Note on Regular Extensions of a Band by an Inverse Semigroup

Miyuki Yamada
Department of Mathematics, Shimane University, Matsue, Japan
(Received November 5, 1974)

Abstract

This is a supplement to the previous papers [8], [9] and [10]. In [8], [9] and [10], the concept of a complete regullar product S of a band B and an inverse semigroup Γ, and the concept of a half-direct product T of a left regullar band E, an inverse semigroup \boldsymbol{I}^{\prime} and a right regular baind F were introduced. In this paper, we first show that a semigroup M is inversive [quasi-(C)-inversive] if and only if M is isomorphic to a complete regular product of a band and a wealkly C-inversive semigroup [a half-dire. rect product of a left regullar band, a weakly C-inversive semigroup and a right regular band]. If in particular Γ^{\prime} and Γ^{\prime} are wealkly C-inversive, both the spined product of $B, \boldsymbol{\Gamma}$ and that of E, Γ^{\prime}, F can be considered. When $\boldsymbol{\Gamma}\left[\Gamma^{\prime}\right]$ is wealkly C inversive, we investigate the relationship between the complete regular products of B, Γ and the spined product of B, Γ [the lhalf-direct products of E, Γ^{\prime}, F and the spined product of $\left.E, \Gamma^{\prime}, F\right]$.

§ 0. Introduction.

Hereafter, the notation 'an inversive semigroup ${ }^{1)} G \equiv \sum\left\{G_{\gamma}: \gamma \in \Gamma\right\}$ " will mean an inversive semigroup G whose structure semilattice is Γ and whose structure decomposition is $G \sim \sum\left\{G_{\gamma}: \gamma \in \Gamma\right\}$ (see [5]). Since a band is inversive, "a band $G \equiv \sum\left\{G_{\gamma}\right.$: $\gamma \in \Gamma\}$ " means a band G whose structure semilattice is Γ and whose structure decomposition is $G \sim \sum\left\{G_{\gamma}: \gamma \in \Gamma\right\}$. If a band T has K as its structure semilattice, T is sometimes denoted by $T(K)$. Similarly, an inverse semigroup M having N as its basic semilattice (see [5]) will be sometimes denoted by $M(N)$. Now, let $\Gamma(\Lambda) \equiv \sum\left\{\Gamma_{\lambda}\right.$: $\lambda \in \Lambda\}$ (where Λ is the basic semilattice (=the structure semilattice) of Γ and each Γ_{λ} is the greatest subgroup containing λ) be a weakly C-inversive semigroup (that is, an inverse semigroup which is a union of groups), and $B(\Lambda) \equiv \sum\left\{B_{\lambda}: \lambda \in \Lambda\right\}$ a band. Of course, each λ-kernel B_{λ} (see [5]) is a rectangular bubband of B. Let I_{λ} be a maximal left zero subsemigroup of B_{λ}, and J_{λ} a maximal right zero subsemigroup of B_{λ}. Then, as was shown in [9], U\{ $\left.I_{\lambda}: \lambda \in \Lambda\right\}$ and $U\left\{J_{\lambda}: \lambda \in \Lambda\right\}$ are a lower partial chain of the left zero semigroups $\left\{I_{\lambda}: \lambda \in \Lambda\right\}$ and an upper partial chain of the right zero semigroups $\left\{J_{\lambda}: \lambda \in \Lambda\right\}$ respectively with respect to the multiplication in B. We shall denote these lower partial chain $U\left\{I_{\lambda}: \lambda \in \Lambda\right\}$, upper partial chain $U\left\{J_{\lambda}: \lambda \in \Lambda\right\}$ by $\mathscr{I}=\left\{I_{\lambda}: \lambda \in \Lambda\right\}$,

1) A regular semigroup G is said to be inversive if the set of idempotents of G is a subsemigroup and if for any element a of G there exists an inverse a^{*} of a such that $a a^{*}=a^{*} a$.
$\mathscr{J}=\left[J_{\lambda}: \lambda \in \Lambda\right]$ respectively. Let u_{λ} be a representative of B_{λ} for each $\lambda \in \Lambda$. By [7], each element x of B can be uniquely expressed in the form $x=i u_{\lambda} j, i \in I_{\lambda}, j \in J_{\lambda}$, $\lambda \in \Lambda$, and B is written in the form $B=\left\{i u_{\lambda} j: \lambda \in \Lambda, i \in I_{\lambda}, j \in J_{\lambda}\right\}$. Let $\left\{u_{\lambda}: \lambda \in \Lambda\right\}=U$. Then, the following result follows from Warne [3] (also the author [9]): For each pair (γ, δ) of $\gamma, \delta \in \Gamma$, let $\alpha_{(\gamma, \delta)}, \beta_{(\gamma, \delta)}$ be mappings such that $\alpha_{(\gamma, \delta)}: J_{\gamma^{-1} \gamma} \times I_{\delta \delta^{-1}} \rightarrow$ $\left.I_{\gamma \delta(\gamma \delta)^{-1}}{ }^{2}\right)$ and $\beta_{(\gamma, \delta)}: J_{\gamma^{-1} \gamma} \times I_{\delta \delta \delta^{-1}} \rightarrow J_{(\gamma \delta)^{-1} \gamma \delta}$. If the system $\Delta=\left\{\alpha_{(\gamma, \delta)}: \gamma, \delta \in \Gamma\right\} \cup\left\{\beta_{(\gamma, \delta)}\right.$: $\gamma, \delta \in \Gamma\}$ satisfies the condition

$$
\begin{align*}
& \text { for } j \in J_{\gamma^{-1} \gamma}, p \in I_{\delta \delta^{-1}}, q \in J_{\delta^{-1} \delta}, m \in I_{\xi \xi^{-1}}, \tag{C1}\\
& (j, p) \alpha_{(\gamma, \delta)}\left((j, p) \beta_{(\gamma, \delta)} q, m\right) \alpha_{(\gamma \delta, \xi)}=\left(j, p\left((q, m) \alpha_{(\delta, \xi)}\right) \alpha_{(\gamma, \delta \xi)}\right.
\end{align*}
$$

and

$$
\left(j, p\left((q, m) \alpha_{(\delta, \xi)}\right)\right) \beta_{(\gamma, \delta \xi)}(q, m) \beta_{(\delta, \xi)}=\left((j, p) \beta_{(\gamma, \delta)} q, m\right) \beta_{(\gamma \delta, \xi)},
$$

then $S=\left\{(i, \gamma, j): \gamma \in \Gamma, i \in I_{\gamma \gamma^{-1}}, j \in J_{\gamma^{-1}}\right\}$ becomes an orthodox semigroup (see Hall [2]) with respect to the multiplication defined by

$$
(i, \gamma, j)(h, \delta, k)=\left(i\left((j, h) \alpha_{(\gamma, \delta)}\right), \gamma \delta,(j, h) \beta_{(\gamma, \delta)} k\right)
$$

Further, it follows from the author [9] that if the subset $\Omega=\left\{\alpha_{(\xi, \eta)}: \xi, \eta \in \Lambda\right\} \cup\left\{\beta_{(\xi, \eta)}\right.$: $\xi, \eta \in \Lambda\}$ of Δ satisfies the condition

$$
\begin{equation*}
u_{\lambda} j k u_{\tau}=\left((j, k) \alpha_{(\lambda, \tau)}\right) u_{\lambda \tau}\left((j, k) \beta_{(\lambda, \tau)}\right) \quad \text { for } \quad \lambda, \tau \in \Lambda, j \in J_{\lambda}, k \in I_{\tau}, \tag{C2}
\end{equation*}
$$

then B is embedded as the band of idempotents of S.
In this case, S is called the complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$ determined by $\left\{\mathscr{I}, \mathscr{J},\left\{u_{\lambda}\right\}, \Delta\right\}$, and denoted by $C\left(\Gamma(\Lambda), B(\Lambda) ; \mathscr{I}, \mathscr{J},\left\{u_{\lambda}\right\},\left\{\alpha_{(\gamma, \delta)}\right\},\left\{\beta_{(\gamma, \delta)}\right\}\right)$. We shall call Δ (whose subset Ω satisfies (C2)) above $a C R$-factor set in $B=\left\{i u_{\lambda} j: \lambda \in \Lambda\right.$, $\left.i \in I_{\lambda}, j \in J_{\lambda}\right\}$ belonging to $\Gamma(\Lambda)$ (see [10]). In [9], it has been shown that every regular extension of $B(\Lambda)$ by $\Gamma(\Lambda)$ can be obtained as a complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$ (up to isomorphism). Since $\Gamma(\Lambda) \equiv \sum\left\{\Gamma_{\lambda}: \lambda \in \Lambda\right\}$ is weakly C-inversive (hence each Γ_{λ} is a group), we can consider the spined product $B \bowtie \Gamma(\mathbb{1})$ (see [5]) of $B(\Lambda)$ and $\Gamma(\Lambda)$ with respect to Λ. In this paper, we shall show a necessary and sufficient condition on $\left\{\alpha_{(\gamma, \delta)}: \gamma, \delta \in \Gamma\right\} \cup\left\{\beta_{(\gamma, \delta)}: \gamma, \delta \in \Gamma\right\}$ in order that $C(\Gamma(\Lambda), B(\Lambda) ; \mathscr{I} \mathscr{J}$ $\left.\left\{u_{\lambda}\right\},\left\{\alpha_{(\gamma, \delta)}\right\},\left\{\beta_{(\gamma, \delta)}\right\}\right)$ be isomorphic to $B \bowtie \Gamma(\mathbb{1})$.

Next, let $E(\Lambda) \equiv \sum\left\{E_{\lambda}: \lambda \in \Lambda\right\}, F(\Lambda) \equiv \sum\left\{F_{\lambda}: \lambda \in \Lambda\right\}$ be a left regular band, a right regular band (see [7], [8]) respectively. The concept of a half-direct product (abbrev., an H.D-product) of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)$ was introduced by the author [8] as follows:
2) If G is an inversive semigroup, then for each element x of G there exists a unique inverse x^{*} of x, such that $x x^{*}=x^{*} x$. This x^{*} is denoted by x^{-1}. If G is in particular a weakly C-inversive semigroup, then G is of course an inverse semigroup and hence x^{-1} is a unique inverse of x for each $x \in G$ (see [1]). The notation " $\varphi: X \rightarrow Y$ " means " φ is a mapping of X into Y ".

Let $\phi: \Gamma \rightarrow \operatorname{End}(E)$ (where $\operatorname{End}(E)$ is the semigroup of all endomorphisms on E), $\psi: \Gamma \rightarrow \operatorname{End}(F)$ be two mappings, and put $\gamma \phi=\rho_{\gamma}, \gamma \psi=\sigma_{\gamma}$ for all $\gamma \in \Gamma$. If $\left\{\rho_{\gamma}: \gamma \in \Gamma\right\}$, $\left\{\sigma_{\gamma}: \gamma \in \Gamma\right\}$ satisfy
(C3) each $\rho_{\gamma}\left[\sigma_{\gamma}\right]$ maps $E_{\alpha}\left[F_{\alpha}\right]$ into $E_{(\alpha \gamma)-1_{\alpha \gamma}}\left[F_{\left.(\alpha \gamma)^{-1} \alpha_{\gamma \gamma}\right]}\right.$ for all $\alpha \in A$; especially, ρ_{γ} $\left[\sigma_{\gamma}\right]$ is an inner endomorphism (see [8]) on $E[F]$ for $\gamma \in \Lambda$,
and

$$
\begin{align*}
& \text { for any } e \in E_{\beta-1 \beta}\left[F_{\beta-1_{\beta}}\right], f \in E_{(\alpha \beta)^{-1} \alpha \beta}\left[F_{(\alpha \beta)^{-1} \alpha \beta}\right], \tag{C4}\\
& \rho_{\alpha} \rho_{\beta} \delta_{f} \delta_{e}=\rho_{\alpha \beta} \delta_{f} \delta_{e}\left[\sigma_{\alpha} \sigma_{\beta} \delta_{f} \delta_{e}=\sigma_{\alpha \beta} \delta_{f} \delta_{e}\right]
\end{align*}
$$

where δ_{h} denotes the inner endomorphism on $E[F]$ induced by h (see [8]), then $M=$ $\left\{(e, \gamma, f): \gamma \in \Gamma, e \in E_{\gamma^{-1}}, f \in F_{\gamma^{-1} \gamma}\left(=F_{\gamma \gamma^{-1}}\right)\right\}$ becomes a quasi-inverse semigroup with respect to the multiplication defined by

$$
\begin{equation*}
(e, \gamma, f)(u, \tau, v)=\left(e u^{\rho_{\gamma-1}} e, \gamma \tau, v f^{\sigma_{\tau}} v\right)=\left(e u^{\rho_{\gamma-1}}, \gamma \tau, f^{\sigma_{\tau} v}\right), \tag{C5}
\end{equation*}
$$

where $x^{\rho_{\gamma-1}}\left[x^{\sigma_{\tau}}\right]$ means $x \rho_{\gamma^{-1}}\left[x \sigma_{\tau}\right]$.
(See Theorem 6 of [8]).
This M is called the half-direct product (the H.D-product) of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)$ determined by $\{\phi, \psi\}$, and denoted by $E \times \Gamma \times F$. If the band of idempotents of an inversive semigroup H is a regular band (see [8]), then H is said to be quasi-(C)inversive. We shall show in $\S 2$ that a semigroup is a quasi- (C)-inversive semigroup if and only if it is isomorphic to an H.D-product of a left regular band, a weakly C inversive semigroup and a right regular band. On the other hand, we can consider the spined product $E \triangleright \triangleleft \Gamma \bowtie F(\mathbb{1})$ of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)^{3}$. In §2, we shall give a necessary and sufficient condition on $\{\phi, \psi\}$ in order that $E \times \Gamma \times F$ be isomorphic to $E \bowtie \Gamma \bowtie F(\mathbb{1})$.

Throughout this paper, $\Gamma(\Lambda) \equiv\left\{\Gamma_{\lambda}: \lambda \in \Lambda\right\}, B(\Lambda) \equiv \sum\left\{B_{\lambda}: \lambda \in \Lambda\right\}, E(\Lambda) \equiv \sum\left\{E_{\lambda}\right.$: $\lambda \in \Lambda\}, F(\Lambda) \equiv \sum\left\{F_{\lambda}: \lambda \in \Lambda\right\}$ will denote a weakly C-inversive semigroup, a band, a left regular band, a right regular band respectively (their structure decompositions are $\Gamma(\Lambda) \sim \sum\left\{\Gamma_{\lambda}: \lambda \in \Lambda\right\}$ (Λ : the basic semilattice ($=$ the structure semilattice) of Γ; each Γ_{λ} is the greatest subsemigroup containing λ), $B(\Lambda) \sim \sum\left\{B_{\lambda}: \lambda \in \Lambda\right\}, E(\Lambda) \sim \sum\left\{E_{\lambda}\right.$: $\lambda \in \Lambda\}$ and $F(\Lambda) \sim \sum\left\{F_{\lambda}: \lambda \in \Lambda\right\}$). For each $\lambda \in \Lambda, I_{\lambda}, J_{\lambda}$ will denote a maximal left zero subsemigroup of B, a maximal right zero subsemigroup of B_{λ} respectively. Let \mathscr{I}, \mathscr{J} be the lower partial chain of $\left\{I_{\lambda}: \lambda \in \Lambda\right\}$, the upper partial chain of $\left\{J_{\lambda}: \lambda \in \Lambda\right\}$ (with respect to the multiplication in B). Hence, $\mathscr{I}=\left\{I_{\lambda}: \lambda \in \Lambda\right\}$ and $\mathscr{J}=\left\{J_{\lambda}: \lambda \in\right.$
3) Let $A_{i}(\Lambda) \equiv \sum\left\{A_{i}^{\lambda}: \lambda \in \Lambda\right\}(i=1,2, \ldots, n)$ be an inversive semigroup having Λ as its structure semilattice. Then, $A=\left\{\left[a_{1}, a_{2}, \ldots, a_{n}\right]: a_{i} \in A_{i}^{\lambda}(i=1,2, \ldots, n), \lambda \in A\right\}$ becomes a semigroup with respect to the multiplication defined by $\left[a_{1}, a_{2}, \ldots, a_{n}\right]\left[b_{1}, b_{2}, \ldots, b_{n}\right]=\left[a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right]$. This A is called the spined product of $A_{1}(\Lambda), A_{2}(\Lambda), \ldots, A_{n}(\Lambda)$, and denoted by $A_{1} \bowtie A_{2} \downarrow \cdots ゆ A_{n}(\mathbb{1})$.

1]. Any other notation and terminology should be referred to [5], [8] and [9], unless otherwise stated.

§ 1. Complete regular products.

Let $S=C\left(\Gamma(\Lambda), B(\Lambda) ; \mathscr{I}, \mathscr{J},\left\{u_{\lambda}\right\},\left\{\alpha_{(\gamma, \delta)}\right\},\left\{\beta_{(\gamma, \delta)}\right\}\right)$ be the complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$ introduced in $\S 0$. Let B^{*} be the set of all idempotents of S.

Lemma 1. \quad S is an inversive semigroup.
Proof. The set B^{*} of all idempotents of S is $\left\{(i, \lambda, j): \lambda \in \Lambda, i \in I_{\lambda}, j \in J_{\lambda}\right\}$. It is obvious from Lemma 5 of [9] that B^{*} is isomorphic to B. Hence, B^{*} is a band. For any element $(h, \gamma, k) \in S$, the element $\left(h, \gamma^{-1}, k\right)$ is an inverse of (h, γ, k) and satisfies $(h, \gamma, k)\left(h, \gamma^{-1}, k\right)=\left(h, \gamma^{-1}, k\right)(h, \gamma, k)$ (since for any element γ of Γ the equalities $\gamma \gamma^{-1}=\gamma^{-1} \gamma$ and $\left(\gamma^{-1}\right)^{-1}=\gamma$ are satisfied in Γ). Therefore, S is an inversive semigroup.

Theorem 2. A semigroup is inversive if and only if it is isomorphic to a complete regular product of a band and a weakly C-inversive semigroup.

Proof. The "if" part is obvious from Lemma 1. Let T be an inversive semigroup, and η the least inverse semigroup congruence (see [2], [6]) on T. Let A be the band of idempotents of T. Then, it follows from $\S 6$ of [9] that T is isomorphic to a complete regular product of A and T / η (where T / η denotes the factor semigroup of T $\bmod \eta$). Since T is a union of groups and since T / η is a homomorphic image of T, the factor semigroup T / η is also a union of groups. Hence, T / η is a weakly C-inversive semigroup.

According to [4], S is isomorphic to the spined product $B^{*} \bowtie C(\mathbb{\Lambda})$ of the band $B^{*}(\Lambda)$ and a weakly C-inversive semigroup $C(\Lambda)$ if and only if S is strictly inversive, that is, S satisfies the following condition (1.1).

$$
\begin{equation*}
e, f \in B^{*}, x \in S, x x^{-1}=e, f \leqq e \text { imply } x f=f x . \tag{1.1}
\end{equation*}
$$

By using this fact, we have
Theorem 3. S is isomorphic to the spined product $B \bowtie C(\Lambda)$ of the band $B(\Lambda)$ and a weakly C-inversive semigroup $C(\Lambda)$ if and only if the $C R$-factor set $\Delta=\left\{\alpha_{(\gamma, \delta)}\right.$: $\gamma, \delta \in \Gamma\} \cup\left\{\beta_{(\gamma, \delta)}: \gamma, \delta \in \Gamma\right\}$ satisfies the following (1.2):

$$
\begin{align*}
& \gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1}=\mu \geqq \lambda, i \in I_{\mu}, j \in J_{\mu} \text { imply } \tag{1.2}\\
& \alpha_{(\gamma, \lambda)} \lambda_{i}=\alpha_{(\mu, \lambda)} \lambda_{i} \text { on } J_{\mu} \times i I_{\lambda}, \text { and } \\
& \beta_{(\lambda, \gamma)} v_{j}=\beta_{(\lambda, \mu)} v_{j} \text { on } J_{\lambda} j \times I_{\mu}
\end{align*}
$$

where λ_{i}, v_{j} are the left multiplication by i and the right multiplication by j respectively ${ }^{4}$.

Further, in this case $\Gamma(\Lambda)$ can be selected as $C(\Lambda)$.
Proof. Suppose that S is isomorphic to the spined product $B \bowtie C(\Lambda)$ of the band $B(\Lambda)$ and a weakly C-inversive semigroup $C(\Lambda)$. Then, it follows from [4] that S is strictly inversive. Let $\gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1}=\mu \geqq \lambda, i \in I_{\mu}$ and $j \in J_{\mu}$. For any idempotent $(u, \lambda, v) \in B^{*},(i, \mu, j)(i u, \lambda, v j)=\left(i\left((j, i u) \alpha_{(\mu, \lambda)}\right), \lambda,\left((j, i u) \beta_{(\mu, \lambda)}\right) v j\right)=\left(i\left((j, i u) \alpha_{(\mu, \lambda)}\right), \lambda\right.$, $v j)$. On the other hand, $i\left(u_{\mu} j i u u_{\lambda}\right)=i\left((j, i u) \alpha_{(\mu, \lambda)}\right) u_{\mu \lambda}(j, i u) \beta_{(\mu, \lambda)}$. Hence, $i u=i((j$, $\left.i u) \alpha_{(\mu, \lambda)}\right)$. Therefore, $(i, \mu, j)(i u, \lambda, v j)=(i u, \lambda, v j)$. Similarly, we have $(i u, \lambda, v j)(i$, $\mu, j)=(i u, \lambda, v j)$. Since S is strictly inversive and since $(i, \gamma, j)^{-1}=\left(i, \gamma^{-1}, j\right)$, the equality $(i u, \lambda, v j)(i, \gamma, j)=(i, \gamma, j)(i u, \lambda, v j)$ holds. Hence, $\left(i u, \lambda \gamma,(v j, i) \beta_{(\lambda, \gamma)} j\right)=(i u, \lambda$, $v j)(i, \gamma, j)=(i, \gamma, j)(i u, \lambda, v j)=\left(i\left((j, i u) \alpha_{(\gamma, \lambda)}\right), \gamma \lambda, v j\right)$, and hence $i\left((j, i u) \alpha_{(\gamma, \lambda)}\right)=i u$ and $\left((v j, i) \beta_{(\lambda, \gamma)}\right) j=v j$. That is, the condition (1.2) holds. In this case, if we put $\{(i, \gamma, j) \in$ $S: i \in I_{\lambda}, j \in J_{\lambda}, \gamma \in \Gamma$ with $\left.\gamma \gamma^{-1}=\lambda\right\}=S_{\lambda}$ for each $\lambda \in \Lambda$ then each S_{λ} is a rectangular group (that is, the direct product of a rectangular band and a group) and S is a semilattice Λ of rectangular groups S_{λ}. Let B_{λ}^{*} be the set of idempotents of S_{λ}. Then, the structure decomposition of B^{*} is clearly $B^{*} \sim \sum\left\{B_{\lambda}^{*}: \lambda \in \Lambda\right\}$. It follows from the proof of Theorem 4 of [4] that the relation ξ on S defined by
$x \xi y$ if and only if $x, y \in S_{\tau}$ and $x^{-1} y \in B_{\tau}^{*}$ for some $\tau \in \Lambda$
is a congruence on S, and S is isomorphic to the spined product of $B^{*}(\Lambda)$ and $S / \xi(\Lambda)$. Now, for $x=(i, \gamma, j), y=(h, \delta, k)$ it is easily seen that

$$
\begin{equation*}
(i, \gamma, j) \xi(h, \delta, k) \text { if and only if } \gamma=\delta \tag{1.4}
\end{equation*}
$$

Hence the mapping $\varphi: S / \xi \rightarrow \Gamma(\Lambda)$ defined by $\overline{(i, \gamma, j)} \varphi=\gamma$ is an isomorphism, where $\overline{(i, \gamma, j)}$ denotes the ξ-class containing $(i, \gamma, j) . \quad$ Since $B \cong B^{*}$ (where \cong means "isomorphic") and since $S / \xi \cong \Gamma(\Lambda), S$ is isomorphic to the spined product $B \bowtie \Gamma(\Lambda)$.

Conversely, suppose that $S=C\left(\Gamma(\Lambda), B(\Lambda) ; \mathscr{I}, \mathscr{J},\left\{u_{\lambda}\right\},\left\{\alpha_{(\gamma, \delta)}\right\},\left\{\beta_{(\gamma, \delta)}\right\}\right)$ satisfies the condition (1.2). If S is strictly inversive then S is isomorphic to the spined product of $B^{*}(\Lambda)$ and a weakly C-inversive semigroup $C(\Lambda)$ (Theorem 4 of [4]). Hence, in this case $S \cong B \bowtie C(\mathbb{1})$ since $B^{*} \cong B$. Therefore, we next prove that S is strictly inversive. Let $(i, \gamma, j) \in S,(u, \lambda, v) \in B^{*}$ be two elements such that $(i, \gamma, j)\left(i, \gamma^{-1}, j\right)=(i$, $\left.\gamma \gamma^{-1}, j\right) \geqq(u, \lambda, v)$, and put $\gamma \gamma^{-1}=\mu$. Then, $\lambda \leqq \mu, i \in I_{\mu}$ and $j \in J_{\mu}$. Now, $(i, \gamma, j)(u$, $\lambda, v)=\left(i\left((j, u) \alpha_{(\gamma, \lambda)}\right), \gamma \lambda, v\right)$ and $(u, \lambda, v)(i, \gamma, j)=\left(u, \lambda \gamma,\left((v, i) \beta_{(\lambda, \gamma)}\right) j\right)$. On the other hand, $(u, \lambda, v)=(i, \mu, j)(u, \lambda, v)=\left(i\left((j, u) \alpha_{(\mu, \lambda)}\right), \lambda, v\right)$ and $(u, \lambda, v)=(u, \lambda, v)(i, \mu, j)=$ $\left(u, \lambda,\left((v, i) \beta_{(\lambda, \mu)}\right) j\right)$. Since $i\left((j, u) \alpha_{(\mu, \lambda)}\right)=u$ and $\left((v, i) \beta_{(\lambda, \mu)}\right) j=v$, it follows that $i u=u$ and $v j=v$. Hence by $(1.2), i\left((j, i u) \alpha_{(\gamma, \lambda)}\right)=i\left((j, i u) \alpha_{(\mu, \lambda)}\right)=i u=u$ and $\left((v j, i) \beta_{(\lambda, \gamma)}\right) j=$ $\left((v j, i) \beta_{(\lambda, \mu)}\right) j=v j=v$. Since $\gamma \lambda=\lambda \gamma$, this implies that $(i, \gamma, j)(u, \lambda, v)=(u, \gamma \lambda, v)=$

[^0]$(u, \lambda, v)(i, \gamma, j)$.
From the theorem above, we obtain the following result.
Corollary 4. If in particular $B(\Lambda)$ is a normal band ${ }^{5)}$, then a complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$ is uniquely determined up to isomorphism and is isomorphic to the spined product of $B(\Lambda)$ and $\Gamma(\Lambda)$.

Proof. We need only to show that for any complete regular product $S=C(\Gamma(\Lambda)$, $\left.B(\Lambda) ; \mathscr{I} \mathscr{J}^{\mathscr{L}}\left\{u_{\lambda}\right\},\left\{\alpha_{(\gamma, \delta)}\right\},\left\{\beta_{(\gamma, \delta)}\right\}\right)$ of $B(\Lambda)$ and $\Gamma(\Lambda)$ the system $\Delta=\left\{\alpha_{(\gamma, \delta)}: \gamma, \delta \in \Gamma\right\} \cup$ $\left\{\beta_{(\gamma, \delta)}: \gamma, \delta \in \Gamma\right\}$ necessarily satisfies the condition (1.2). Let $\gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1}=$ $\mu \geqq \lambda, i \in I_{\mu}$ and $j \in J_{\mu}$. For $e \in I_{\lambda}$, we have $i I_{\lambda}=i I_{\lambda} e=i e I_{\lambda} e$ (by the normality of $B(\Lambda)$) $=i e$. Similarly, for $f \in J_{\lambda}$ we have $J_{\lambda} j=f j$. Therefore, each of $i I_{\lambda}$ and $J_{\lambda} j$ consists of a single element. Hence, Δ satisfies the condition (1.2).

Remark. The spined product $B \bowtie \Gamma(\Lambda)$ of a band $B(\Lambda)$ and a weakly C-inversive semigroup $\Gamma(\Lambda)$ is always isomorphic to some complete regular product of $B(\Lambda)$ and $\Gamma(\Lambda)$. In fact:

$$
\left\{\begin{array}{l}
B \bowtie \Gamma(\mathbb{\Lambda})=\left\{[e, \gamma]: e \in B_{\lambda}, \gamma \in \Gamma_{\lambda}, \lambda \in \Lambda\right\}, \text { and } \tag{1.5}\\
\text { the multiplication in } B \bowtie \Gamma(\mathbb{A}) \text { is given by } \\
{[e, \gamma][f, \delta]=[e f, \gamma \delta]}
\end{array}\right.
$$

Let u_{λ} be a representative of B_{λ} for each λ of Λ. For $e \in B, e$ is uniquely expressed in the form $e=e^{\prime} u_{\lambda} e^{\prime \prime}, \lambda \in \Lambda, e^{\prime} \in I_{\lambda}, e^{\prime \prime} \in J_{\lambda}$. In this case, we shall denote $e^{\prime}, e^{\prime \prime}$ by e_{l}, e_{r} respectively. Hence, $e=e_{l} u_{\lambda} e_{r}\left(=e_{l} e_{r}\right)$. Now, for each pair (λ, τ) of $\lambda, \tau \in \Lambda$, define mappings $\alpha_{(\lambda, \tau)}: J_{\lambda} \times I_{\tau} \rightarrow I_{\lambda \tau}$ and $\beta_{(\lambda, \tau)}: J_{\lambda} \times I_{\tau} \rightarrow J_{\lambda_{\tau}}$ by

$$
u_{\lambda} f h u_{\tau}=\left((f, h) \alpha_{(\lambda, \tau)}\right) u_{\lambda \tau}\left((f, h) \beta_{(\lambda, \tau)}\right) \text { for } f \in J_{\lambda}, h \in I_{\tau} .
$$

Then, for $e=e_{l} e_{r} \in B_{\lambda}, f=f_{l} f_{r} \in B_{\tau}$, we have $e f=e_{l}\left(e_{r}, f_{l}\right) \alpha_{(\lambda, \tau)} u_{\lambda \tau}\left(e_{r}, f_{l}\right) \beta_{(\lambda, \tau)} f_{r}$. Next, for $\gamma, \delta \in \Gamma$, define mappings $\alpha_{(\gamma, \delta)}, \beta_{(\gamma, \delta)}$ by $\alpha_{(\gamma, \delta)}=\alpha_{\left(\gamma \gamma^{\left.-1, \delta \delta^{-1}\right)}\right.}$ and $\beta_{(\gamma, \delta)}=\beta_{\left(\gamma \gamma^{-1, \delta \delta^{-1}}\right.}$. Then, $\Delta=\left\{\alpha_{(\gamma, \delta)}: \gamma, \delta \in \Gamma\right\} \cup\left\{\beta_{(\gamma, \delta)}: \gamma, \delta \in \Gamma\right\}$ becomes a $C R$-factor set in $B=\left\{i u_{\lambda} j\right.$: $\left.i \in I_{\lambda}, j \in J_{\lambda}, \lambda \in \Lambda\right\}$ belonging to $\Gamma(\Lambda)$. Hence, we can consider the complete regular product $C\left(\Gamma(\Lambda), B(\Lambda) ; \mathscr{I}, \mathscr{J},\left\{u_{\lambda}\right\},\left\{\alpha_{(\gamma, \delta)}\right\},\left\{\beta_{(\gamma, \delta)}\right\}\right)=A$. If we define a mapping $\varphi: A \rightarrow B \bowtie \Gamma(\Lambda)$ by $\left(e_{l}, \gamma, e_{r}\right) \varphi=\left[e_{l} e_{r}, \gamma\right]$, then it is easily verified that φ is an isomorphism. Hence, $B \bowtie \Gamma(\mathbb{A})$ is isomorphic to the complete regular product A.
5) A band is said to be normal [left normal, right normal] if it satisfies the identity $x_{1} x_{2} x_{3} x_{4}=x_{1} x_{3} x_{2} x_{4}$ $\left[x_{1} x_{2} x_{3}=x_{1} x_{3} x_{2}, x_{1} x_{2} x_{3}=x_{2} x_{1} x_{3}\right]$.

§ 2. H.D-products.

Let $M=E \underset{\phi}{\times} \underset{\psi}{\times F}$ be the H.D-product of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)$ introduced in $\S 0$. Let V be the set of all idempotents of M.

Lemma 5. A semigroup is quasi-(C)-inversive if and only if it is isomorphic to an H.D-product of a left regular band, a weakly C-inversive semigroup and a right regular band.

Proof. By [8], $M=E \times \Gamma \times F$ is a quasi-inverse semigroup. Since $\Gamma(\Lambda)$ is a union of groups, it is easily proved that M is inversive. Hence, M is a quasi-(C)-inversive semigroup. From this result, it follows that if a semigroup A is isomorphic to an H.D-product of a left regular band, a weakly C-inversive semigroup and a right regular band then A is quasi- (C)-inversive. Conversely, assume that a semigroup A is quasi-(C)-inversive. Then, A is of course a quasi-inverse semigroup. Hence, it follows from [8] that if ξ is the least inverse semigroup congruence on A then A is isomorphic to an H.D-product of a left regular band, A / ξ and a right regular band. Since A / ξ is a homomorphic image of A and since A is a union of groups, A / ξ is also a union of groups. Therefore, A / ξ is a weakly C-inversive semigroup.

Next, consider the spined product of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)$:

$$
\left\{\begin{array}{l}
E \bowtie \Gamma \bowtie F(\Lambda)=\left\{[e, \gamma, f]: \gamma \in \Gamma_{\lambda}, e \in E_{\lambda}, f \in F_{\lambda}, \lambda \in \Lambda\right\}, \tag{2.1}\\
\text { and the multiplication in } E \bowtie \Gamma \bowtie F(\Lambda) \text { is given by } \\
{[e, \gamma, f][u, \delta, v]=[e u, \gamma \delta, f v] .}
\end{array}\right.
$$

For each $\lambda \in \Lambda$, let e_{λ}, f_{λ} be representatives of E_{λ}, F_{λ} respectively. Define mappings $\varphi_{1}: \Gamma \rightarrow \operatorname{End}(E), \quad \varphi_{2}: \Gamma \rightarrow \operatorname{End}(F)$ by $\gamma \varphi_{1}=\delta_{e_{\gamma \gamma-1}}, \gamma \varphi_{2}=\delta_{f_{\gamma \gamma-1}}$ respectively, where $\delta_{e_{\lambda}}\left[\delta_{f_{\lambda}}\right]$ denotes the inner endomorphism on $E[F]$ induced by $e_{\lambda}\left[f_{\lambda}\right]$. For each $\gamma \in$ Γ, put $\gamma \varphi_{1}=\rho_{\gamma}$ and $\gamma \varphi_{2}=\sigma_{\gamma}$. Then, it is easy to see that each of the systems $\left\{\rho_{\gamma}: \gamma \in \Gamma\right\}$ and $\left\{\sigma_{\gamma}: \gamma \in \Gamma\right\}$ satisfies (C3) and (C4). Accordingly, we can consider the H.Dproduct $E \times \Gamma \times F$. For any $(e, \gamma, f),(u, \delta, v) \in E \times \Gamma \times F,(e, \gamma, f)(u, \delta, v)=\left(e u^{\rho_{\gamma-1}}\right.$, $\left.\gamma \delta, f^{\sigma_{\partial v}}\right)=\left(e e_{\gamma \gamma^{-1}}^{\varphi_{1}} u e_{\gamma \gamma^{-1}}, \gamma \delta, f_{\partial \delta^{-1}} f f_{\delta \delta^{-1}} v\right)=(e u, \gamma \delta, f v)$. Hence, $\quad \Phi: E \bowtie \Gamma \bowtie F\left(\mathbb{\varphi _ { 1 }}\right) \rightarrow$ $E \times \Gamma \times F$ defined by $[e, \gamma, f] \Phi=(e, \gamma, f)$ is an isomorphism. From this result, we $\varphi_{1} \varphi_{2}$
can say that the spined product of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)$ is isomorphic to an H.D-product of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)$. Conversely, next we shall investigate about necessary and sufficient conditions on $\{\phi, \psi\}$ in order that $M=\underset{\phi}{\times \Gamma \times} \underset{\psi}{ } F$ be isomorphic to the spined product $E \triangleright \triangleleft \Gamma \bowtie F(\mathbb{\Lambda})$.

Lemma 6. M is strictly inversive if and only if it satisfies the following (2.1):

$$
\begin{equation*}
\gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1}=\mu \geqq \lambda, i \in E_{\mu}, j \in E_{\mu} \text { imply } \tag{2.1}
\end{equation*}
$$

$$
\begin{aligned}
& \rho_{\gamma} \lambda_{i}=\text { the identity mapping on } i E_{\lambda} \text {, and } \\
& \sigma_{\gamma} v_{j}=\text { the identity mapping on } F_{\lambda} j \text {. }
\end{aligned}
$$

Proof. Assume that M is strictly inversive. Let $\gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1}=\mu \geqq \lambda$, $i \in E_{\mu}$ and $j \in F_{\mu}$. For an element $(u, \lambda, v) \in M,(i u, \lambda, v j)(i, \mu, j)=(i u, \lambda, v j)$. Similarly, $(i, \mu, j)(i u, \lambda, v j)=(i u, \lambda, v j)$. Since M is strictly inversive, we have $(i, \gamma, j)(i u$, $\lambda, v j)=(i u, \lambda, v j)(i, \gamma, j)$. Therefore, we have $\left(i(i u)^{\rho_{\gamma-1}}, \gamma \lambda,\left(j^{\sigma_{\lambda}}\right) v j\right)=\left(i u\left(i^{\rho} \lambda\right), \lambda \gamma\right.$, $(v j)^{\sigma_{\nu}} j$), whence $i(i u)^{\rho_{\gamma-1}}=i u$ and $(v j)^{\sigma_{\gamma}} j=v j$. That is, $\rho_{\gamma^{-1}} \lambda_{i}=$ the identity mapping on $i E_{\lambda}$, while $\sigma_{\gamma} v_{j}=$ the identity mapping on $F_{\lambda} j$. Since $\gamma^{-1} \gamma=\gamma \gamma^{-1}$, it follows that $\rho_{\gamma} \lambda_{i}=$ the identity mapping on $i E_{\lambda}$ and $\sigma_{\gamma} v_{j}=$ the identity mapping on $F_{\lambda} j$. Thus, the condition (2.1) holds.

Conversely, assume that M satisfies (2.1). Let $(u, \lambda, v),(i, \mu, j)$ be idempotents of M such that $(u, \lambda, v)(i, \mu, j)=(i, \mu, j)(u, \lambda, v)=(u, \lambda, v)$, and (t, γ, s) an element of M such that $(t, \gamma, s)(t, \gamma, s)^{-1}=(i, \mu, j)$. Since $\left(u i^{\rho_{\lambda}}, \lambda \mu, v^{\sigma_{\mu}} j\right)=\left(i u^{\rho_{\mu}}, \mu \lambda, j^{\left.\sigma_{\lambda} v\right)}=\right.$ (u, λ, v), we have $\lambda \leqq \mu, u=i u^{\rho_{\mu}}$ and $v^{\sigma_{\mu}} j=v$. Further, $(t, \gamma, s)(t, \gamma, s)^{-1}=(i, \mu, j)$ implies $\gamma \gamma^{-1}=\mu \geqq \lambda$. Hence by (2.1), $\rho_{\gamma} \lambda_{i}=$ the identity mapping on $i E_{\lambda}$ and $\sigma_{\gamma} v_{j}=$ the identity mapping on $F_{\lambda} j$. Since $i u=u$ and $v j=v$, we have also $i u=i\left(i u^{\rho_{\mu}}\right)=$ $i\left((i u)^{\rho_{\mu}}\right)$ and $v j=(v j)^{\sigma_{\mu}} j$. The equality $(t, \gamma, s)\left(t, \gamma^{-1}, s\right)=(i, \mu, j)$ implies ($t t^{\rho_{\gamma}-1}$, $\left.\gamma \gamma^{-1}, s^{\sigma_{\gamma}-1} s\right)=(i, \mu, j)$, and hence $(t, \mu, s)=(i, \mu, j)$. That is, $(t, \gamma, s)=(i, \gamma, j)$. From this result, it follows that $(i, \gamma, j)(u, \lambda, v)=\left(i u^{\rho_{\gamma-1}}, \gamma \lambda, j^{\sigma_{\lambda}} v\right)=\left(i u^{\rho_{\gamma}-1}, \gamma \lambda, v\right)=\left(i(i u)^{\rho_{\gamma}-1}\right.$, $\gamma \lambda, v)=(i(i u), \gamma \lambda, v)=(i u, \gamma \lambda, v)=(u, \gamma \lambda, v) . \quad$ Similarly, $(u, \lambda, v)(i, \gamma, j)=(u, \lambda \gamma, v)$. Since $\lambda \gamma=\gamma \lambda$ is satisfied, the equality $(i, \gamma, j)(u, \lambda, v)=(u, \lambda, v)(i, \gamma, j)$ holds. Hence, M is strictly inversive.

Theorem 7. M is isomorphic to the spined product of a regular band and a weakly C-inversive semigroup if and only if it satisfies (2.1). Further, in this case M is isomorphic to $E \bowtie \Gamma \bowtie F(\Lambda)$.

Proof. If M satisfies the condition (2.1), then it follows from Lemma 6 that M is strictly inversive. Hence, in this case M is isomorphic to the spined product of the regular band V (the band of idempotents of M) and a weakly C-inversive semigroup T (Theorem 4 of [4]). It is also easily seen that $V \cong E \bowtie F(\Lambda)$. For each $\lambda \in \Lambda$, put $M_{\lambda}=\left\{(h, \gamma, k): \gamma \gamma^{-1}=\lambda, \gamma \in \Gamma, h \in E_{\gamma \gamma^{-1}}, k \in F_{\gamma \gamma^{-1}}\right\}$. Then, the structure decomposition of M is $M \sim \Sigma\left\{M_{\lambda}: \lambda \in \Lambda\right\}$. If we define a relation ξ on M by
for any $(h, \gamma, k),(u, \delta, v) \in M,(h, \gamma, k) \xi(u, \delta, v)$ if and only if $(h, \gamma, k),(u, \delta, v) \in M_{\lambda}$ and $(h, \gamma, k)(u, \delta, v)^{-1} \in E\left(M_{\lambda}\right)$ for some $\lambda \in \Lambda$, where $E\left(M_{\lambda}\right)$ is the set of idempotents of M_{λ}, then $M \cong E \bowtie M / \xi \bowtie \triangleleft(\Lambda)$ follows from the proof of Theorem 4 of [4]. On the
other hand, it is easily proved that $(h, \gamma, k) \xi(u, \delta, v)$ if and only if $\gamma=\delta$. Hence, Φ : $M / \xi \rightarrow \Gamma$ defined by $\overline{(h, \gamma, k)} \Phi=\gamma$, where $\overline{(h, \gamma, k)}$ is the ξ-class containing (h, γ, k), is an isomorphism. Hence $M / \xi \cong \Gamma$, and accordingly $M \cong E \bowtie \Gamma \bowtie F(\Lambda)$.

Conversely, if M is isomorphic to the spined product of a regular band and a weakly C-inversive semigroup then M is clearly strictly inversive (Theorem 4 of [4]). Hence, in this case it follows from Lemma 6 that M satisfies the condition (2.1).

Corollary 8. If in particular $E(\Lambda), F(\Lambda)$ are a left normal band, a right normal band respectively, then an H.D-product of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)$ is uniquely determined up to isomorphism and is isomorphic to the spined product of $E(\Lambda), \Gamma(\Lambda)$ and $F(\Lambda)$.

Proof. We need only to show that for any H.D-product $E \times \Gamma \times F,\{\phi, \psi\}$ (hence, $\left\{\rho_{\gamma}: \gamma \in \Gamma\right\} \cup\left\{\sigma_{\gamma}: \gamma \in \Gamma\right\}$, where $\rho_{\gamma}=\gamma \phi$ and $\sigma_{\gamma}=\gamma \psi$) satisfies the condition (2.1). For μ, λ, e, f, i such that $\lambda, \mu \in \Lambda, \mu \geqq \lambda, i \in E_{\mu}$ and $e, f \in E_{\lambda}$, we have $i e=i e f=i f e=i f$. Hence, $i E_{\lambda}$ consists of a single element. Therefore, $\rho_{\gamma} \lambda_{i}=$ the identity mapping on $i E_{\lambda}$ if $\gamma \gamma^{-1}=\mu$. Similarly, $\sigma_{\gamma} v_{j}=$ the identity mapping on $F_{\lambda} j$ if $j \in F_{\mu}, \mu \geqq \lambda, \gamma \in \Gamma$, $\gamma \gamma^{-1}=\mu$.

§ 3. Special cases.

In [8], the concept of an L.H.D-product of a left regular band and an inverse semigroup [an R.H.D-product of an inverse semigroup and a right regular band] has been introduced. For L.H.D-products and R.H.D-products, we can obtain the following results in the same manner as we established Theorem 7 and Corollary 8.

Theorem 9. An L.H.D-product $\underset{\phi}{\times} \Gamma$ [an R.H.D-product $\Gamma \times F]$ is isomorphic to the spined product of a left regular ${ }^{\phi}$ band and a weakly C-inversive semigroup [a weakly C-inversive semigroup and a right regular band] if and only if it satisfies the following (3.1):

$$
\begin{align*}
& \gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1}=\mu \geqq \lambda, i \in E_{\mu} \text { imply } \tag{3.1}\\
& \rho_{\gamma} \lambda_{i}=\text { the identity mapping on } i E_{\lambda} \text {, where } \rho_{\gamma}=\gamma \phi . \\
& {\left[\gamma \in \Gamma, \lambda \in \Lambda, \gamma \gamma^{-1}=\mu \geqq \lambda, j \in F_{\mu}\right. \text { imply }} \\
& \left.\sigma_{\gamma} v_{j}=\text { the identity mapping on } F_{\lambda} j \text {, where } \sigma_{\gamma}=\gamma \psi\right] .
\end{align*}
$$

Further, in this case $\underset{\phi}{\times} \Gamma \cong E \bowtie \Gamma(\mathbb{\Lambda})[\Gamma \times \underset{\psi}{\times} \cong \Gamma \bowtie \Delta F(\mathbb{\Lambda})]$.
Corollary 10. If $E(\Lambda)[F(\Lambda)]$ is a left normal band [a right normal band], then an L.H.D-product of $E(\Lambda)$ and $\Gamma(\Lambda)$ [an R.H.D-product of $\Gamma(\Lambda)$ and $F(\Lambda)]$ is
uniquely determined up to isomorphism and is isomorphic to the spined product of $E(\Lambda)$ and $\Gamma(\Lambda)[\Gamma(\Lambda)$ and $F(\Lambda)]$.

Example. Let Ω and K be the weakly C-inversive semigroup and the band given by the multiplication tables (D 1) and (D2) respectively. The basic semilattice Π of Ω consists of two elements 0,1 , and the structure decomposition of Ω is $\Omega \sim \sum\left\{\Omega_{\lambda}\right.$: $\lambda \in \Pi\}$, where $\Omega_{0}=\{0\}$ and $\Omega_{1}=\{1, \gamma\}$. On the other hand, the structure decomposition of K is $K \sim \sum\left\{K_{\lambda}: \lambda \in \Pi\right\}$, where $K_{0}=\{e, f\}, K_{1}=\{1\} . \quad K$ is clearly a right regular band. Now, $\Omega \bowtie K(\mathbb{I I})=\{[0, e],[0, f],[1,1],[\gamma, 1]\}$. Let σ_{0}, σ_{1} be the inner

Ω	0		1	γ
0	0	0	0	
	0	1	γ	
		0		
	0	γ	1	

K	e	f	1
e	e	f	e
f	e	f	f
1	e	f	1
(D 2)			

endomorphisms on $K(\Pi)$ induced by 0,1 , and σ_{γ} an endomorphism on $K(\Pi)$ such that σ_{γ} maps $1, e, f$ to $1, f, e$ respectively. Define $\varphi: \Omega \rightarrow \operatorname{End}(K)$ by $\tau \varphi=\rho_{\tau}(\tau=0,1, \gamma)$. Since $\left\{\sigma_{0}, \sigma_{1}, \sigma_{\gamma}\right\}$ satisfies (C3) and (C4), we can consider the R.H.D-product $\Omega \times K$. Of course, $\Omega \times K=\{(0, e),(0, f),(1,1),(\gamma, 1)\}$. However, $\Omega \times K$ is not strictly inversive. In fact: $(1,1)>(0, e)$ and $(\gamma, 1)(\gamma, 1)^{-1}=(1,1)$, but $(0, e)(\gamma, 1)=\left(\gamma, e^{\sigma_{\gamma}}\right)=$ $(0, f) \neq(0, e)=\left(0,1^{\sigma_{0} e}\right)=(\gamma, 1)(0, e)$. Hence, $\Omega \times \underset{\varphi}{ } \not \not \nsubseteq \bowtie X($ II). Thus, we can say that an R.H.D-product of a weakly C-inversive semigroup C and a right regular band R is not necessarily isomorphic to the spined product of C and R.

References

[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, I, Amer. Math. Soc., Providence, R. I., 1961.
[2] T. E. Hall, Orthodox semigroups, Pacific J. Math., 39 (1971), 677-686.
[3] R. J. Warne, The structure of a class of regular semigroups, II, Kyungpook Math. J., 11 (1971), 165-167.
[4] M. Yamada, Strictly inversive semigroups, Science Reports of Shimane University, 13 (1964), 128-138.
[5] M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math., 21 (1967), 371-392.
[6] M. Yamada, On a regular semigroup in which the idempotents form a band, Pacific J. Math., 33 (1970), 261-272.
[7] M. Yamada, Orthodox semigroups whose idempotents satisfy a certain identity, Semigroup Forum, 6 (1973), 113-128.
[8] M. Yamada, Note on a certain class of orthodox semigroups, Semigroup Forum, 6 (1973), 180-188.
[9] M. Yamada, On regular extensions of a semigroup which is a semilattice of completely simple semigroups, Mem. Fac. Lit. \& Sci., Shimane Univ., Nat. Sci., 7 (1974), 1-17.
[10] M. Yamada, Some remarks on regular extensions of Cliffordian semigroups, Mem. Fac. Lit. \& Sci., Shimane Univ., Nat. Sci., 7 (1974), 18-28.

[^0]: 4) That is, λ_{i}, ν_{j} are mappings such that $x \lambda_{i}=i x$ and $x \nu_{j}=x j$.
