Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 8, pp. 13-16, March 10, 1975

On Holomorphic G-vector Bundles

Hiromichi MATSUNAGA

Department of Mathematics, Shimane University, Matsue, Japan (Received November 5, 1974)

In this note we apply the technic in [5] to a classification problem of holomorphic G-vector bundles over a normal complex space with a proper complex Lie transformation group G. In § 1, we deduce some properties about normal complex spaces from the basic works due to H. Holmann, [2], [3]. The main theorem is obtained in § 2, which is an analogous one to the theorem in [5].

§1. Normal complex spaces.

Let M be a complex space and G be a complex Lie transformation group of M. We denote by $\mu: G \times M \to M$ the action. Suppose that G acts properly on M, then all isotropy group G_x is finite. By Satz 19 and Definition 15, [2], we have

PROPOSITION 1. Every point $x \in M$ admits a neighborhood U_x , a neighborhood V_{ε} of the identity element ε of G such that the following conditions are satisfied:

- 1. The restriction $\mu: V_{\varepsilon} \times S_x \rightarrow U_x$ is biholomorphic,
- 2. S_x is G_x -invariant and for $g \in G$, if $gS_x \cap S_x$ is non empty, then $g \in G_x$.

By Satz 14 and its proof in [2], we have a biholomorphism $G \times_{G_x} S_x \to GU_x$. Thus S_x is a slice at x. If M is a normal complex space, then the quotient M/G is also normal (Satz 12, [2]). In this note we use very often the following

PROPOSITION 2, (Satz 23, [1]). A topological holomorphic map $\tau: M_1 \rightarrow M_2$ from a complex space M_1 onto a normal complex space M_2 is biholomorphic.

The next one is an elementary result about a complex Lie group.

PROPOSITION 3. Let H be a finite subgroup of G, then its normalizer N(H) in G is a complex Lie group.

PROOF. If N(H) is a discrete group, then it is a zero dimensional complex Lie group. Suppose that the dimension of $N(H)_e$, the connected component of the identity, is positive. For each $g \in N(H)$, $gh_ig^{-1} = h_j$, where h_i , $h_j \in H$. Since H is finite group, $hgh^{-1} = g$ for all $g \in N(H)_e$ and $h \in H$. We denote by L(N(H)) the Lie algebra of N(H). For $h \in H$, $X \in L(N(H))$, $Ad_h(X) = X$ and Ad_h is complex linear, then $Ad_h(JX) = JAd_h(X) = JX$, where J is an almost complex structure on L(G). Thus $JX \in L(N(H))$ and N(H) is a complex Lie group. We denote by M_H the set $\{x \in M; G_x = H\}$.

PROPOSITION 4. M_H is an analytic set in M.

PROOF. By the proposition 1, $\mu: V_{\varepsilon} \times S_x \to U_x$ is biholomorphic and the restriction $(V_{\varepsilon} \cap N(H)) \times S_x \to U_x \cap M_H$ is homeomorphism for each $x \in M_H$, where we assume that V_{ε} is connected. Since *H* is finite, $g \in V_{\varepsilon} \cap N(H)$ if and only if $ghg^{-1} = h$ for all $h \in H$, then $(V_{\varepsilon} \cap N(H))$ is an analytic set in V_{ε} and S_x is an analytic set in U_x , and the product $(V_{\varepsilon} \cap N(H)) \times S_x$ is an analytic set in $V_{\varepsilon} \times S_x$. Q.E.D.

Now we consider an action with one orbit type (H),

PROPOSITION 5. The induced mapping, say, $\tilde{\mu}: G \times_{N(H)} M_H \rightarrow M$ is biholomorphic.

PROOF. The restriction $\mu: G \times M_H \to M$ is holomorphic and N(H)-invariant, then $\tilde{\mu}$ is holomorphic, $((f), \S 2, [3])$. $\tilde{\mu}$ is homeomorphic, then by the Proposition 2, it is biholomorphic.

We denote by $\Gamma(H)$ the quotient group N(H)/H, which is a complex Lie group and acts freely on M_H . By the same argument as in the proof of the proposition 5, the quotient $M_H/\Gamma(H)$ is biholomorphic to the quotient space M/G.

§ 2. Holomorphic G-vector bundles.

We denote by $Vect^{\infty}_{G}(M)$ the abelian semi-group of equivalence classes of all holomorphic G-vector bundles over a normal complex space M. The total space of any holomorphic vector bundle over M is also normal. For a holomorphic G-vector bundle $E \rightarrow M$, $E|M_{H}$ denotes the portion over M_{H} . Then we have an equivalence $G \times_{N(H)}$ $(E|M_{H}) \rightarrow E$ of holomorphic G-vector bundles (cf. the proof of (1), §1, [4]) and we obtain

PROPOSITION 6. We have an isomorphism of semi-groups

 $\pi^{(1)}_*: \operatorname{Vect}^{\omega}_G(G \times_{N(H)} M_H) \xrightarrow{\approx} \operatorname{Vect}^{\omega}_{N(H)}(M_H).$

Since $\Gamma(H) \to M_H \to M_H / \Gamma(H)$ is a complex analytic principal bundle, there exists an open covering $\{W_i\}$ of $M_H / \Gamma(H)$, and a $\Gamma(H)$ -equivariant biholomorphism $\varphi_i \colon M_H |$ $W_i \to W_i \times \Gamma(H)$ for each *i*. Now we consider the case which fulfills the condition: $N(H) \approx H \cdot \Gamma(H)$, the semi-direct product. Let $p \colon E \to M_H$ be a holomorphic N(H)vector bundle and $E_i \to W_i \times \Gamma(H)$ be its portion over $W_i \times \Gamma(H)$.

We may suppose that $E_i|W_i \times (e)$ is holomorphically isomorphic to $W_i \times V_i$, where *e* is the identity element of $\Gamma(H)$ and $V_i = p^{-1}(x)$ for some $x \in W_i$, which is a complex *H*-module. We denote the isomorphism by Φ_i , which corresponds to a cross section $s(\Phi_i): W_i \times (e) \to \text{Hom}(E_i|W_i \times (e), W_i \times V_i)$. Since $M_H/\Gamma(H) = M/G$ is locally compact, there exists a neighborhood U'_i of $x_i \in W_i$ such that \overline{U}'_i , the closure of U'_i , is compact and contained in W_i . Put the minimum $\text{Min}\{|s(\Phi_i)(x)|; x \in \overline{U}'_i\} = \varepsilon$. On the other hand we may suppose that we have choosed the covering $\{W_i\}$ which admits isomorphisms $\Phi'_i: E_i|W_i \times (e) \to W_i \times V_i$ of H-vector bundles (cf. Proof of Proposition (2.2), [6]) and that $s(\Phi'_i)(x_i) = s(\Phi_i)(x_i)$, where if it is necessary, we take $[s(\Phi'_i)(x_i)] \circ [s(\Phi_i)(x_i)]^{-1} \circ s(\Phi_i)(x)$ instead of $s(\Phi_i)(x)$. There exists a neighborhood U_i of x_i such that \overline{U}_i is compact and $\overline{U}_i \subset U'_i$, further,

$$|s(\Phi_i)(x) - s(\Phi_i)(y)| < \varepsilon/3$$
, and $|s(\Phi_i)(x) - s(\Phi_i)(y)| < \varepsilon/3$ for $x, y \in \overline{U}_i$.

Then

$$|s(\Phi_i)(x) - s(\Phi'_i)(x)| < \frac{2}{3}\varepsilon < \varepsilon.$$

Thus $\frac{1}{|H|} \sum_{h \in H} h \cdot s(\Phi_i)(x)$, say $\Psi'_i(x)$, is a holomorphic *H*-equivalence, where |H| denotes the order of *H*. Hence we have a holomorphic N(H)-equivalence $\Psi_i: U_i \times (V_i \times_H H \cdot \Gamma(H)) \to E_i$ over $U_i \times \Gamma(H)$.

For $h \in H$ and $(x, (v, h\gamma)) \in (U_i \cap U_j) \times V_i \times_H H \cdot \Gamma(H)$, $\Psi_j^{-1} \cdot \Psi_i(x, (v, h\gamma)) = (x, (g_{ji}(x)v, \gamma_{ji}(x)h\gamma))$ $= (x, (g_{ji}(x)(v)) \cdot I(\gamma_{ji}(x))(h), \gamma_{ji}(x)\gamma)$,

where (γ_{ji}) is the set of transition functions of the principal bundle $\Gamma(H) \rightarrow M_H \rightarrow M_H / \Gamma(H)$. We have the important relation (cf. § 3, [5]),

$$g_{ji}(x)(vh) = \{g_{ji}(x)(v)\} \cdot I(\gamma_{ji}(x))(h).$$

Hence we obtain our main result:

THEOREM. We have an isomorphism of semi-groups

$$\pi^{(2)}_*: \operatorname{Vect}^{\omega}_{N(H)}(M_H) \to \operatorname{Vect}^{\omega}_{H\gamma}(M/G),$$

where $Vect_{H\gamma}^{\omega}(M/G)$ denotes the semi-group of isomorphism classes of holomorphic local *H*-vector bundles, (cf. Theorem in § 3, [5]).

COROLLARY. If $\Gamma(H)$ is connected, then

$$\pi^{(2)}_*: \operatorname{Vect}^{\omega}_{N(H)}(M_H) \cong \operatorname{Vect}^{\omega}_H(M/G).$$

PROOF. Since $\Gamma(H)$ is connected and H is finite, $g_{ii}(x)(vh) = \{g_{ii}(x)(v)\} \cdot h$.

Hiromichi MATSUNAGA

References

- [1] H. GRAUERT und R. REMMERT, Komplexe Räume, Math. Ann. 136 (1958), 245-318.
- [2] H. HOLMANN, Quotienten komplexer Räume, Math. Ann. 142 (1961), 407-440.
- [3] H. HOLMANN, Komplexe Räume mit komplexen Transformationsgruppen, Math. Ann. 150 (1963), 327-360.
- [4] H. MATSUNAGA, K_{G} -groups and invariant vector fields on special G-manifolds, Osaka Jour. of Math. 9 (1972), 143–157.
- [5] H. MATSUNAGA, On G-vector bundles and invariant vector fields, Mem. Fac. Lit. Sci. Shimane Univ. (Nat. Sci.), 7 (1974), 43–55.
- [6] G. SEGAL, Equivariant K-Theory, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 129-151.