A Theorem to Construct 3-Way BIB Designs

Michio Kinoshita
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 6, 1975)

Abstract

In this paper, I give an extension of a theorem due to A. Hedayat and D. Raghavarao to construct 3-way BIB designs. By making use of this extension, a 3-way BIB design associated with two inequivalent $(31,15,7)$ cyclic difference sets, and also a 3 -way BIB design associated with $(16,6,2)$ abelian difference set are constructed.

Theorem.1. Let G be a group with the binary operation $*$ and let v be the order of G. Let φ be an automorphism of G. Suppose that $\left\{d_{i}, i=1, \ldots, k\right\}$ is $a(v, k, \lambda)$ difference set on G, and so is $\left\{b_{i}, i=1, \ldots, k\right\}$ and $\left\{\varphi\left(d^{-1}\right) * b_{i}, i=1, \ldots, k\right\}$. Then, a 3-way BIB design can be constructed. And the $\left(g_{j} * d_{i}, g_{j}\right)$-component of this design is $\varphi\left(g_{j}\right) * b_{i}$, and other components are blank.

Proof. Let A be a matrix whose $\left(g_{j} * d_{i}, g_{j}\right)$-component is $\varphi\left(g_{j}\right) * b_{i}$, and other components are blank. The matrix derived from the matrix A, by replacing $\left(g_{j} * d_{i}\right.$, g_{j})-component by 1 and blank by 0 , is clearly incidence matrix of a design derived from the (v, k, λ) difference set $\left\{d_{i}\right\}$. Since the g_{j}-column of A is consist of $\left\{\varphi\left(g_{j}\right) * b_{i}, i\right.$ $=1, \ldots, k\}$, the condition about symbol-column is satisfied. The components, which are not blank, of the g_{i}-row of A are of the form $\left(f_{t} * d_{t}, f_{t}\right)$. Consequently the (g_{i}, $\left.g_{t} * d_{t}^{-1}\right)$-component is not blank, and its value is $\varphi\left(g_{i} * d_{t}^{-1}\right) * b_{t}$. Since $\varphi\left(g_{i} * d_{t}^{-1}\right) * b_{t}$ $=\varphi\left(g_{i}\right) *\left(\varphi\left(d_{t}^{-1}\right) * b_{t}\right)$, and $\left\{\varphi\left(d_{t}^{-1}\right) * b_{t}, t=1, \ldots, k\right\}$ is a difference set, the condition about symbol-row is satisfied. Then the proof is completed.

When φ is simply the identity mapping of G in Theorem 1, we get
Corollary 1. Let G be a group with binary operation $*$ and let v be the order of G. Suppose that $\left\{d_{i}\right\}$ is a (v, k, λ) difference set and so is $\left\{b_{i}, i=1, \ldots, k\right\}$ and also $\left\{d_{i}^{-1} * b_{i}, i=1, \ldots, k\right\}$. Then a 3-way BIB design can be constructed. And its $\left(g_{j} * d_{i}\right.$, g_{j})-component is $g_{j} * b_{i}$.

Example. Let D and B be two inequivalent $(31,15,7)$ cyclic difference sets.

$$
D=\{1,2,3,4,6,8,12,15,16,17,23,24,27,29,30\} \bmod 31
$$

and let d_{i} be defined by this order, i.e., $d_{1}=1, d_{2}=2, \ldots, d_{15}=30$.

$$
B=\{28,1,20,2,10,16,5,7,19,18,25,9,8,4,14\} \cdot \bmod 31
$$

and let b_{i} be defined by this order, i.e., $b_{1}=28, b_{2}=1, \ldots, b_{15}=14$. Then $\left\{-d_{i}+b_{i}\right.$, $i=1, \ldots, 15\}=\{27,30,17,29,4,8,24,23,3,1,2,16,12,6,15\}$ is the same cyclic difference set as D. Consequently, by Corollary 1, we can construct a 3-way BIB design associated with $(31,15,7)$ difference sets.

If we consider only the $\left\{b_{i}, i=1, \ldots, k\right\}$ of the form $\left\{\varphi\left(d_{i}\right) * d_{i}, i=1, \ldots, k\right\}$ in Theorem 1, we obtain

Corollary 2. Let G be a group with binary operation $*$ and let v be its order, and let φ be an automorphism of G. Suppose that $\left\{d_{i}, i=1, \ldots, k\right\}$ is a difference set and also $\left\{\varphi\left(d_{i}\right) * d_{i}, i=1, \ldots, k\right\}$. Then a 3-way BIB design can be constructed. And the $\left(g_{j} * d_{i}, g_{j}\right)$-component of this design is $\varphi\left(g_{j}\right) * \varphi\left(d_{i}\right) * d_{i}$, and other components are blank.

Remark. There is a simple method, almost same as the method of A. Hedayat and D. Raghavarao, which constructs the same 3-way BIB design. Superimposing the incidence matrix N of the design derived from (v, k, λ) difference set $\left\{d_{i}\right\}$ on the matrix M whose $\left(g_{i}, g_{j}\right)$-component is $\varphi\left(g_{i}\right) * g_{j}^{-1} * g_{i}$, and if $N_{i j}=1$, then replace 1 by $M_{i j}$, and if $N_{i j}=0$, then replace 0 by blank. The construction is completed.

Example. Let us consider the $(16,6,2)$ difference set $\left\{d_{i}, i=1, \ldots, 6\right\}=\{a, b, c$, $d, a b, c d\}$ on G, where G is an abelian group generated by a, b, c, d satisfying $a^{2}=b^{2}$ $=c^{2}=d^{2}=1$. Consider an automorphism φ of G defined by $\varphi(a)=b, \varphi(b)=a b$, $\varphi(c)=c d, \varphi(d)=c$, then $\left\{\varphi\left(d_{i}\right) * d_{i}, i=1, \ldots, 6\right\}=\{a b, a, d, c d, b, c\}$ is a $(16,6,2)$ difference set on G. Numbering $1, a, b, c, d, a b, a c, a d, b c, b d, c d, a b c, a b d, a c d$, $b c d, a b c d$, by the integers from 1 to 16 , we obtain the next 3-way BIB design.

In Corollary 2, if we consider the automorphism φ of G, of the form $\varphi(g)=g^{b-1}$ for each integer b, we obtain Theorem 2.1 in the paper of A. Hedayat and D. Raghavarao [3].

References

[1] M. Hall Jr., Combinatorial theory, Blaisdell, Waltham, Mass, 1967.
[2] R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc., 78 (1955), 464-481.
[3] A. Hedayat and D. Raghavarao, 3-way BIB designs, Journal of combinatorial theory (A) 18 (1975), 207-209.
[4] L. D. Baumert, Cyclic difference sets, Springer-Verlag, Berlin-Heidelberg-New York, 1971.

