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In the previous paper [4], we have studied a characterization of linearly connected 

manifolds with parallel torsion and curvature by their tangent algebras. Lie algebra 

Lie group correspondence and Lie triple system symmetric space correspondence are 

found there in the special cases. 

On the other hand, as a generalization of Lie group with ( - ) -connection of Cartan, 

we have a binary-systematic characterization I ) of linearly connected manifold in our 

minds. From such a view point, we shall try to present in this note a quasigroup, 

called a symmetric loop, as an algebraic model of symmetric space. In [5], O. Loos has 

introduced an axiomatic binary system in symmetric space and defined the symmetric 

space by means of the multiplication. We were motivated by this work to construct the 

symmetric loop 

At the last part of the present note, the family of all left translations of the symme-

tric loop will be observed on the lines of Lie triple family of transformations of T 

N6no [6]. 

1 . Symmetric lloops and quasigroups of reflection 

DEFINITION. 2) A Ioop (G.) is a quasigroup with the identity element e and with the 

multiplication denoted by x. y. A Ioop is said to be power associative (resp. di-associa-

tive) if every element (resp. every couple of elements) generates a subgroup. A power 

associative loop G is said to be left di-associative if, for every element a E G, the left 

translation fa : x -> a. x has the property fa'fa = f(~2) and (f~)-1 = f(a~1). A right 

di-associative loop is defined similarly. A Ioop is left and right di-associative if it is 

di-associative. 

DEFINITION. A Ioop (G.) will be called a symlnetric loop if it has the following 

properties : 

(A. 1) G is left di-associative ; 

(A 2) (x y)~1 = ~1 . . x ._~'~1 
(A. 3) x. ((y, y). z) = (x. y). (x. y). (x~1. z) 

1) See [2] and [3]. 

2) See R. H. Bruck [1]. 
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(A. 4) the mapping x -> x. x is a bijection of G onto itself 

REMARK. Under the assumption (A. 1), the axioms (A. 2) and (A. 3) can be replaced 

by a single axiom ; 

(A. 2') x. ((y.~)' ~~1) = (x. y). (x. y) (x. x;~)~1. 

ADDED IN PRooF. We found the fact that (A. 2) follows from (A. l) and (A. 3). 

PROPOSITION l. If a s_vl71lmetrlc loop is a group, then. it is an Abelian group. 

DEFINITION. A quasigroup (G*) with the following properties will be called a quast 

group of reflection, whose multiplication will be denoted by x*y 

(B. 1) x*x = x 

(B. 2) x*(x*y) = y 

(B. 3) x*(3'*z) = (x*~ )*(x*z:). 

O. Loos ([5]) has defined a symmetric space as a differentiable manifold with a diffe-

rentiable multiplication satisfying the axioms (B. 1), (B. 2), (B. 3) and 

(B. 4) every element it' has a neighborhood U such that x*y = y implies y = x for 

all y in U. 

Thus we have 
PROPOSITION 2. I_f a quasigroup of reflection, G, is a manifold ard if the multiplication 

is diffe7-entiable, then G is a syml7zetric space. 

In the following few Theorems, we shall show the equivalency between the category 

of pointed quasigroups of reflection and the category of symmetric loops 

THEOREM 1. Let (G*) be a quasigroup of reflection whose muZtiplication is denoted by 

x*_v. Let e be an arbitrarily fixed element of G and denote _t= an element defined by the 

relation il~'*e = x for every element x of G. A binary s5,'stem (G.) defined by x. y = 

~* (c*y) is a symlnetric loop with the identity e. 

P/-oof of Theoreln 1. The fact that e is the left and right identity is easily seen by 

(B. 1), (B. 2) and 

LEMMA I - = . e e. 
An element e*x which will be denoted hereafter by x~1 is an inverse element of x 

in the binary system (G.) and the relations x~1. (x. y) = y and (x y)~1 = ~1 ~1 . x . y are 
valid. These facts are proved by the following two lemmas : 

LEMMA 2. (e*x) = e*~, or equivalently, (x~1) = (~)-1. 

LEMMA 3. f*x = e. 
Using the above results we can show that ; 

LEMMA 4. .t=. ~ = x. 

This lemma implies that the mapping x -> x. x is a permutation of G. It is also 

seen that the quasigroup (G.) is left di-associative. Finally, the formula (A. 3) is proved 

by using the following relations ; 

x. (y*z) = (x. y)*(x. z), 

(x*y)~1 = ~1 ~1 x *y 
an d 

LEMMA 5 x (y*x) = (x*y)*x. 
Q. E. D. 
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The followings are also proved easily 

LEMMA 6. J*f-1 = x. 

LEMMA 7. (~=*~)*x = x=*y. 

PROPOSITION 3. Let (G*) be a quasigroup of reflection. If (G.) and (G･) are the 
symmetric loops associated with different base points (identity elements) e and e/ respectively, 

as are given in Theorem l. Then the mapping of G onto itself defi,'eed by the left 

translation by e/ in (G.) is an isomorphism of (G.) onto (G･), i. e. the following relation 

hold s 

(e x)'(e . y) = d. (x. y). 

Proof. For every element x, denote j~t~1 and 3~ the elements defined by the relations 

x~*e = x and ~~*d = x respectively. By the definitions of the multiplications in (G.) and 

(G･), each hand side of the formula in the Proposition is represented by means of the 

*-multiplication, respectively, as follows ; 

(d. x)'(el. y) = e *(e*x)*Le *(e *(e*y)], 

d. (x. _v)== Le *(e *x~)]*[e *(e *(e*y)]. 

Thus, to prove the Proposition, it is sufficient to show that 

(e *(e *x~) = e/*(e*x). 

Using Lemma 5, we see that this is equivalent to the relation 

(e *~)*e/ = e *x 

which is always valid (Lemma 7) 
Q. E. D. 

THEOREM 2. Let (G.) be a symmetric loop with the identity e. A binary system (G*) 

defined by x*y = (x. x). y~1 is a quasigroup of reflection and the associated symmetric 

loop with the identity e coincides with the original symmetric loop (G.). 

Proof. It is easily seen that (G*) is a quasigroup. The axiom (A. l) implies (B. 1) 

Also (B. 2) follows from (A. 1) and (A. 2). Finally, (B. 3) is proved by the following 

LEMMA 8. x. (y*z) = (x. y)*(x. z), 

(x*y)~1 = x~1*y~1. 

This Lemma can be proved by using (A. 3) 

The second part of the theorem is easily seen by calculating the product of x and y. 

Q. E. D. 

THEOREM 3. Let (G*) be a quasigroup of reflection and let (G.) be a symmetric loop 

associated with the identity element e E G. The quasigroup of reflection obtained from 

the symmetric loop (G.) by means of Theorem 2 coincides with the original quasigroup of 

reflection (G*). 

Proof. For any two elements x, y E G, their product in the new quasigroup of 
reflection is represented by means of the original *-product as follows 

x. x. y~1 = (~:*e)*(e*(e*y)). 

It is easilv. seen that the right hand side of this formula is equal to x*y. 
Q. E. D. 
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As we have already remarked, O. Loos [5] characterizes a symmetric space as a 

differentiable manifold with a germ of local quasigroups of reflection. From the above 

Theorems we recognize that a symmetric space can be characterized also as a differen-

tiable manifold wit.h a germ of local symmetric loops. 3 ) However, this note is 

concerned only with purely algebraic aspects of symmetric spaces. 

2. Triple family of transformations of symmetnc loops 

DEFINITION Let G be a set A family J~ (G) {fx}xel of mappings of G onto itself 

is called a triple famly of transformations 4 ) of G if it satisfies the following axioms : 

(C 1) every f E j'-~ is a bijection of G onto itself ; 

(C. 2) there exists a mapping a : Ixl->1 such that f..fy.f.* = f.(x y) 

for x, y E G ; 

(C. 3) there exists a mapping ~ : I -~ I such that f.-1 = fp(x), 

for x E__ G ; 

~ (C. 4) the identity mapping Ida of G belongs to J7 . 

REMARK. The concept of triple family of transformations have been introduced by 
T. N6no in [6], where the set G is a differentiable manifold, jr is a family of diffeo-

morphisms and the set of indices I is an open neighborhood of O in r-dimensional 

real numerical space R". T. N6no has shown that a system T of infinitesimal transfor-

mations on a manifold G generates a triple family of local transformations of G if and 

only if T is a Lie triple system, which is known 5 ) as a tangent algebra of a symmetric 

space, 

Now we shall present a Theorem which may be expected in the above remark. 

THEOREM 4 Let (G ) b･ a symmetrlc loop A fam~ly ja~ = {f*}x*~G of all left transla-

tions of G is a triple family of transformations of G. 

Proof. For any elements x, y and z in G, the element f...fy.f+(~:) is represented as 

follows, by using the axioms (A. 1), (A. 2) and (A. 3) 

. = x. (y. (x. z)) fx ' f~/ ' f (z) 

= (x. ~). (x. ~). (x.(x~1. z~1))-1 

= (x. _~'~). (x. y). z, 

where ~. ~ = y. Hence we have 

(C. 2) f*.fy･f. = f.(x,y) , 

where a(x, y) = (x.~). (x. ~) for any x, y E G. 

The remaining axioms are clearly satisfied .since (G.) is a left di-associative quasi-
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3) In [2], we have considered certain local loops in linearly connected manifolds. In the 

applrcatron of the above loop theory to [2], it should be remarked that the order of the 
product rs mterchanged. Therefore, for instance, the word '1eft di-assoicative' of Theorem 2 

in [2] should be read 'right di-associative' in the present sense 

4) T. N no [6]. 
5) See, for instance, [4] or [5] 
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