Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 10, pp. 31-34 Dec. 20, 1976

On Plane Bundles over Some Elliptic Surfaces

Hiromichi MATSUNAGA

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1976)

M. F. Atiyah has given the classification theorem for holomorphic vector bundles over an elliptic curve, (Theorem 7, [2]). In the proof, two lemmas are effective, which are called the uniqueness and existence theorems. These are the motive for this paper. In §1, we prove that, over a product surface of a non singular curve and an elliptic curve, if a line bundle satisfies some condition about a local triviality and the Chern class, then it admits a non trivial extension to a-plane bundle. This fact corresponds to Lemma 16, [2]. In §2, we define a strongly reducible plane bundle and prove that not every plane bundle is strongly reducible over a basic member (8, [4]) on an algebraic curve of genus greater than one. This fact corresponds to Lemma 15, [2].

§1. Extensions of line bundles

Let S be the product surface $\Delta \times C$ of a non singular algebraic curve Δ and an elliptic curve C. Let $G \rightarrow S$ be a holomorphic line bundle. The surface S admits an open covering $\{U_j \times C_q\}$, where $\{U_j\}, \{C_q\}$ are open coverings of Δ , C, respectively. Let $\{h_{i(q)k(r)}(t, z)\}$ be a system of transition functions of G,

$$h_{j(q)k(r)}: (U_j \times C_q) \cap (U_k \times C_r) \longrightarrow C^* = C - \{0\},$$

where C^* is the set of complex numbers without the origin O. We call the line bundle G to be *locally* Δ -trivial if and only if

$$\frac{\partial \log h_{j(q)j(r)}(t, z)}{\partial t} = \psi_{j(r)}(t, z) - \psi_{j(q)}(t, z) \quad \text{in} \quad U_j \times C,$$

where $\psi_{j(r)}(t, z)$, $\psi_{j(q)}(t, z)$ are C^{∞} in t and holomorphic in z, and the fraction of their exponentials $\exp \int \psi_{j(r)}(t, z) dt / \exp \int \psi_{j(q)}(t, z) dt$ is holomorphic in t. Then we have

$$h_{j(q)j(r)}(t, z) = \frac{\Psi_{j(r)}(t, z)}{\Psi_{j(q)}(t, z)} \bar{h}_{j(q)j(r)}(z),$$
(1)

where $\Psi_{j(r)}(t, z) = \exp \left\{ \psi_{j(r)}(t, z) dt, \Psi_{j(q)}(t, z) = \exp \left\{ \psi_{j(q)}(t, z) dt, \text{ then } \overline{h}_{j(q)j(r)}(z) \right\} \right\}$ is holomorphic. It can be seen that

$$\bar{h}_{j(p)j(q)}(z)\bar{h}_{j(q)j(r)}(z) = \bar{h}_{j(p)j(r)}(z),$$

so, for each U_j , $\{h_{j(q)j(r)}(z)\}$ is a system of transition functions of a line bundle over C. We denote this line bundle by G_0 . Suppose that first Chern class $C_1(G_0)$ is 1, then by Lemma 16, [2], there exists an indecomposable plane bundle $E_0 \rightarrow C$, unique up to isomorphism, given by an extension

$$0 \longrightarrow I \longrightarrow E_0 \longrightarrow G_0 \longrightarrow 0,$$

where I is the product line bundle and $C_1(E_0)=1$. The system of transition functions of E_0 is given by

$$\left(\begin{array}{cc} 1 & \tilde{h}_{j(q)j(r)}(z) \\ \\ 0 & \bar{h}_{j(q)j(r)}(z) \end{array}\right).$$

By the relation

$$\tilde{h}_{j(q)j(r)}(z) + \tilde{h}_{j(p)j(q)}(z)\bar{h}_{j(q)j(r)}(z) = \tilde{h}_{j(p)j(r)}(z),$$

we have

$$\begin{split} & \frac{\Psi_{j(r)}(t,z)}{\Psi_{j(p)}(t,z)}\tilde{h}_{j(q)j(r)}(z) + \frac{\Psi_{j(q)}(t,z)}{\Psi_{j(p)}(t,z)}\tilde{h}_{j(p)j(q)}(z)\frac{\Psi_{j(r)}(t,z)}{\Psi_{j(q)}(t,z)}\bar{h}_{j(q)j(r)} \\ & \frac{\Psi_{j(r)}(t,z)}{\Psi_{j(p)}(t,z)}\tilde{h}_{j(p)j(r)}(z). \end{split}$$

Then the system

_

$$\begin{pmatrix} \frac{\Psi_{j(r)}(t,z)}{\Psi_{j(q)}(t,z)} & \frac{\Psi_{j(r)}(t,z)}{\Psi_{j(q)}(t,z)} \tilde{h}_{j(q)j(r)}(z) \\ 0 & \frac{\Psi_{j(r)}(t,z)}{\Psi_{j(q)}(t,z)} \bar{h}_{j(q)j(r)}(z) \end{pmatrix}$$

is also a system of transition functions of an indecomposable plane bundle over $U_j \times C$. Thus we obtain an extension of the bundle $G(U_j)$ over $U_j \times C$ which has the system of transition functions in the right hand side of (1),

 $0 \longrightarrow I(U_j) \longrightarrow E(U_j) \longrightarrow G(U_j) \longrightarrow 0,$

for each *j*, where $I(U_j)$ is the line bundle with the system of transition functions $\frac{\Psi_{j(r)}(t, z)}{\Psi_{j(q)}(t, z)}$. In (1) the equality should be understood as an equivalence.

Now we have holomorphic maps

$$f_{ik}: U_i \cap U_k \longrightarrow$$
 Isomorphism $(G(U_i)|U_i \cap U_k, G(U_k)|U_i \cap U_k)$.

For each $t \in U_j \cap U_k$ and C_q , we have the exact sequence of sheaves of germs of holomorphic sections over C_q ,

$$0 \longrightarrow I_q \longrightarrow E_q \longrightarrow G_q \longrightarrow 0,$$

which admits a splitting $h_q: G_q \to E_q$. Denote by $f_{qr}: G_{qr}^{(j)} \to G_{qr}^{(k)}$ the mapping induced from f_{jk} , where $G_{qr}^{(j)}, G_{qr}^{(k)}$ are restrictions of $G(U_j), G(U_k)$ on $C_q \cap C_r$ respectively. Then we have the following commutative diagram (1, [1]),

$$\begin{array}{c} I_{qr}^{(j)} \oplus G_{qr}^{(j)} \xrightarrow{u_q} E_{qr}^{(j)} \xleftarrow{u_r} I_{qr}^{(j)} \oplus G_{qr}^{(j)} \\ \downarrow^{1 \oplus f_{qr}} & \downarrow^{f_{qr}} & \downarrow^{1 \oplus f_{qr}} \\ I_{qr}^{(k)} \oplus G_{qr}^{(k)} \xrightarrow{u_q} E_{qr}^{(k)} \xleftarrow{u_r} I_{qr}^{(k)} \oplus G_{qr}^{(k)}, \end{array}$$

where $\hat{f}_{qr}(s' + h_{qr}(s'')) = s' + h_{qr}(f_{qr}(s''))$ for $s' \in I_{qr}^{(j)}$, $s'' \in G_{qr}^{(j)}$. Thus we obtain a holomorphic mapping

 $\hat{f}_{jk}: U_j \cap U_k \longrightarrow \text{Isomorphism } (E(U_j)|U_j \cap U_k, E(U_k)|U_j \cap U_k)$

such that the next diagram is commutative,

$$\begin{array}{cccc} 0 & \longrightarrow & I(U_j \cap U_k) & \longrightarrow & E(U_j) \mid U_j \cap U_k & \longrightarrow & G(U_j) \mid U_j \cap U_k & \longrightarrow & 0 \\ & & & & & \downarrow^{f_{jk} \mid I(U_j \cap U_k)} & & \downarrow^{f_{jk}} & & & \downarrow^{f_{jk}} \\ 0 & \longrightarrow & I(U_j \cap U_k) & \longrightarrow & E(U_k) \mid U_j \cap U_k & \longrightarrow & G(U_k) \mid U_j \cap U_k & \longrightarrow & 0. \end{array}$$

Define a plane bundle E by $E(U_j)/(\hat{f}_{jk})$, then E is a plane bundle over S which is an extension of the line bundle $G \rightarrow S$. Hence we have

PROPOSITION 1. Let Δ be a non singular algebraic curve and C be an elliptic curve, and $G \rightarrow \Delta \times C$ be a locally Δ -trivial line bundle. Suppose that the first Chern class $C_1(G_0)=1$, where $G_0=G|\{t_o\}\times C$ for a point t_o of Δ , then we have a non trivial extension E of G by a line bundle F,

$$0 \longrightarrow F \longrightarrow E \longrightarrow G \longrightarrow 0.$$

REMARK. Let G_0 be a line bundle with $C_1(G_0)=1$ and F_0 be a line bundle over Δ . Denote by π_1, π_2 the projections, $\pi_1: \Delta \times C \rightarrow \Delta, \pi_2: \Delta \times C \rightarrow C$. Then the line bundle $\pi_1^*F_0 \otimes \pi_2^*G_0$ admits an extension which comes from the extension of G_0 .

§2. Irreducibility of plane bundles

Let S be a basic member over a non singular algebraic curve of genus g, (8, [4]). The elliptic surface $\Phi: S \rightarrow \Delta$ admits a global section $\rho: \Delta \rightarrow S$. We call a plane bundle E over S to be strongly reducible if and only if the bundle E admits a line subbundle F such that ρ^*F is the trivial line bundle over Δ . A plane bundle E is called strongly irreducible if E is not strongly reducible. We prove that

PROPOSITION 2. Let the genus g be greater than 1. Then there exists a strongly irreducible plane bundle over S.

PROOF. Let L be a line bundle over Δ with the first Chern class $C_1(L)=1$. By the Riemann Roch theorem for line bundles, (Theorem 13, [3]),

Hiromichi MATSUNAGA

$$\dim_{\mathcal{C}} H^{0}(\Delta, O(L^{-1})) - \dim_{\mathcal{C}} H^{1}(\Delta, O(L^{-1})) - C_{1}(L^{-1}) = 1 - g,$$

and since $C_1(L^{-1}) = -1$, then $\dim_C H^0(\Delta, O(L^{-1}) = 0$. Thus we have

$$\dim_{C} H^{1}(\Delta, O(L^{-1})) = g - 1 - C_{1}(L^{-1}) = g.$$

On the other hand, by Remark 10.1, [5], $\dim_C S_{2,L} = 3g - 3$, where $S_{2,L}$ is the set of equivalence classes of stable plane bundles over Δ with determinant bundle L. The cohomology group $H^1(\Delta, O(L^{-1}))$ is the set of equivalence classes of extensions of the line bundle L by the trivial line bundle I over Δ ,

$$0 \longrightarrow I \longrightarrow E_0 \longrightarrow L \longrightarrow 0.$$

Suppose that every plane bundle over S is strongly reducible, then

 $\dim_{\mathcal{C}} \{\rho^* E; E \text{ is a plane bundle and } \det \rho^* E = L\} \leq \dim_{\mathcal{C}} H^1(\mathcal{A}, O(L^{-1})).$

Since { } of the left hand side in the above inequality includes as a subset $\rho^* \Phi^* S_{2,L} = S_{2,L}$, and 3g - 3 > g, it is a contradiction.

REMARK 1. M. F. Atiyah has presented an example which is a reducible plane bundle over the product surface $P \times C$ of the projective plane P and an elliptic curve C. His example is

$$0 \longrightarrow [C] \longrightarrow E \longrightarrow [-C] \longrightarrow 0,$$

where $\lceil C \rceil$ is the line bundle given by a divisor $P \times C$ for a point p of P.

REMARK 2. If g = 1 and $C_1(L) = 1$, then $\dim_C S_{2,L} = 0$ and $\dim_C H^1(\Delta, O(L^{-1})) = 0$. So we can get no information by this method.

REMARK 3. In 4, [6], it has been proved that not every plane bundle on the ruled surface $P \times P$ is reducible.

References

- M. F. ATIYAH, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 84 (1957), 181-207.
- [2] M. F. ATIYAH, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1975), 414–452.
- [3] R. C. GUNNING, Lectures on Riemann Surfaces, Math. Notes, Princeton University, (1966).
- [4] K. KODAIRA, On compact complex analytic surfaces II, Ann. of Math. 77 (3) (1963) 563-626.
- [5] M. S. NARASIMHAN and C. S. SESHADRI, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540-467.
- [6] R. L. E. SCHWARZENBERGER, Vector bundles on the projective plane, Proc. of London Math. Soc. 21 (44) (1961), 623-640.