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Laser oscillation is explained by van der Pol equation in nonlinear system. The char-

a-cteristics of the oscillation and subharmonics in the forced steady*state oscillation are dis-

cussed 

S 1. Introdwction 

The theory of oscillations of physical systems commonly is based on the assump-

tion that the restoring forces are proportional to the deflections and the damping 

forces to the velocities. Often the deviation from linearity causes only a small devia-

tion of the linear oscillation without changing the general character of the motion 

For example, the simple harmonic oscillation, which we obtain in the linear case, will 

be accompanied by harmonics of small amplitude if the deviation from linearity is 

taken into account. However, in some cases the whole character of the oscillatory 

motion changes. Slight negative damping in the range of small deflections may cause 

self-excited periodic oscillations, whose period is quite different from the period of 

the undamped harmonic oscillation. Nonlinearity may change the response of the 

systems to external periodic forces. Van del Poll) investigated the electric oscilla-

tions in the triode circuit and found the differential equation of the relaxation oscilla-

tion and studied in detail. 

Laser is a quantummechanical system. Precisely it must be treated quantum-

statisticalmechanically, but fundamental equations of laser in semi-classical theory is 

reduced to van der Pol equation in fair approximation. Laser oscillation is a self-

excited nonlinear oscillation. Subharmonics in the forced steady-state oscillation is 

also a effect of nonlinearity 

S 2. Theory of Laser Oscilllation by Semi-classical Theory 

In semi-classical laser theory, electromagnetic field in a optical resonator is treated 

classically by Maxwell equations, and the field is expanded by the eigen mode of the 

resonator, whereas the laser material is described by Schr6dinger wave equation or 

density matrix. The following fundamental equations are obtained for a single mode.2) 

db/dt + [/c + i(Q - co)]b = igs (.1) 
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ds/dt + [yi - i(.co - coo)]s = - igba (2) 

da/dt - y I(ao ~ a) = 2ig(s*b - sb*) (3) 

In these equations, the following notations are used. First, parameters to be given 

are 

Q : resonance frequency of resonator 

coo : central freque_ncy of transition 

K : phenomenological attenuation constant of resonator, which is related to the 

O_ value of resonator Q. witll Q.= Ql*l_It' 

yl : Iongitudinal relaxation constant ( = 11T1) 

yi : transverse relaxation cohstant ( = 11T2) 

g : coupling constant between material and electromagnetic field (characteristic 

Rabi frequency) and 

g=(,t/h)V(hcooA/2eoV), V=jlfl2dV, A (11V)jClfl dV 

where f: normalized mode eigenfunction of resonator 

p : matrix element of dipole 

80 : Permittrvity of free space 

cro : a parameter which represents pumping strengths or corresponds 

to the number of inverted populations. 

The physlcal meanmg of b, s, a, co to be solved is as follows 

b : b and b* correspond to annihilation and creation operator of photons respec-

tively, and are related with amplitude of electric field operator E(t) by E(t) 

= (ha)0/2eoV)1/2b, Number of photons n for this oscillation mode is n 

= b*b. 

s : spin fiip operator 

er : effective inverted population for this mode 

co : oscillation frequency 

The fundamental equations (1)-(3) cannot be solved exactly. Fair approximation 

rs needed. The laser is assumed to oscillate in the center of the line for simplicity 

(Q=a)o = co). Then (1)-(3) have the form 

db/dt + Icb = igs (4) 
ds/d.t + yis = - igba (5) 

da/dt + yll er = yll ao + 2ig(s*b - sb*) . (~) 

Apply d/dt + yJ! to (4) and use (5), and we obtain 
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d2 b/dt2 + (1c + yi)db/dt + 1(:yib = g 2 b(;. (7) 

Now, if we eliminate s and s*, by using (4) and the complex conjugate of it to (6), 

we have 

da/dt + y a = vj cro ~ 2d(b*b)/dt - 4lcb*b (8) 

Now, an assumption 

ldbldtl ~Vll lbl, Iclbl (9) 
is introduced, then d2b/dt2 can be omitted against lc db/dt in (7) and d(b*b)/dt agamst 

2lc b*b in (8), (7), (8) become 

db/dt + [1c yil(.1c + vi)] b = [9 21(1c + yi)] ba, (10) 

da/dt + y a = yllao ~ 4lc b*b. ( 1 1) 

From (10) and (11) and the assumption (9) is used twice, we obtain 

db/dt-[(92ao ~ Icyi)1(?c + yi)]b+[4g lclyl(1c +yi)] (b*b)b O (12) 

The coefiicients are simplified if we put 

cc=g2ao/(1c+yi), y=/(yi/(1c+yi), p=[4921(:/yll(1(:+yi)] (13) 

(12) have the form 

db/dt + (y - ce + pb*b)b = O (14) 
where constant V represents attenuation by the loss of resonator, oc the gain by the laser 

medium, Pb*b saturation of gain. Differential equation of the first order (14) is 

equivalent in some approximation to the differential equation 

d2xldt2 + 2(y - c( + px2)dx/dt + Q2x = O, ( 1 5) 

if we put x = b e~i~'t+ b* ei~*t and apply rotating-wave approximation and omit the 

term exp ( d: 3coot). (.14) and (15) are van der Pol equation for the rotatmg-wave ap-

proximation. Solution of van der Pol equation of formal type is discussed m the next 

section. 

S 3･ Self-Excited Nomlimear Oscillations 

The general form of the equation of free oscillation includes the cases of nonlinear 

damping and nonlinear restoring force.3~5) First we consider the linear equation of 

motion for a single mass In and restoring force - kx with the damping force - I/~ 

m~ + //~ + kx = O 
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Introducmg natural frequency coo of undamped oscillation, we have 

x + 2bx + co~x = O (1 6) 
We will generalize (16) in the form 

~ + c0~x =f(x, ~) (17) 
Let us assume that the function f(x, ~) has the form f(x, ~) = 8ip(x)~, where 8 is a posi-

tive constant parameter. It is seen that in this case the damping is proportional to 

the velocity v = ~, but the magnitude of the damping factor is in general a function of 

deflection. Van der Pol studied an interesting special case assuming ip(x) = I - x2 

Then van der Pol equation is given by 

d x/dt 8(1 x )x+x O, co~=1 (18) 
This equation was first introduced concerning the oscillation in triode circuit. The 

motion of a mechanical pendulum with nonlinear friction (Froude pendulum), for 

example, obey the similar differential equation 

d2 y/dt2 - 8(1 - y2) f + y = O (19) 

which is called Rayleigh equation and is reduced to (18) if we put x = ~~y and differ-

entiate (19). (18) can be reduced to a differential equation of the first order by consider-

ing ~ = v as a function of x. We obtain 

dvldt= - x/v + 8(1 - x2) (20) 
This can be solved by the method of isoclines. Consider first the case 8 = O. The 

integral curve of (20) are concentric circles given by 

v2 + x2 = const. 

Since dt=dx/v, we obtain the x, v values corresponding to the actual motion by pro-

ceeding clockwise along the integral curves. The corresponding motion is a harmonic 

oscillation with constant amplitude 

For small value of 8, for example, e = 0.1, the closed curve is only slightly different 

from a circle, but its shape varies quite radically with increasing 8. The correspond-

ing motion for 8 = 0.1 is shown in figures, that is, deflection is plotted as a function of 

time. Relaxation oscillation is excited. For t~,co the motion in phase space ap-

proaches asymptotically to a closed curve (limit cycle). For small e limit cycle is close 

to a circle. In such a penodic motion the average of work done by the damping force 

e(1-x2)j~ over a cycle must be zero. Then we see that 

8}(1 - x2)~dx = 8}'(1 - x2)~2dt = O (2 1) 
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For small e, the limit cycle is close to a circle, and x = a sin t. Thus (_21) yields 

2~ =io ~ O (1 a2sin2 t)a2cos2 tdt=~a2(1-a2/4) 

from which we have a = '-. Solution of (18) in the first approximation is obtamed as 

x = {ao exp (8t/2)/ J[1 + (a~/4) (exp 8t - 1)]} sin (t + ep) (22) 

for the mitlal deflection ao' The solution tends to the steady motron 

x = 2 sin (t + ep) (23) 
as t->00. Small fluctuation grow up to a steady state oscillation 

S 4. Eorced Oscilllatioms of Nonlimear Systems 

As an example of nonautonomous systems, Iet us now consider a particular non-

linear oscillator described by Duffmg equation 

(24) ~ + 2b~ + co~x = f cos cot + 8x3 

Equation of this type occurs frequently when one take into account the nonlineanty 

of the r~storing force. An example is a pendulum for which the restoring force rs 
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proportional to sin x. The expansion sin x - x - x3/6 is very accurate for the oscilla-

tion. 

We shall confine ourselves to the case of weak damping and weak nonlinearity 

We assume b, 8 

will be related to the solution xo of the linear equation obtained as 8->0. The steady 

state solution of the linear equation may be written as 

x0=A(co, b) cos (oJt+ q)) 

A(co, b),' q) are given by 

A(co, b) =f [(co2 - co~)2 + 4b2co2]~ 1/2 (25) 

(p =tan~ I [2bco/(co2 - co~)] (.26) 
so that in natural to put 

x x0+~=Acos(cot+q))+~ (-1>7) 
Upon substitution into (24), we are led to the following equation for ~ : 

~ + 2b~ + co~ ~ = 8[(1/4)A3 (cos 3cot + 3 cos cot) 

+ (3/2)A2 ~(1 + cos -'(ot) + 3.4~2 cos cot + ~3] (_,8) 

For simplicity, the tit-ne origin has been shifted by (p/co so that cos((ot+ep)~'cos o,t, 

and cos2cot, cos3cot are expressed in terms of the multiple angle 2cot, 3cot. 3co is an 

effect of the nonlinearity. We should like to note that the amplification factor A of 

the response can produce a response of order o~i"'1e even if the damping b is sufliciently 

small. We guess that the frst term (1/4)A3 cos 3cot would make a contribution of order 

one when 3a)-coo' co0/3 is a subharmonic oscillation 
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