Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., **8**, pp. 1–11, March 10, 1975

Note on Regular Extensions of a Band by an Inverse Semigroup

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan (Received November 5, 1974)

This is a supplement to the previous papers [8], [9] and [10]. In [8], [9] and [10], the concept of a complete regular product S of a band B and an inverse semigroup Γ , and the concept of a half-direct product T of a left regular band E, an inverse semigroup Γ' and a right regular band F were introduced. In this paper, we first show that a semigroup M is inversive [quasi-(C)-inversive] if and only if M is isomorphic to a complete regular product of a band and a weakly C-inversive semigroup [a half-direct product of a left regular band, a weakly C-inversive semigroup and a right regular band]. If in particular Γ and Γ' are weakly C-inversive, both the spined product of B, Γ and that of E, Γ' , F can be considered. When $\Gamma [\Gamma']$ is weakly Cinversive, we investigate the relationship between the complete regular products of B, Γ and the spined product of B, Γ [the half-direct products of E, Γ' , F and the spined product of E, Γ' , F].

§0. Introduction.

Hereafter, the notation "an inversive semigroup¹) $G \equiv \sum \{G_{\gamma} : \gamma \in \Gamma\}$ " will mean an inversive semigroup G whose structure semilattice is Γ and whose structure decomposition is $G \sim \sum \{G_{\gamma} : \gamma \in \Gamma\}$ (see [5]). Since a band is inversive, "a band $G \equiv \sum \{G_{\gamma} : \varphi \in \Gamma\}$ $\gamma \in \Gamma$ }" means a band G whose structure semilattice is Γ and whose structure decomposition is $G \sim \sum \{G_{\gamma} : \gamma \in \Gamma\}$. If a band T has K as its structure semilattice, T is sometimes denoted by T(K). Similarly, an inverse semigroup M having N as its basic semilattice (see [5]) will be sometimes denoted by M(N). Now, let $\Gamma(A) \equiv \sum \{\Gamma_A\}$ $\lambda \in \Lambda$ (where Λ is the basic semilattice (=the structure semilattice) of Γ and each Γ_{λ} is the greatest subgroup containing λ) be a weakly C-inversive semigroup (that is, an inverse semigroup which is a union of groups), and $B(\Lambda) \equiv \sum \{B_{\lambda} : \lambda \in \Lambda\}$ a band. Of course, each λ -kernel B_{λ} (see [5]) is a rectangular bubband of B. Let I_{λ} be a maximal left zero subsemigroup of B_{λ} , and J_{λ} a maximal right zero subsemigroup of B_{λ} . Then, as was shown in [9], $\bigcup \{I_{\lambda} : \lambda \in A\}$ and $\bigcup \{J_{\lambda} : \lambda \in A\}$ are a lower partial chain of the left zero semigroups $\{I_{\lambda}: \lambda \in A\}$ and an upper partial chain of the right zero semigroups $\{J_{\lambda}: \lambda \in \Lambda\}$ respectively with respect to the multiplication in B. We shall denote these lower partial chain $\cup \{I_{\lambda} : \lambda \in \Lambda\}$, upper partial chain $\cup \{J_{\lambda} : \lambda \in \Lambda\}$ by $\mathscr{I} = (I_{\lambda} : \lambda \in \Lambda)$,

¹⁾ A regular semigroup G is said to be inversive if the set of idempotents of G is a subsemigroup and if for any element a of G there exists an inverse a^* of a such that $aa^* = a^*a$.

 $\mathscr{J} = [J_{\lambda}: \lambda \in \Lambda] \text{ respectively. Let } u_{\lambda} \text{ be a representative of } B_{\lambda} \text{ for each } \lambda \in \Lambda. \text{ By}$ [7], each element x of B can be uniquely expressed in the form $x = iu_{\lambda}j, i \in I_{\lambda}, j \in J_{\lambda}, \lambda \in \Lambda, \text{ and } B \text{ is written in the form } B = \{iu_{\lambda}j: \lambda \in \Lambda, i \in I_{\lambda}, j \in J_{\lambda}\}. \text{ Let } \{u_{\lambda}: \lambda \in \Lambda\} = U.$ Then, the following result follows from Warne [3] (also the author [9]): For each pair (γ, δ) of $\gamma, \delta \in \Gamma$, let $\alpha_{(\gamma,\delta)}, \beta_{(\gamma,\delta)}$ be mappings such that $\alpha_{(\gamma,\delta)}: J_{\gamma^{-1}\gamma} \times I_{\delta\delta^{-1}} \rightarrow I_{\gamma\delta(\gamma\delta)^{-1}}^{2}$ and $\beta_{(\gamma,\delta)}: J_{\gamma^{-1}\gamma} \times I_{\delta\delta^{-1}} \rightarrow J_{(\gamma\delta)^{-1}\gamma\delta}.$ If the system $\Delta = \{\alpha_{(\gamma,\delta)}: \gamma, \delta \in \Gamma\} \cup \{\beta_{(\gamma,\delta)}: \gamma, \delta \in \Gamma\} \cup \{\beta_{(\gamma,\delta)}: \gamma, \delta \in \Gamma\}$

(C1) for
$$j \in J_{\gamma^{-1}\gamma}$$
, $p \in I_{\delta\delta^{-1}}$, $q \in J_{\delta^{-1}\delta}$, $m \in I_{\xi\xi^{-1}}$,

$$(j, p)\alpha_{(\gamma,\delta)}((j, p)\beta_{(\gamma,\delta)}q, m)\alpha_{(\gamma\delta,\xi)} = (j, p((q, m)\alpha_{(\delta,\xi)})\alpha_{(\gamma,\delta\xi)})$$

and

$$(j, p((q, m)\alpha_{(\delta,\xi)}))\beta_{(\gamma,\delta\xi)}(q, m)\beta_{(\delta,\xi)} = ((j, p)\beta_{(\gamma,\delta)}q, m)\beta_{(\gamma\delta,\xi)},$$

then $S = \{(i, \gamma, j): \gamma \in \Gamma, i \in I_{\gamma\gamma^{-1}}, j \in J_{\gamma^{-1}\gamma}\}$ becomes an orthodox semigroup (see Hall [2]) with respect to the multiplication defined by

$$(i, \gamma, j)(h, \delta, k) = (i((j, h)\alpha_{(\gamma,\delta)}), \gamma\delta, (j, h)\beta_{(\gamma,\delta)}k).$$

Further, it follows from the author [9] that if the subset $\Omega = \{\alpha_{(\xi,\eta)} : \xi, \eta \in \Lambda\} \cup \{\beta_{(\xi,\eta)} : \xi, \eta \in \Lambda\}$ of Δ satisfies the condition

(C2)
$$u_{\lambda}jku_{\tau} = ((j, k)\alpha_{(\lambda,\tau)})u_{\lambda\tau}((j, k)\beta_{(\lambda,\tau)}) \quad \text{for} \quad \lambda, \tau \in \Lambda, j \in J_{\lambda}, k \in I_{\tau},$$

then B is embedded as the band of idempotents of S.

In this case, S is called the complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$ determined by $\{\mathscr{I}, \mathscr{J}, \{u_{\lambda}\}, \Delta\}$, and denoted by $C(\Gamma(\Lambda), B(\Lambda); \mathscr{I}, \mathscr{J}, \{u_{\lambda}\}, \{\alpha_{(\gamma,\delta)}\}, \{\beta_{(\gamma,\delta)}\})$. We shall call Δ (whose subset Ω satisfies (C2)) above a CR-factor set in $B = \{iu_{\lambda}j: \lambda \in \Lambda, i \in I_{\lambda}, j \in J_{\lambda}\}$ belonging to $\Gamma(\Lambda)$ (see [10]). In [9], it has been shown that every regular extension of $B(\Lambda)$ by $\Gamma(\Lambda)$ can be obtained as a complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$ (up to isomorphism). Since $\Gamma(\Lambda) \equiv \sum \{\Gamma_{\lambda} : \lambda \in \Lambda\}$ is weakly C-inversive (hence each Γ_{λ} is a group), we can consider the spined product $B \bowtie \Gamma(\Lambda)$ (see [5]) of $B(\Lambda)$ and $\Gamma(\Lambda)$ with respect to Λ . In this paper, we shall show a necessary and sufficient condition on $\{\alpha_{(\gamma,\delta)}: \gamma, \delta \in \Gamma\} \cup \{\beta_{(\gamma,\delta)}: \gamma, \delta \in \Gamma\}$ in order that $C(\Gamma(\Lambda), B(\Lambda); \mathscr{I}, \mathscr{J})$ $\{u_{\lambda}\}, \{\alpha_{(\gamma,\delta)}\}, \{\beta_{(\gamma,\delta)}\}$) be isomorphic to $B \bowtie \Gamma(\Lambda)$.

Next, let $E(\Lambda) \equiv \sum \{E_{\lambda} : \lambda \in \Lambda\}$, $F(\Lambda) \equiv \sum \{F_{\lambda} : \lambda \in \Lambda\}$ be a left regular band, a right regular band (see [7], [8]) respectively. The concept of a half-direct product (abbrev., an H.D-product) of $E(\Lambda)$, $\Gamma(\Lambda)$ and $F(\Lambda)$ was introduced by the author [8] as follows:

If G is an inversive semigroup, then for each element x of G there exists a unique inverse x* of x → such that xx*=x*x. This x* is denoted by x⁻¹. If G is in particular a weakly C-inversive semigroup, then G is of course an inverse semigroup and hence x⁻¹ is a unique inverse of x for each x∈G (see [1]). The notation "φ: X→Y" means "φ is a mapping of X into Y".

Let $\phi: \Gamma \to \text{End}(E)$ (where End(E) is the semigroup of all endomorphisms on E), $\psi: \Gamma \to \text{End}(F)$ be two mappings, and put $\gamma \phi = \rho_{\gamma}, \gamma \psi = \sigma_{\gamma}$ for all $\gamma \in \Gamma$. If $\{\rho_{\gamma}: \gamma \in \Gamma\}$, $\{\sigma_{\gamma}: \gamma \in \Gamma\}$ satisfy

(C 3) each $\rho_{\gamma} [\sigma_{\gamma}]$ maps $E_{\alpha} [F_{\alpha}]$ into $E_{(\alpha\gamma)^{-1}\alpha\gamma}[F_{(\alpha\gamma)^{-1}\alpha\gamma}]$ for all $\alpha \in \Lambda$; especially, $\rho_{\gamma} [\sigma_{\gamma}]$ is an inner endomorphism (see [8]) on E[F] for $\gamma \in \Lambda$,

and

(C4) for any $e \in E_{\beta^{-1}\beta}[F_{\beta^{-1}\beta}], f \in E_{(\alpha\beta)^{-1}\alpha\beta}[F_{(\alpha\beta)^{-1}\alpha\beta}],$

$$\rho_{\alpha}\rho_{\beta}\delta_{f}\delta_{e} = \rho_{\alpha\beta}\delta_{f}\delta_{e} \left[\sigma_{\alpha}\sigma_{\beta}\delta_{f}\delta_{e} = \sigma_{\alpha\beta}\delta_{f}\delta_{e}\right]$$

where δ_h denotes the inner endomorphism on E[F] induced by h (see [8]), then $M = \{(e, \gamma, f): \gamma \in \Gamma, e \in E_{\gamma\gamma^{-1}}, f \in F_{\gamma^{-1}\gamma} (=F_{\gamma\gamma^{-1}})\}$ becomes a quasi-inverse semigroup with respect to the multiplication defined by

(C 5)
$$(e, \gamma, f)(u, \tau, v) = (eu^{\rho_{\gamma}-1}e, \gamma\tau, vf^{\sigma_{\tau}}v) = (eu^{\rho_{\gamma}-1}, \gamma\tau, f^{\sigma_{\tau}}v),$$

where $x^{\rho_{\gamma-1}}[x^{\sigma_{\tau}}]$ means $x\rho_{\gamma-1}[x\sigma_{\tau}]$. (See Theorem 6 of [8]).

This *M* is called the half-direct product (the H.D-product) of $E(\Lambda)$, $\Gamma(\Lambda)$ and $F(\Lambda)$ determined by $\{\phi, \psi\}$, and denoted by $E \times \Gamma \times F$. If the band of idempotents of an inversive semigroup *H* is a regular band (see [8]), then *H* is said to be quasi-(*C*)inversive. We shall show in §2 that a semigroup is a quasi-(*C*)-inversive semigroup if and only if it is isomorphic to an H.D-product of a left regular band, a weakly *C*inversive semigroup and a right regular band. On the other hand, we can consider the spined product $E \bowtie \Gamma \bowtie F$ (Λ) of $E(\Lambda)$, $\Gamma(\Lambda)$ and $F(\Lambda)^{3}$. In §2, we shall give a necessary and sufficient condition on $\{\phi, \psi\}$ in order that $E \times \Gamma \times F$ be isomorphic to $E \bowtie \Gamma \bowtie F(\Lambda)$.

Throughout this paper, $\Gamma(\Lambda) \equiv \{\Gamma_{\lambda} : \lambda \in \Lambda\}, B(\Lambda) \equiv \sum \{B_{\lambda} : \lambda \in \Lambda\}, E(\Lambda) \equiv \sum \{E_{\lambda} : \lambda \in \Lambda\}, F(\Lambda) \equiv \sum \{F_{\lambda} : \lambda \in \Lambda\}$ will denote a weakly *C*-inversive semigroup, a band, a left regular band, a right regular band respectively (their structure decompositions are $\Gamma(\Lambda) \sim \sum \{\Gamma_{\lambda} : \lambda \in \Lambda\}$ (Λ : the basic semilattice (=the structure semilattice) of Γ ; each Γ_{λ} is the greatest subsemigroup containing λ), $B(\Lambda) \sim \sum \{B_{\lambda} : \lambda \in \Lambda\}, E(\Lambda) \sim \sum \{E_{\lambda} : \lambda \in \Lambda\}$ and $F(\Lambda) \sim \sum \{F_{\lambda} : \lambda \in \Lambda\}$. For each $\lambda \in \Lambda, I_{\lambda}, J_{\lambda}$ will denote a maximal left zero subsemigroup of B, a maximal right zero subsemigroup of B_{λ} respectively. Let \mathscr{I}, \mathscr{I} be the lower partial chain of $\{I_{\lambda} : \lambda \in \Lambda\}$, the upper partial chain of $\{J_{\lambda} : \lambda \in \Lambda\}$ (with respect to the multiplication in B). Hence, $\mathscr{I} = [I_{\lambda} : \lambda \in \Lambda]$ and $\mathscr{I} = [J_{\lambda} : \lambda \in \Lambda]$

Let A_i(Λ) ≡ ∑ {Aⁱ_i:λ∈Λ} (i=1, 2,..., n) be an inversive semigroup having Λ as its structure semilattice. Then, A = {[a₁, a₂,..., a_n]: a_i∈Aⁱ_i (i=1, 2,..., n), λ∈Λ} becomes a semigroup with respect to the multiplication defined by [a₁, a₂,..., a_n] [b₁, b₂,..., b_n] = [a₁b₁, a₂b₂,..., a_nb_n]. This A is called the spined product of A₁(Λ), A₂(Λ),..., A_n(Λ), and denoted by A₁⊃ A₂[

A). Any other notation and terminology should be referred to [5], [8] and [9], unless otherwise stated.

§1. Complete regular products.

Let $S = C(\Gamma(\Lambda), B(\Lambda); \mathcal{I}, \mathcal{J}, \{u_{\lambda}\}, \{\alpha_{(\gamma,\delta)}\}, \{\beta_{(\gamma,\delta)}\})$ be the complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$ introduced in §0. Let B^* be the set of all idempotents of S.

LEMMA 1. S is an inversive semigroup.

PROOF. The set B^* of all idempotents of S is $\{(i, \lambda, j): \lambda \in \Lambda, i \in I_{\lambda}, j \in J_{\lambda}\}$. It is obvious from Lemma 5 of [9] that B^* is isomorphic to B. Hence, B^* is a band. For any element $(h, \gamma, k) \in S$, the element (h, γ^{-1}, k) is an inverse of (h, γ, k) and satisfies $(h, \gamma, k)(h, \gamma^{-1}, k) = (h, \gamma^{-1}, k)(h, \gamma, k)$ (since for any element γ of Γ the equalities $\gamma \gamma^{-1} = \gamma^{-1} \gamma$ and $(\gamma^{-1})^{-1} = \gamma$ are satisfied in Γ). Therefore, S is an inversive semigroup.

THEOREM 2. A semigroup is inversive if and only if it is isomorphic to a complete regular product of a band and a weakly C-inversive semigroup.

PROOF. The "if" part is obvious from Lemma 1. Let T be an inversive semigroup, and η the least inverse semigroup congruence (see [2], [6]) on T. Let A be the band of idempotents of T. Then, it follows from §6 of [9] that T is isomorphic to a complete regular product of A and T/η (where T/η denotes the factor semigroup of T mod η). Since T is a union of groups and since T/η is a homomorphic image of T, the factor semigroup T/η is also a union of groups. Hence, T/η is a weakly C-inversive semigroup.

According to [4], S is isomorphic to the spined product $B^* \bowtie C(\Lambda)$ of the band $B^*(\Lambda)$ and a weakly C-inversive semigroup $C(\Lambda)$ if and only if S is strictly inversive, that is, S satisfies the following condition (1.1).

(1.1)
$$e, f \in B^*, x \in S, xx^{-1} = e, f \leq e \text{ imply } xf = fx.$$

By using this fact, we have

THEOREM 3. S is isomorphic to the spined product $B \bowtie C(\Lambda)$ of the band $B(\Lambda)$ and a weakly C-inversive semigroup $C(\Lambda)$ if and only if the CR-factor set $\Delta = \{\alpha_{(\gamma,\delta)}: \gamma, \delta \in \Gamma\} \cup \{\beta_{(\gamma,\delta)}: \gamma, \delta \in \Gamma\}$ satisfies the following (1.2):

(1.2) $\gamma \in \Gamma, \ \lambda \in \Lambda, \ \gamma \gamma^{-1} = \mu \ge \lambda, \ i \in I_{\mu}, \ j \in J_{\mu} \ imply$ $\alpha_{(\gamma,\lambda)} \lambda_{i} = \alpha_{(\mu,\lambda)} \lambda_{i} \ on \ J_{\mu} \times iI_{\lambda}, \ and$ $\beta_{(\lambda,\gamma)} v_{j} = \beta_{(\lambda,\mu)} v_{j} \ on \ J_{\lambda} j \times I_{\mu}$ where λ_i , v_j are the left multiplication by i and the right multiplication by j respectively⁴).

Further, in this case $\Gamma(\Lambda)$ can be selected as $C(\Lambda)$.

PROOF. Suppose that S is isomorphic to the spined product $B \bowtie C(A)$ of the band B(A) and a weakly C-inversive semigroup C(A). Then, it follows from [4] that S is strictly inversive. Let $\gamma \in \Gamma$, $\lambda \in A$, $\gamma \gamma^{-1} = \mu \ge \lambda$, $i \in I_{\mu}$ and $j \in J_{\mu}$. For any idempotent $(u, \lambda, v) \in B^*$, $(i, \mu, j)(iu, \lambda, vj) = (i((j, iu)\alpha_{(\mu,\lambda)}), \lambda, ((j, iu)\beta_{(\mu,\lambda)})vj) = (i((j, iu)\alpha_{(\mu,\lambda)}), \lambda, vj)$. On the other hand, $i(u_{\mu}jiuu_{\lambda}) = i((j, iu)\alpha_{(\mu,\lambda)})u_{\mu\lambda}(j, iu)\beta_{(\mu,\lambda)}$. Hence, $iu = i((j, iu)\alpha_{(\mu,\lambda)})$. Therefore, $(i, \mu, j)(iu, \lambda, vj) = (iu, \lambda, vj)$. Similarly, we have $(iu, \lambda, vj)(i, \mu, j) = (iu, \lambda, vj)$. Since S is strictly inversive and since $(i, \gamma, j)^{-1} = (i, \gamma^{-1}, j)$, the equality $(iu, \lambda, vj)(i, \gamma, j) = (i, \gamma, j)(iu, \lambda, vj)$ holds. Hence, $(iu, \lambda\gamma, (vj, i)\beta_{(\lambda,\gamma)}j) = (iu, \lambda, vj)(i, \gamma, j) = (i((j, iu)\alpha_{(\gamma,\lambda)}), \gamma\lambda, vj)$, and hence $i((j, iu)\alpha_{(\gamma,\lambda)}) = iu$ and $((vj, i)\beta_{(\lambda,\gamma)})j = vj$. That is, the condition (1.2) holds. In this case, if we put $\{(i, \gamma, j) \in S: i \in I_{\lambda}, j \in J_{\lambda}, \gamma \in \Gamma$ with $\gamma\gamma^{-1} = \lambda\} = S_{\lambda}$ for each $\lambda \in A$ then each S_{λ} is a rectangular group (that is, the direct product of a rectangular band and a group) and S is a semilattice A of rectangular groups S_{λ} . Let B_{λ}^* be the set of idempotents of S_{λ} . Then, the structure decomposition of B^* is clearly $B^* \sim \sum \{B_{\lambda}^*: \lambda \in A\}$. It follows from the proof of Theorem 4 of [4] that the relation ξ on S defined by

(1.3)
$$x\xi y$$
 if and only if $x, y \in S_{\tau}$ and $x^{-1}y \in B_{\tau}^*$ for some $\tau \in A$

is a congruence on S, and S is isomorphic to the spined product of $B^*(\Lambda)$ and $S/\xi(\Lambda)$. Now, for $x = (i, \gamma, j)$, $y = (h, \delta, k)$ it is easily seen that

(1.4)
$$(i, \gamma, j)\xi(h, \delta, k)$$
 if and only if $\gamma = \delta$.

Hence the mapping $\varphi: S/\xi \to \Gamma(\Lambda)$ defined by $\overline{(i, \gamma, j)}\varphi = \gamma$ is an isomorphism, where $\overline{(i, \gamma, j)}$ denotes the ξ -class containing (i, γ, j) . Since $B \cong B^*$ (where \cong means "isomorphic") and since $S/\xi \cong \Gamma(\Lambda)$, S is isomorphic to the spined product $B \bowtie \Gamma(\Lambda)$.

Conversely, suppose that $S = C(\Gamma(\Lambda), B(\Lambda); \mathscr{I}, \mathscr{J}, \{u_{\lambda}\}, \{\alpha_{(\gamma,\delta)}\}, \{\beta_{(\gamma,\delta)}\})$ satisfies the condition (1.2). If S is strictly inversive then S is isomorphic to the spined product of $B^*(\Lambda)$ and a weakly C-inversive semigroup $C(\Lambda)$ (Theorem 4 of [4]). Hence, in this case $S \cong B \bowtie (C(\Lambda))$ since $B^* \cong B$. Therefore, we next prove that S is strictly inversive. Let $(i, \gamma, j) \in S$, $(u, \lambda, v) \in B^*$ be two elements such that $(i, \gamma, j)(i, \gamma^{-1}, j) = (i,$ $\gamma\gamma^{-1}, j) \ge (u, \lambda, v)$, and put $\gamma\gamma^{-1} = \mu$. Then, $\lambda \le \mu$, $i \in I_{\mu}$ and $j \in J_{\mu}$. Now, $(i, \gamma, j)(u,$ $\lambda, v) = (i((j, u)\alpha_{(\gamma,\lambda)}), \gamma\lambda, v)$ and $(u, \lambda, v)(i, \gamma, j) = (u, \lambda\gamma, ((v, i)\beta_{(\lambda,\gamma)})j)$. On the other hand, $(u, \lambda, v) = (i, \mu, j)(u, \lambda, v) = (i((j, u)\alpha_{(\mu,\lambda)}), \lambda, v)$ and $(u, \lambda, v) = (u, \lambda, v)(i, \mu, j) =$ $(u, \lambda, ((v, i)\beta_{(\lambda,\mu)})j)$. Since $i((j, u)\alpha_{(\gamma,\lambda)}) = u$ and $((v, i)\beta_{(\lambda,\mu)})j = v$, it follows that iu = uand vj = v. Hence by (1.2), $i((j, iu)\alpha_{(\gamma,\lambda)}) = i((j, iu)\alpha_{(\mu,\lambda)}) = iu = u$ and $((vj, i)\beta_{(\lambda,\gamma)})j =$ $((vj, i)\beta_{(\lambda,\mu)})j = vj = v$. Since $\gamma\lambda = \lambda\gamma$, this implies that $(i, \gamma, j)(u, \lambda, v) = (u, \gamma\lambda, v) =$

⁴⁾ That is, λ_i , ν_j are mappings such that $x\lambda_i = ix$ and $x\nu_j = xj$.

 $(u, \lambda, v)(i, \gamma, j).$

From the theorem above, we obtain the following result.

COROLLARY 4. If in particular $B(\Lambda)$ is a normal band⁵⁾, then a complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$ is uniquely determined up to isomorphism and is isomorphic to the spined product of $B(\Lambda)$ and $\Gamma(\Lambda)$.

PROOF. We need only to show that for any complete regular product $S = C(\Gamma(\Lambda), B(\Lambda); \mathscr{I} \not {I} \{u_{\lambda}\}, \{\alpha_{(\gamma,\delta)}\}, \{\beta_{(\gamma,\delta)}\})$ of $B(\Lambda)$ and $\Gamma(\Lambda)$ the system $\Lambda = \{\alpha_{(\gamma,\delta)}; \gamma, \delta \in \Gamma\} \cup \{\beta_{(\gamma,\delta)}; \gamma, \delta \in \Gamma\}$ necessarily satisfies the condition (1.2). Let $\gamma \in \Gamma, \lambda \in \Lambda, \gamma\gamma^{-1} = \mu \ge \lambda, i \in I_{\mu}$ and $j \in J_{\mu}$. For $e \in I_{\lambda}$, we have $iI_{\lambda} = iI_{\lambda}e = ieI_{\lambda}e$ (by the normality of $B(\Lambda)$) = *ie*. Similarly, for $f \in J_{\lambda}$ we have $J_{\lambda}j = fj$. Therefore, each of iI_{λ} and $J_{\lambda}j$ consists of a single element. Hence, Λ satisfies the condition (1.2).

REMARK. The spined product $B \bowtie \Gamma(\Lambda)$ of a band $B(\Lambda)$ and a weakly C-inversive semigroup $\Gamma(\Lambda)$ is always isomorphic to some complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$. In fact:

(1.5)
$$\begin{cases} B \bowtie \Gamma (\Lambda) = \{ [e, \gamma] : e \in B_{\lambda}, \gamma \in \Gamma_{\lambda}, \lambda \in \Lambda \}, \text{ and} \\ \text{the multiplication in } B \bowtie \Gamma (\Lambda) \text{ is given by} \\ [e, \gamma] [f, \delta] = [ef, \gamma \delta] \end{cases}$$

Let u_{λ} be a representative of B_{λ} for each λ of Λ . For $e \in B$, e is uniquely expressed in the form $e = e'u_{\lambda}e''$, $\lambda \in \Lambda$, $e' \in I_{\lambda}$, $e'' \in J_{\lambda}$. In this case, we shall denote e', e'' by e_l , e_r respectively. Hence, $e = e_l u_{\lambda} e_r$ ($= e_l e_r$). Now, for each pair (λ , τ) of λ , $\tau \in \Lambda$, define mappings $\alpha_{(\lambda,\tau)}$: $J_{\lambda} \times I_{\tau} \to I_{\lambda\tau}$ and $\beta_{(\lambda,\tau)}$: $J_{\lambda} \times I_{\tau} \to J_{\lambda\tau}$ by

$$u_{\lambda}fhu_{\tau} = ((f, h)\alpha_{(\lambda,\tau)})u_{\lambda\tau}((f, h)\beta_{(\lambda,\tau)}) \quad \text{for} \quad f \in J_{\lambda}, h \in I_{\tau}.$$

Then, for $e = e_l e_r \in B_\lambda$, $f = f_l f_r \in B_\tau$, we have $ef = e_l(e_r, f_l) \alpha_{(\lambda,\tau)} u_{\lambda\tau}(e_r, f_l) \beta_{(\lambda,\tau)} f_r$. Next, for γ , $\delta \in \Gamma$, define mappings $\alpha_{(\gamma,\delta)}$, $\beta_{(\gamma,\delta)}$ by $\alpha_{(\gamma,\delta)} = \alpha_{(\gamma\gamma^{-1},\delta\delta^{-1})}$ and $\beta_{(\gamma,\delta)} = \beta_{(\gamma\gamma^{-1},\delta\delta^{-1})}$. Then, $\Delta = \{\alpha_{(\gamma,\delta)} : \gamma, \delta \in \Gamma\} \cup \{\beta_{(\gamma,\delta)} : \gamma, \delta \in \Gamma\}$ becomes a *CR*-factor set in $B = \{iu_{\lambda}j: i \in I_{\lambda}, j \in J_{\lambda}, \lambda \in \Lambda\}$ belonging to $\Gamma(\Lambda)$. Hence, we can consider the complete regular product $C(\Gamma(\Lambda), B(\Lambda); \mathcal{I}, \mathcal{J}, \{u_{\lambda}\}, \{\alpha_{(\gamma,\delta)}\}, \{\beta_{(\gamma,\delta)}\}) = A$. If we define a mapping $\varphi: A \to B \bowtie \Gamma(\Lambda)$ by $(e_l, \gamma, e_r)\varphi = [e_l e_r, \gamma]$, then it is easily verified that φ is an isomorphism. Hence, $B \bowtie \Gamma(\Lambda)$ is isomorphic to the complete regular product A.

⁵⁾ A band is said to be normal [left normal, right normal] if it satisfies the identity $x_1x_2x_3x_4 = x_1x_3x_2x_4$ [$x_1x_2x_3 = x_1x_3x_2, x_1x_2x_3 = x_2x_1x_3$].

§2. H.D-products.

Let $M = E \times \Gamma \times F$ be the H.D-product of $E(\Lambda)$, $\Gamma(\Lambda)$ and $F(\Lambda)$ introduced in §0. Let V be the set of all idempotents of M.

LEMMA 5. A semigroup is quasi-(C)-inversive if and only if it is isomorphic to an H.D-product of a left regular band, a weakly C-inversive semigroup and a right regular band.

PROOF. By [8], $M = E \times \Gamma \times F$ is a quasi-inverse semigroup. Since $\Gamma(A)$ is a union of groups, it is easily proved that M is inversive. Hence, M is a quasi-(C)-inversive semigroup. From this result, it follows that if a semigroup A is isomorphic to an H.D-product of a left regular band, a weakly C-inversive semigroup and a right regular band then A is quasi-(C)-inversive. Conversely, assume that a semigroup A is quasi-(C)-inversive. Then, A is of course a quasi-inverse semigroup. Hence, it follows from [8] that if ξ is the least inverse semigroup congruence on A then A is isomorphic to an H.D-product of a left regular band, A/ξ and a right regular band. Since A/ξ is a homomorphic image of A and since A is a union of groups, A/ξ is also a union of groups. Therefore, A/ξ is a weakly C-inversive semigroup.

Next, consider the spined product of $E(\Lambda)$, $\Gamma(\Lambda)$ and $F(\Lambda)$:

(2.1)
$$\begin{cases} E \bowtie \Gamma \bowtie F (\Lambda) = \{ [e, \gamma, f] : \gamma \in \Gamma_{\lambda}, e \in E_{\lambda}, f \in F_{\lambda}, \lambda \in \Lambda \}, \\ \text{and the multiplication in } E \bowtie \Gamma \bowtie F (\Lambda) \text{ is given by} \\ [e, \gamma, f] [u, \delta, v] = [eu, \gamma \delta, fv]. \end{cases}$$

For each $\lambda \in \Lambda$, let e_{λ} , f_{λ} be representatives of E_{λ} , F_{λ} respectively. Define mappings $\varphi_1: \Gamma \to \operatorname{End}(E)$, $\varphi_2: \Gamma \to \operatorname{End}(F)$ by $\gamma \varphi_1 = \delta_{e_{\gamma\gamma-1}}, \gamma \varphi_2 = \delta_{f_{\gamma\gamma-1}}$ respectively, where $\delta_{e_{\lambda}}[\delta_{f_{\lambda}}]$ denotes the inner endomorphism on E[F] induced by $e_{\lambda}[f_{\lambda}]$. For each $\gamma \in \Gamma$, put $\gamma \varphi_1 = \rho_{\gamma}$ and $\gamma \varphi_2 = \sigma_{\gamma}$. Then, it is easy to see that each of the systems $\{\rho_{\gamma}: \gamma \in \Gamma\}$ and $\{\sigma_{\gamma}: \gamma \in \Gamma\}$ satisfies (C3) and (C4). Accordingly, we can consider the H.D-product $E \times \Gamma \times F$. For any $(e, \gamma, f), (u, \delta, v) \in E \times \Gamma \times F$, $(e, \gamma, f)(u, \delta, v) = (eu^{\rho_{\gamma-1}}, \gamma\delta, f^{\sigma_{\delta}v}) = (ee_{\gamma\gamma^{-1}}ue_{\gamma\gamma^{-1}}, \gamma\delta, f_{\delta\delta^{-1}}ff_{\delta\delta^{-1}}v) = (eu, \gamma\delta, fv)$. Hence, $\Phi: E \Join \Gamma \Join F$ (Λ) $\to E \times \Gamma \times F$ defined by $[e, \gamma, f] \Phi = (e, \gamma, f)$ is an isomorphism. From this result, we can say that the spined product of $E(\Lambda)$, $\Gamma(\Lambda)$ and $F(\Lambda)$. Conversely, next we shall investigate about necessary and sufficient conditions on $\{\phi, \psi\}$ in order that $M = E \times \Gamma \times F$ be isomorphic to the spined product $E \Join \Gamma \Join F$.

LEMMA 6. M is strictly inversive if and only if it satisfies the following (2.1):

(2.1)
$$\gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1} = \mu \ge \lambda, i \in E_{\mu}, j \in E_{\mu} imply$$

$\rho_{\gamma}\lambda_i = the identity mapping on iE_{\lambda}$, and

 $\sigma_{\gamma}v_{j}$ = the identity mapping on $F_{\lambda}j$.

PROOF. Assume that M is strictly inversive. Let $\gamma \in \Gamma$, $\lambda \in \Lambda$, $\gamma \gamma^{-1} = \mu \ge \lambda$, $i \in E_{\mu}$ and $j \in F_{\mu}$. For an element $(u, \lambda, v) \in M$, $(iu, \lambda, vj)(i, \mu, j) = (iu, \lambda, vj)$. Similarly, $(i, \mu, j)(iu, \lambda, vj) = (iu, \lambda, vj)$. Since M is strictly inversive, we have $(i, \gamma, j)(iu, \lambda, vj) = (iu, \lambda, vj)(i, \gamma, j)$. Therefore, we have $(i(iu)^{\rho_{\gamma-1}}, \gamma\lambda, (j^{\sigma_{\lambda}})vj) = (iu(i^{\rho_{\lambda}}), \lambda\gamma, (vj)^{\sigma_{\gamma}}j)$, whence $i(iu)^{\rho_{\gamma-1}} = iu$ and $(vj)^{\sigma_{\gamma}}j = vj$. That is, $\rho_{\gamma^{-1}}\lambda_i =$ the identity mapping on iE_{λ} , while $\sigma_{\gamma}v_j =$ the identity mapping on $F_{\lambda}j$. Since $\gamma^{-1}\gamma = \gamma\gamma^{-1}$, it follows that $\rho_{\gamma}\lambda_i =$ the identity mapping on iE_{λ} and $\sigma_{\gamma}v_j =$ the identity mapping on $F_{\lambda}j$. Thus, the condition (2.1) holds.

Conversely, assume that M satisfies (2.1). Let (u, λ, v) , (i, μ, j) be idempotents of M such that $(u, \lambda, v)(i, \mu, j) = (i, \mu, j)(u, \lambda, v) = (u, \lambda, v)$, and (t, γ, s) an element of M such that $(t, \gamma, s)(t, \gamma, s)^{-1} = (i, \mu, j)$. Since $(ui^{\rho_{\lambda}}, \lambda\mu, v^{\sigma_{\mu}}j) = (iu^{\rho_{\mu}}, \mu\lambda, j^{\sigma_{\lambda}}v) =$ (u, λ, v) , we have $\lambda \leq \mu$, $u = iu^{\rho_{\mu}}$ and $v^{\sigma_{\mu}}j = v$. Further, $(t, \gamma, s)(t, \gamma, s)^{-1} = (i, \mu, j)$ implies $\gamma\gamma^{-1} = \mu \geq \lambda$. Hence by (2.1), $\rho_{\gamma}\lambda_i =$ the identity mapping on iE_{λ} and $\sigma_{\gamma}v_j =$ the identity mapping on $F_{\lambda}j$. Since iu = u and vj = v, we have also $iu = i(iu^{\rho_{\mu}}) =$ $i((iu)^{\rho_{\mu}})$ and $vj = (vj)^{\sigma_{\mu}}j$. The equality $(t, \gamma, s)(t, \gamma^{-1}, s) = (i, \mu, j)$ implies $(tt^{\rho_{\gamma-1}}, \gamma\gamma^{-1}, s^{\sigma_{\gamma-1}}s) = (i, \mu, j)$, and hence $(t, \mu, s) = (i, \mu, j)$. That is, $(t, \gamma, s) = (i, \gamma, j)$. From this result, it follows that $(i, \gamma, j)(u, \lambda, v) = (iu^{\rho_{\gamma-1}}, \gamma\lambda, j^{\sigma_{\lambda}}v) = (iu^{\rho_{\gamma-1}}, \gamma\lambda, v) = (i(iu)^{\rho_{\gamma-1}}, \gamma\lambda, v) = (i(iu), \gamma\lambda, v) = (iu, \gamma\lambda, v) = (u, \gamma\lambda, v)$. Similarly, $(u, \lambda, v)(i, \gamma, j) = (u, \lambda\gamma, v)$. Since $\lambda\gamma = \gamma\lambda$ is satisfied, the equality $(i, \gamma, j)(u, \lambda, v) = (u, \lambda, v)(i, \gamma, j)$ holds. Hence, M is strictly inversive.

THEOREM 7. M is isomorphic to the spined product of a regular band and a weakly C-inversive semigroup if and only if it satisfies (2.1). Further, in this case M is isomorphic to $E \bowtie \Gamma \bowtie F$ (Λ).

PROOF. If *M* satisfies the condition (2.1), then it follows from Lemma 6 that *M* is strictly inversive. Hence, in this case *M* is isomorphic to the spined product of the regular band *V* (the band of idempotents of *M*) and a weakly *C*-inversive semigroup *T* (Theorem 4 of [4]). It is also easily seen that $V \cong E \bowtie F(\Lambda)$. For each $\lambda \in \Lambda$, put $M_{\lambda} = \{(h, \gamma, k): \gamma\gamma^{-1} = \lambda, \gamma \in \Gamma, h \in E_{\gamma\gamma^{-1}}, k \in F_{\gamma\gamma^{-1}}\}$. Then, the structure decomposition of *M* is $M \sim \sum \{M_{\lambda}: \lambda \in \Lambda\}$. If we define a relation ξ on *M* by

(2.2) for any (h, γ, k) , $(u, \delta, v) \in M$, $(h, \gamma, k) \xi (u, \delta, v)$ if and only if

 $(h, \gamma, k), (u, \delta, v) \in M_{\lambda}$ and $(h, \gamma, k)(u, \delta, v)^{-1} \in E(M_{\lambda})$ for some $\lambda \in \Lambda$,

where $E(M_{\lambda})$ is the set of idempotents of M_{λ} ,

then $M \cong E \bowtie M/\xi \bowtie F$ (A) follows from the proof of Theorem 4 of [4]. On the

other hand, it is easily proved that $(h, \gamma, k) \xi (u, \delta, v)$ if and only if $\gamma = \delta$. Hence, $\Phi: M/\xi \to \Gamma$ defined by $(\overline{h, \gamma, k})\Phi = \gamma$, where $(\overline{h, \gamma, k})$ is the ξ -class containing (h, γ, k) , is an isomorphism. Hence $M/\xi \cong \Gamma$, and accordingly $M \cong E \bowtie \Gamma \bowtie F$ (Λ).

Conversely, if M is isomorphic to the spined product of a regular band and a weakly C-inversive semigroup then M is clearly strictly inversive (Theorem 4 of [4]). Hence, in this case it follows from Lemma 6 that M satisfies the condition (2.1).

COROLLARY 8. If in particular $E(\Lambda)$, $F(\Lambda)$ are a left normal band, a right normal band respectively, then an H.D-product of $E(\Lambda)$, $\Gamma(\Lambda)$ and $F(\Lambda)$ is uniquely determined up to isomorphism and is isomorphic to the spined product of $E(\Lambda)$, $\Gamma(\Lambda)$ and $F(\Lambda)$.

PROOF. We need only to show that for any H.D-product $E \times \Gamma \times F$, $\{\phi, \psi\}$ (hence, $\{\rho_{\gamma}: \gamma \in \Gamma\} \cup \{\sigma_{\gamma}: \gamma \in \Gamma\}$, where $\rho_{\gamma} = \gamma \phi$ and $\sigma_{\gamma} = \gamma \psi$) satisfies the condition (2.1). For μ , λ , e, f, i such that λ , $\mu \in \Lambda$, $\mu \ge \lambda$, $i \in E_{\mu}$ and e, $f \in E_{\lambda}$, we have ie = ief = ife = if. Hence, iE_{λ} consists of a single element. Therefore, $\rho_{\gamma}\lambda_i$ =the identity mapping on iE_{λ} if $\gamma\gamma^{-1} = \mu$. Similarly, $\sigma_{\gamma}v_j$ =the identity mapping on $F_{\lambda}j$ if $j \in F_{\mu}$, $\mu \ge \lambda$, $\gamma \in \Gamma$, $\gamma\gamma^{-1} = \mu$.

§ 3. Special cases.

In [8], the concept of an L.H.D-product of a left regular band and an inverse semigroup [an R.H.D-product of an inverse semigroup and a right regular band] has been introduced. For L.H.D-products and R.H.D-products, we can obtain the following results in the same manner as we established Theorem 7 and Corollary 8.

THEOREM 9. An L.H.D-product $E \times \Gamma$ [an R.H.D-product $\Gamma \times F$] is isomorphic to the spined product of a left regular band and a weakly C-inversive semigroup [a weakly C-inversive semigroup and a right regular band] if and only if it satisfies the following (3.1):

(3.1) $\gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1} = \mu \ge \lambda, i \in E_{\mu} imply$

 $\rho_{\gamma}\lambda_{i}$ = the identity mapping on iE_{λ} , where $\rho_{\gamma} = \gamma \phi$.

 $[\gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1} = \mu \ge \lambda, j \in F_{\mu} imply$

 $\sigma_{\gamma}v_{j}$ = the identity mapping on $F_{\lambda}j$, where $\sigma_{\gamma} = \gamma \psi$].

Further, in this case $E \times \Gamma \cong E \bowtie \Gamma(\Lambda) [\Gamma \times F \cong \Gamma \bowtie F(\Lambda)].$

COROLLARY 10. If $E(\Lambda)$ [$F(\Lambda)$] is a left normal band [a right normal band], then an L.H.D-product of $E(\Lambda)$ and $\Gamma(\Lambda)$ [an R.H.D-product of $\Gamma(\Lambda)$ and $F(\Lambda)$] is

uniquely determined up to isomorphism and is isomorphic to the spined product of $E(\Lambda)$ and $\Gamma(\Lambda) [\Gamma(\Lambda)$ and $F(\Lambda)]$.

EXAMPLE. Let Ω and K be the weakly C-inversive semigroup and the band given by the multiplication tables (D 1) and (D 2) respectively. The basic semilattice Π of Ω consists of two elements 0, 1, and the structure decomposition of Ω is $\Omega \sim \sum {\{\Omega_{\lambda}: \lambda \in \Pi\}}$, where $\Omega_0 = \{0\}$ and $\Omega_1 = \{1, \gamma\}$. On the other hand, the structure decomposition of K is $K \sim \sum {\{K_{\lambda}: \lambda \in \Pi\}}$, where $K_0 = \{e, f\}, K_1 = \{1\}$. K is clearly a right regular band. Now, $\Omega \bowtie K(\Pi) = \{[0, e], [0, f], [1, 1], [\gamma, 1]\}$. Let σ_0, σ_1 be the inner

endomorphisms on $K(\Pi)$ induced by 0, 1, and σ_{γ} an endomorphism on $K(\Pi)$ such that σ_{γ} maps 1, e, f to 1, f, e respectively. Define $\varphi: \Omega \rightarrow \text{End}(K)$ by $\tau\varphi = \rho_{\tau}(\tau=0, 1, \gamma)$. Since $\{\sigma_0, \sigma_1, \sigma_{\gamma}\}$ satisfies (C3) and (C4), we can consider the R.H.D-product $\Omega \times K$. Of course, $\Omega \times K = \{(0, e), (0, f), (1, 1), (\gamma, 1)\}$. However, $\Omega \times K$ is not strictly inversive. In fact: (1, 1) > (0, e) and $(\gamma, 1)(\gamma, 1)^{-1} = (1, 1)$, but $(\overset{\varphi}{0}, e)(\gamma, 1) = (\gamma, e^{\sigma_{\gamma}}) = (0, f) \neq (0, e) = (0, 1^{\sigma_0} e) = (\gamma, 1)(0, e)$. Hence, $\Omega \times K \not\cong \Omega \bowtie K$ (Π). Thus, we can say that an R.H.D-product of a weakly C-inversive semigroup C and a right regular band R is not necessarily isomorphic to the spined product of C and R.

References

- [1] A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, I, Amer. Math. Soc., Providence, R. I., 1961.
- [2] T. E. HALL, Orthodox semigroups, Pacific J. Math., 39 (1971), 677-686.
- [3] R. J. WARNE, The structure of a class of regular semigroups, II, Kyungpook Math. J., 11 (1971), 165-167.
- [4] M. YAMADA, Strictly inversive semigroups, Science Reports of Shimane University, 13 (1964), 128–138.
- [5] M. YAMADA, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math., 21 (1967), 371-392.
- [6] M. YAMADA, On a regular semigroup in which the idempotents form a band, Pacific J. Math., 33 (1970), 261–272.
- [7] M. YAMADA, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum, 6 (1973), 113-128.

Note on Regular Extensions of a Band by an Inverse Semigroup

- [8] M. YAMADA, Note on a certain class of orthodox semigroups, Semigroup Forum, 6 (1973), 180–188.
- [9] M. YAMADA, On regular extensions of a semigroup which is a semilattice of completely simple semigroups, Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 7 (1974), 1–17.
- [10] M. YAMADA, Some remarks on regular extensions of Cliffordian semigroups, Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 7 (1974), 18-28.