A regular semigroup G is called a generalized inverse semigroup if the idempotents of Gform a normal band (see [6]).

Proof. Let e, f and g be elements of B. If at least one of these e, f and g is the zero element 0 of S, then clearly efge = egfe = 0. Suppose that all the elements e, f, g are not 0. By Lemma 1, efge = 0 or efge = e.

Case 1 (efge = 0). If ef = 0, then fe = 0. Hence g(fe) = 0, and hence egfe = 0. If $ef \neq 0$, then $e(ef) \neq 0$. Hence $efe \neq 0$, and hence efe = e. Therefore, we have ge = g(efe) = g(ef)e. Since e(fg)e = 0, we have efg = e(efg) = 0. Hence g(ef) = 0. Accordingly ge = (gef)e = 0, which also implies eg = 0. Thus we have egfe = 0, and hence egfe = efge = 0.

Case 2 $(efge \neq 0)$. Since $e(fg)e \neq 0$, we have e(fg)e = e. If egfe = 0, then it follows from Case 1 that efge = 0. This contradicts to our assumption. Therefore $egfe \neq 0$, and hence egfe = e. Thus we have efge = egfe = e. Since S is regular and B is a normal band, S is a generalized inverse semigroup.

By using Lemmas 1, 2, we obtain the following theorem :

Theorem 2. A semigroup S with zero is a generalized Brandt semigroup if and only if S is a generalized inverse semigroup and completely 0-simple.

Proof. If S is a generalized Brandt semigroup, then by Lemma 2 S is a generalized inverse semigroup. It is obvious from the definition of generalized Brandt semigroups that S is completely 0-simple. Conversely, let S be a generalized inverse semigroup which is also completely 0-simple. Then since the set of idempotents of S is a subsemigroup of S, S is a generalized Brandt semigroup.

Remark. It is well-known that a semigroup S is a Brandt semigroup if and only if S is an inverse semigroup and completely 0-simple (e.g., see [2]).

Theorem 2 is analogous to this result.

§ 2. A structure theorem. If S is a generalized Brandt semigroup, then it follows from Theorem 2 that S is a generalized inverse semigroup. Hence the following result follows from the author [6], [7]:

The relation ρ on S defined by

(2. 1) $a \rho b$ if and only if $\{a^* : a^* \text{ is an inverse of } a\} = \{b^* : b^* \text{ is an inverse of } b\}$

is a congruence on S, and

Miyuki YAMADA

(2. 2)
(1) the factor semigroup S/ρ of S mod ρ is an inverse semigroup;
(2) S/ρ ∋ ē (where ē is the congruence class containing e)
is an idempotent if and only if e is an idempotent of S;
(3) ρ|B (the restriction of ρ to B) gives the greatest semilattice decomposition of B, where B is the band of idempotents of S.

Of course, it is obvious from (2) of (2. 2) that every congruence class of $B \mod \rho_B = \rho | B$ constitutes a complete (congruence) class of $S \mod \rho$. Further, we have

Lemma 3. S/ρ is a Brandt semigroup.

Proof. It is obvious that S/ρ is regular. For $x \in S$, let \bar{x} be the congruence class containing $x \mod \rho$. At first, we shall show that $\bar{0} = \{0\}$. Let $\bar{0} = \bar{e}$. Then since 0 is an inverse of 0, 0 = e0e = e. Hence $\bar{0} = \{0\}$. Now, let \bar{e}, \bar{f} be idempotents of S/ρ such that $\bar{e}f = \bar{f}e = \bar{e} \neq \bar{0}$. Since $\bar{ef} = \bar{f}e \neq \bar{0}$ and e, fare idempotents of S, we have $0 \neq e = efe$ and $0 \neq f = fef$. Therefore, $e \ \rho_B f$ since ρ_B gives the greatest semilattice decomposition of B. Hence $e \ \rho f$, which implies $\bar{e} = \bar{f}$. Thus, every non-zero idempotent of S/ρ is primitive. Next, let \bar{e}, \bar{f} be non-zero idempotents of S/ρ . Since e, f are non-zero idempotents of S and since S is completely 0-simple, there exists x of S such that $exf \neq 0$. If $\bar{e} \ x \ \bar{f} = \bar{0}$ then $\bar{exf} = \bar{0}$, which implies exf = 0. This contradicts to $exf \neq 0$. Hence $\bar{e} \ x \ \bar{f} \neq \bar{0}$, and hence $\bar{e} \ S/\rho \ \bar{f} \neq \{\bar{0}\}$. Therefore, S/ρ is completely 0-simple. Since S/ρ is completely 0-simple and an inverse semigroup, S/ρ is a generalized Brandt semigroup.

From Lemma 3 and the author [6], it follows that S is isomorphic to a semigroup S^* constructed in the following way:

Let \mathscr{B} be a Brandt semigroup, \mathscr{L} the basic semilattice of \mathscr{B} (that is, the semilattice of idempotents of \mathscr{B}). In this case, it is obvious that ab = ba = 0 for any $a, b \in \mathscr{L}$ (see [2]). Let L, R be a left normal band and a right normal band ³⁾ respectively having $L \sim \Sigma \{L_k : k \in \mathscr{L}\}$ and $R \sim \Sigma \{R_k : k \in \mathscr{L}\}$ as their structure decompositions (for the definition of structure decompositions, see [6]). Of course, it is obvious that the zero element 0 of \mathscr{B} is contained in \mathscr{L} and each of R_0 and L_0 consists of a single element : Put $R_0 = \{0_i\}$ and $L_0 = \{0_i\}$. Let S^* be the quasi-direct product (abbrev.

³⁾ A band G is said to be left [right] normal if it satisfies the polynomial identity xyz = xzy [xyz=yxz] (see [8]).

Q-product) $Q(L \otimes \mathcal{B} \otimes R; \mathcal{L})$ of L, \mathcal{B}, R with respect to \mathcal{L} (see [6]). That is,

$$(2. 3) \begin{cases} Q(L \otimes \mathscr{B} \otimes R; \mathscr{L}) = \{(e, a, f) : e \in L_{aa^{-1}}, f \in R_{a^{-1}a}, a \in \mathscr{B}\}, \text{ where } a^{-1} \text{ means the inverse of } a \text{ in } \mathscr{B}; \\ \text{the multiplication in } Q(L \otimes \mathscr{B} \otimes R; \mathscr{L}): \\ (e, a, f) (g, b, h) = (eu, ab, vh), \text{ where } u \in L_{ab(ab)^{-1}} \text{ and } v \in R_{(ab)^{-1}ab}^{4}. \end{cases}$$

Now, we obtain the following result as to S^* :

Lemma 4. (1) (e, a, f) $\in S^*$ implies (i) $a = 0, e = 0_l, f = 0_r$ or (ii) $a \neq 0, e \neq 0_l, f \neq 0_r$.

(2) $(e, a, f), (g, b, h) \in S^*$ and ab = 0 imply $(e, a, f)(g, b, h) = (0_l, 0, 0_r)$.

(3) $(e, a, f), (g, b, h) \in S^*$ and $ab \neq 0$ imply (e, a, f)(g, b, h) = (e, ab, h).

Proof. The part (1) is obvious from the fact that $L_0 = \{0_i\}$ and $R_0 = \{0_i\}$. Further the part (2) is also obvious from the part (1). Hence, we shall next prove the part (3). Suppose that (e, a, f), $(g, b, h) \in S^*$ and $ab \neq 0$. If $aa^{-1} \neq ab (ab)^{-1}$, then $0 = (aa^{-1}) (ab (ab)^{-1}) = ab (ab)^{-1}$. Hence $ab = (ab (ab)^{-1}) ab$ = 0, which contradicts to $ab \neq 0$. Therefore, $aa^{-1} = ab (ab)^{-1}$. Similarly, we have $b^{-1}b = (ab)^{-1}ab$. Now (e, a, f) (g, b, h) = (eu, ab, vh), where $u \in L_{ab(ab)^{-1}}$ $= L_{aa^{-1}}$ and $v \in R_{(ab)^{-1}ab} = R_{b^{-1}b}$. Since $u \in L_{aa^{-1}}$, $e \in L_{aa^{-1}}$, $v \in R_{b^{-1}b}$, $h \in R_{b^{-1}b}$ and since $L_{aa^{-1}}$, $R_{b^{-1}b}$ are a left zero semigroup, a right zero semigroup respectively, we have eu = e and vh = h. Hence (e, a, f) (g, b, h) = (e, ab, h).

From the above-mentioned lemmas, we have the following theorem :

Theorem 3. For any generalized Brandt semigroup S, there exist a Brandt semigroup \mathcal{B} , having \mathcal{L} as its basic semilattice, and families of sets $\{I_a : a \in \mathcal{L}\}, \{J_a : a \in \mathcal{L}\}, where each of I_0, J_0 consists of a single element,$ such that S is isomorphic to the semigroup S* defined by

$$(2. 4) \begin{cases} S^* = \{(e, a, f) : e \in I_{aa^{-1}}, f \in J_{a^{-1}a}, a \in \mathscr{B} \}; and \\ the multiplication in S^*: \\ (e, a, f) (g, b, h) = \begin{cases} (e, ab, h) & \text{if } ab \neq 0, \\ (0_l, 0, 0_r) & \text{if } ab = 0, \\ where 0_l, 0_r are the elements of I_0, J_0 respectively. \end{cases}$$

Conversely, any semigroup S^* constructed as in (2.4) is a generalized Brandt semigroup.

⁴⁾ By [6], it has been shown that (eu, ab, vh) does not depend on the selection of u, v. Hence the product of (e, a, f) and (g, b, h) is well-defined.

Miyuki YAMADA

Proof. The first half of the assertion follows from the above-mentioned lemmas. Let S^* be a semigroup constructed as in (2. 4). Then it is easy to see that S^* satisfies (1), (2) and (3) of (1. 1). Hence, S^* is a generalized Brandt semigroup.

§ 3. Matrix representations. By Clifford and Preston [2] (see also Rees [4]), a semigroup S is a Brandt semigroup if and only if S is isomorphic to a Rees $\Lambda \times \Lambda$ matrix semigroup over a group with zero and with the $\Lambda \times \Lambda$ identity matrix as sandwich matrix. Hence, it follows from Theorem 3 that: For any generalized Brandt semigroup S, there exist a Rees $\Lambda \times \Lambda$ matrix semigroup \mathcal{B} over a group with zero G^0 and with the $\Lambda \times \Lambda$ identity matrix P as sandwich matrix and families of sets $\{I_k : k \in \mathcal{L}\}, \{J_k : k \in \mathcal{L}\}$, where \mathcal{L} is the set of idempotents of \mathcal{B} and each of I_0, J_0 consists of a single element, such that

$$(3. 1) \begin{cases} S^* = \{(e, a, f) : e \in I_{aa^{-1}}, f \in J_{aa^{-1}}, a \in \mathscr{B}\}; \\ \text{the multiplication in } S^*: \\ (e, a, f) (g, b, h) = \begin{cases} (e, ab, h) & \text{if } ab \neq 0, \\ (0_l, 0, 0_l) & \text{if } ab = 0, \\ \text{where } 0_l, 0_l \text{ are the elements of } I_0, J_0 \text{ respectively.} \end{cases}$$

In this case,

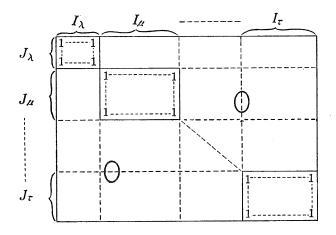
(3. 2) $\begin{array}{l} \mathscr{B} = \{(x)_{\lambda\mu} : (\lambda, \ \mu) \in A \times A, \ x \in G^0\}^{5}, \text{ where all } (0)_{\lambda\mu}, \ (\lambda, \ \mu) \in A \times A, \text{ should be considered as the same element denoted by 0 (in fact, this element 0 becomes a zero element with respect to the multiplication in <math>\mathscr{B}$); the multiplication in \mathscr{B} : $(x)_{\lambda\mu} (y)_{\tau\eta} = (x \, \delta_{\mu\tau} y)_{\lambda\eta}, \text{ where } \delta_{\mu\tau} \text{ means the Kronecker } \delta. \end{array}$

Definition. Let G^0 be a group with zero 0, and P a $J \times I$ matrix over G^0 . If there exist families $\{I_{\lambda} : \lambda \in A\}$ and $\{J_{\lambda} : \lambda \in A\}$ of subsets I_{λ} , J_{λ} of I, J such that

(1) $I = \Sigma \{I_{\lambda} : \lambda \in A\}, J = \Sigma \{J_{\lambda} : \lambda \in A\} (\Sigma \text{ means disjoint sum}), and$

(2) all elements in $J_{\lambda} \times I_{\mu}$ submatrix of P are (i) 0 if $\lambda \neq \mu$ and (ii) 1 if $\lambda = \mu$, then at present we shall call P the $J \times I$ semi-identity matrix of type $\{J_{\lambda} \times I_{\lambda} : \lambda \in \Lambda\}$.

⁵⁾ $(x)_{\lambda\mu}$ denotes the $\Lambda \times \Lambda$ matrix which has x in the (λ, μ) -position and has 0 in all the other positions.



Lemma 5. Any Rees matrix semigroup over a group with zero and with a semi-identity matrix as sandwich matrix is a generalized Brandt semigroup.

Let $M^0(G; I, J; P)$ be a Rees $I \times J$ matrix semigroup over a Proof. group with zero G^0 and with a $J \times I$ semi-identity matrix P as sandwich matrix. Let the semi-identity matrix P be of type $\{J_{\lambda} \times I_{\lambda} : \lambda \in A\}$. This $M^{0}(G; I, I)$ J; P) is clearly a completely 0-simple semigroup (see [2]). Now, let $(x)_{ef} \neq 1$ 0, $(e, f) \in I \times J$, be an idempotent of $M^0(G; I, J; P)$. Then $(x)_{ef} = (x)_{ef}(x)_{ef}$ $=(xp_{fe}x)_{ef}$, where p_{fe} is the element in the (f, e)-position of P. Hence $f \in J_{a}$, $e \in I_{\lambda}$ for some $\lambda \in \Lambda$ and x = 1. Therefore, any idempotent of $M^0(G; I, J;$ P) has the type $(1)_{ef}$, $e \in I_{\lambda}$, $f \in J_{\lambda}$, $\lambda \in \Lambda$. Now, let $(1)_{ef}$, $(1)_{gh}$ be any two idempotents of $M^0(G ; I, J; P)$. Then $(1)_{ef}(1)_{gh} = (1 p_{fg}1)_{eh}$. If $p_{fg} \neq 0$, then there exists $\mu \in \Lambda$ such that $f \in J_{\mu}$, $g \in I_{\mu}$. Hence $e \in I_{\mu}$ and $h \in J_{\mu}$, and hence $(1 \ p_{fg} \ 1)_{eh} = (1)_{eh}$, $e \in I_{\mu}$, $h \in J_{\mu}$. Thus $(1)_{ef}(1)_{gh}$ is an idempotent. If $p_{fg} = 0$, then $(1 \ p_{fg} \ 1)_{eh} = 0$. Hence of course in this case $(1 \ p_{fg} \ 1)_{eh}$ is an Therefore, the product of two idempotents of $M^0(G; I, J; P)$ idempotent. Since $M^0(G ; I, J; P)$ is completely 0-simple and since is an idempotent. the set of idempotents of $M^{0}(G ; I, J ; P)$ is a subsemigroup, this $M^{0}(G ; I, J ; P)$ I, J; P is a generalized Brandt semigroup.

Now, let us consider about the semigroup S^* given by (3. 1) and (3. 2). Since $\mathscr{B} = \{(x)_{\lambda\mu} : (\lambda, \mu) \in A \times A, x \in G^0\}$, \mathscr{L} of (3. 1) is the set $\{(1)_{\lambda\lambda} : \lambda \in A\} \cup \{0\}$. Put $I_{(1)_{\lambda\lambda}} = I_{\lambda}, J_{(1)_{\lambda\lambda}} = J_{\lambda}$ for every non-zero idempotent $(1)_{\lambda\lambda} \in \mathscr{L}$, and let $I = \bigcup \{I_{\lambda} : \lambda \in A\}$ and $J = \bigcup \{J_{\lambda} : \lambda \in A\}$. Now, let P be the $J \times I$ semi-identity matrix of type $\{J_{\lambda} \times I_{\lambda} : \lambda \in A\}$ over G^0 and let $M^0(G; I, J; P)$ be the Rees $I \times J$ matrix semigroup over G^0 and with P as sandwich matrix. Then, the mapping $\varphi : S^* \longrightarrow M^0(G; I, J; P)$ defined by

(3. 3)
$$\begin{cases} \varphi(e, (a)_{\lambda\mu}, f) = (a)_{ef} & if \ a \neq 0, \\ \varphi(0_{\iota}, 0, 0_{r}) = 0 \end{cases}$$

is an isomorphism of S^* onto $M^0(G; I, J; P)$.

Therefore, we obtain the following theorem by using Lemma 5 and the above-mentioned result:

Theorem 4. A semigroup S is a generalized Brandt semigroup if and only if S is isomorphic to a Rees matrix semigroup over a group with zero and with a semi-identity matrix as sandwich matrix.

REFERENCES

- 1. Clifford, A. H. : Matrix representations of completely simple semigroups, Amer. J. Math. 64 (1942), 327-342.
- 2. Clifford, A. H. and Preston, G. B. : The algebraic theory of semigroups, I, Amer. Math. Soc., Providence, R. I. (1961).
- 3. Preston, G. B. : Matrix representations of inverse semigroups, J. Australian Math. Soc. (To appear).
- 4. Ress, D.: On semigroups, Proc. Cambridge Phil. Soc. 36 (1940), 387-400.
- 5. Yamada, M.: The structure of separative bands, Dissertation, Univ. of Utah, 1962.

- Yamada, M. and Kimura, N.: Note on idempotent semigroups, II, Proc. Japan Acad. 34 (1958), 110-112.