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Introduction

In 1993, Burstall-Ferus-Pedit-Pinkall([BFPP]) found a certain class of solu-
tions to the harmonic map equations of R2 into compact symmetric space and
they called a harmonic map which belongs to this class a harmonic map of finite
type. In case of two-torus, a sufficient condition for a harmonic map into com-
pact symmetric space be of finite type is semisimplicity of the (1, 0)-part of the
pullback of the Maurer-Cartan form for target symmetric space, which is denoted
by α′

m. In this case, the corresponding harmonic map is said to be of semisimple
finite type. These results and notions were extended as primitive harmonic map
of semisimple finite type for k-symmetric spaces as target in [BP] and [B]. Using
this sufficient condition, they showed that any non-conformal harmonic map of
two-torus into compact symmetric space of rank one is of finite type. After their
works, it was shown that some harmonic maps of two-torus are lifted to primitive
harmonic maps of semisimple finite type into some k-symmetric space. For ex-
amples, non-isotropic weakly conformal harmonic two-torus essentially has such
a characterization when the target manifold is

(1) a sphere or a complex projective space([B]),
(2) G2(C

4) or HP 3([U1], [U2]),

where G2(C
4) is a complex Grassmannian manifold of 2-planes in C4 and HP 3 is

a 3-dimensional quaternionic projective space. After a while, Burstall and Pedit
([BP2]) showed that any primitive harmonic map of semisimple finite type of
R2 into a k-symmetric space is in a dressing orbit of a vacuum solution, where
vacuum solution is a primitive harmonic map with α′

m(∂/∂z) being a constant
normal matrix for fixed coordinate z on R2, hence of semisimple finite type. After
that, McIntosh([M2], [M3]) gave another method of constructing non-isotropic
harmonic maps (which is covered by primitive harmonic map of semisimple finite
type)of R2 into a complex projective space. Moreover, he showed that there is
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a bijective correspondence between the spectral data {π : X → P1,L} which
satisfies the certain conditions and the linearly full non-isotropic harmonic maps
of R2 into a complex projective space, which are of finite type by a recent result
obtained in [OU].

In this paper, we review the McIntosh’s construction of harmonic maps into
complex projective space and give some examples coming from some spectral
curves of genus zero and one. Moreover, we give some examples of harmonic
maps of R2 into G2(C

4) extending the method of McIntosh’s construction. They
are harmonic maps of non-semisimple finite type. When the pullback of the
Maurer-Cartan form α′(∂/∂z) is a constant matrix for fixed coordinate z, the
corresponding harmonic map is R2-equivariant and of finite type. If α′(∂/∂z)
is a constant matrix with respect to some fixed coordinate system, then it is a
semisimple matrix, however, α′

m(∂/∂z) is not always semisimple. When α′
m(∂/∂z)

is non-semisimple matrix, there are essentially two types of α′ after some choices
of the basis and their S1-families. One of them is obtained by spectral curve
of genus zero and some hyperplane line bundle of degree 3. The other one is
obtained by dressing action of the former one. It is observed that the dressing
actions preserves the isotropy order of the harmonic map. The harmonic map
obtained by the spectral curves of higher genus is in the dressing orbit of the
harmonic map with same isotropy order obtained by the spectral curves of genus
zero. In fact, the relation between the dressing actions on harmonic maps of finite
type and the dressing actions on the spectral data is made clear.

1. Review of McIntosh’s theory

First of all, we give a definition of the spectral data :
Definition. A triple (X, π,L) is said to be a spectral data if they satisfy the

following conditions ;
(1) X is a compact Riemann surface of genus p with real structure (i.e., anti-
holomorphic involution) ρX ,
(2) there is a holomorphic covering map π : X −→ P1 with deg(π) = n+ 1 such
that π ◦ ρX = π−1(=a real structure of P1) and the divisor of π is given by

(π) = (m+ 1)P0 + P1 + · · ·Pn−m − (m+ 1)Q0 −Q1 − · · · −Qn−m,

where Qj = ρX(Pj) for j = 0, 1, · · · , n−m,

(3) L is a complex line bundle over X of degree (n+p) such that f : L⊗ρX∗L −→
OX(R) is a ρX -equivariant (ρX∗f = f) isomorphism, where R is the ramification
divisor of π and OX(R) is the line bundle corresponding to R,
(4) ρX fixes each point of the preimage XR of th equator S1

λ of P1
λ, π has no

branch points on XR and f is non-negative on XR.
Given a spectral data (X, π,L), we see from the Riemann-Hurwitz formula

that deg(R) = 2n + 2p. Then, the condition (4) above guarantees that there



SPECTRAL CURVES, DRESSING ACTIONS AND HARMONIC MAPS 89

is some positive divisor D on X with deg(D) = n + p such that R = D +
ρX∗(D). If we identify L with a divisor line bundle OX(D0) for some divisor
D0 on X, the condition (3) above implies that f is a rational function on X
with a divisor (f) given by (f) = (D0 + ρX∗(D0) −D − ρX∗(D)). We introduce
a Hermitian inner product on H0(X,L), which is the vector space of all global
holomorphic sections of L. Denote by π∗L the direct image sheaf of L by π,
i.e., Γ(U, π∗L) = Γ(π−1(U),L) for arbitrary open subset U of P1

λ. Therefore,
H0(X,L) = H0(P1

λ, π∗L). Set A = P1
λ \ {0,∞} and I = I0 ∪ I∞, where I0 (resp.

I∞) is an open neighborhood around λ = 0 (resp. λ = ∞) which contains no
branch points except λ = 0 (resp. except λ = ∞). Hence, P1

λ = A ∪ I. Next, set
XA = π−1(A) and XI = π−1(I) so that X = XA ∪XI . Then we define a bilinear
form h on Γ(XA,L) × Γ(XA,L) by

h : Γ(XA,L) × Γ(XA,L) 3 (v, w) → Tr(f · v ⊗ ρX∗w) ∈ C[λ−1, λ],

where C[λ−1, λ] is the ring generated by λ, λ−1 over the field C. Notice that
f · v ⊗ ρX∗w is a holomorphic section of OX(R) over XA, whence its trace is a
holomorphic function on A. Take a point P of P1

λ. Then we have

h(v, w)(P ) =
∑

x∈π−1(P )

f(x) · v(x)w(ρX(x)).

The summation is taken over all points {x0, · · · , xn} = π−1(P ) and it is counted
with multiplicities if P is a (or an image of) branch point. Since a global holomor-
phic function on P1

λ is a constant and f is ρX -equivariant, we see that h |H0×H0

defines a Hermitian symmetric form. The positive definiteness of h |H0×H0 de-
pends on the choice of f . The condition (4) of the spectral data guarantees that
h |H0×H0 is positive definite. Thus, h |H0×H0 is a Hermitian inner product.

Lemma 1.1([M2]). π∗L is a rank (n+ 1) trivial bundle over P1
λ.

Since h0(X,L) = dimH0(X,L) = n + 1, it follows from the Riemann-Roch
formula that h1(X,L) = 0, in which case L is called non-special.

To construct a map from R2, we need to define a parallel transport of a
section of L to a section of a line bundle over R2. Let J(X) be the Jacobian
variety of the spectral curve X. The set of all line bundles L ∈ J(X) which satisfy
ρX∗L ∼= L−1 forms a subgroup of J(X) by a tensor product. We denote by JR(X)
the connected component of the identity of this subgroup. For any L ∈ JR(X),

we see that a line bundle L ⊗ L satisfies (L ⊗ L) ⊗ ρX∗(L⊗ L) ∼= OX(R). In
this case, we say that L ⊗ L is real. Note that when we replace L by L ⊗ L
for L ∈ JR(X) we see that f is still non-negative on the preimage XR of the
equator S1

λ. Since deg(L⊗L) = n+ p, it follows from Lemma 1.1 that π∗(L⊗L)
is a rank (n + 1) trivial bundle and h0(X,L ⊗ L) = n + 1. Now, consider a
complex vector bundle H0(X) → JR(X) of which the fibre at L ∈ JR(X) is
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given by a (n+ 1)-dimensional complex vector space H0(X,L⊗ L). Recall that
X = XA ∪XI . A line bundle L ∈ J(X) is trivialized over XA or XI . We denote
by θA and θI trivializing sections over XA and XI , respectively. Over XA∩XI , we
have a transition relation θI = eaθA. Thus, for L ∈ JR(X), we have a 1-cocycle
(ea, XA, XI). Conversely, a 1-cocycle (ea, XA, XI) defines a line bundle L with ea

as a transition function. Then, consider a map L : g = Γ(XA∩XI ,OX) −→ J(X)
defined by a → L(a), where L(a) is a line bundle with a transition function ea.
Set gR = {a ∈ g | ρX∗a = −a}. Then, we see that Im(L |gR

) = JR(X). Now,

fix a trivializing section θ for L over XI such that Tr(f · θ ⊗ ρX∗θ) = 1. For
a ∈ gR, set θa = θ ⊗ θI , which is a trivializing section for L ⊗ L(a) over XI .
For σa ∈ Γ(XA,L⊗ L(a)), define ιa(σa) by ιa(σa) = ea(σaθ

−1
a )θ. Then, we have

ιa(σa) ∈ Γ(XA,L)(see [M2]).
Consider a map a : R2 −→ gR defined by z → a(z, z) = zζ−1 − zζ, where

ζ is considered only on XA ∩ (U0 ∪ U∞), where U0 (resp. U∞) is a connected
component of X0 (resp. X∞) which contains P0 (resp. Q0). Then L(a) is a 2-
parameter subgroup of JR(X). Fix h-orthonormal basis {τj} for H0(X,L) such
that (H0(X,L), h) −→ (Cn+1, < , >) is isometric. We decompose the vector
bundle H0(X) → R2 into line subbundles which are orthogonal to each other.
For the purpose, define the following line bundles, of which the sheaf of germs of
holomorphic sections are subsheaves of the sheaf of germs of holomorphic sections
of L :











Lj = L⊗ OX(−(m− j)P0 − jQ0 −
n−m
∑

i=1

Pi) for j = 0, 1, · · · ,m− 1,

Lm = L⊗ OX(−mQ0).

(1.1)

Then, each Lj is non-special for j = 0, 1, · · · ,m. Therefore, we also see that
each Lj ⊗ L(a) is non-special for j = 0, 1, · · · ,m and for arbitrary a ∈ gR. The
Riemann-Roch theorem yields that

h0(X,Lj ⊗ L(a)) =

{

1 for j = 0, 1, · · · ,m− 1,

n+ 1 −m for j = m.

We have

H0(X,L⊗ L(a)) =

m
⊕

j=0

H0(X,Lj ⊗ L(a)) (h− orthogonal sum).

Let {s0, · · · , sn} be an orthonormal basis for H0(X,L) such that sj ∈ H0(X,Lj)
for j = 0, 1, · · · ,m− 1 and sm, · · · , sn ∈ H0(X,Lm). Set si(z) = ι−1

a (si). Then
{s0(z), · · · , sn(z)} is an orthonormal basis for H0(X,L⊗L(a)) such that sj(z) ∈
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H0(X,Lj⊗L(a)) for j = 0, 1, · · ·m−1 and sm(z), · · · , sn(z) ∈ H0(X,Lm⊗L(a))
(see [M2]). Define F (z, λ), which depends only on z and λ by

(s0(z), · · · , sn(z)) = (s0, · · · , sn)F (z, λ).(1.2)

Let f(ζ) be arbitrary regular algebraic function of ζ on XA. Define Y (z, λ) by

(s0(z), · · · , sn(z))Y (z, λ) = f(ζ)(s0(z), · · · , sn(z)).

Then we obtain Y (z, λ) = AdF (z, λ)−1 · Y (0, λ) and dY = [Y, F−1dF ], i.e.,
Y (z, λ) is a polynomial Killing field. Thus, the corresponding map is a primitive
harmonic map of finite type and a non-isotropic harmonic map ϕ : R2 −→ CPn

is given by the first column vector of F (z, 1). To obtain an explicit form of the
non-isotropic harmonic map ϕ, we may use (1.2). Let {ζ0, · · · , ζn} be the element
of π−1(1), which are different from each other by the condition of the spectral
data (4). We evaluate the equation (1.2) at ζ = ζ0, · · · , ζn. Set

M(z) =







s0(z) |ζ0
· · · sn(z) |ζ0

...
. . .

...
s0(z) |ζn

· · · sn(z) |ζn






(1.3)

Then, (1.3), together with (1.2), yields that M(z) = M(0)F (z, 1). Now, we must
show that M(0) is non-singular. Let S0, · · · , Sn be a local frame around π−1(1)

which has the properties Si(ζj) = 0 for i 6= j and f · Si(ζi)ρX∗Si(ζi) = 1. If we
express si around π−1(1) as si =

∑n
j=0 vijSj , then we see that

δij = h(si, sk)

=
n

∑

j=0

(f ·
∑

l

vilSl(ζj)
∑

m

vkmSm(ρX∗ζj)

=

n
∑

j=0

vijvkj ,

which shows thatM(0) is non-singular. Therefore, we have F (z, 1) = M(0)−1M(z).

2. Some examples of harmonic maps of R2 into CPn

In this section, we give some examples of harmonic maps of R2 into complex
projective space via McIntosh’s construction.
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Example 2.1. Consider π : CP 1
ζ −→ CP 1

λ defined by ζ 7→ λ = ζ−3. Then

(π) = 3(∞) − 3(0) and R = 2(∞) + 2(0), we must regard P0 = {ζ = ∞},
Q0 = {ζ = 0}. Define L by L = OX(2(∞)). Then we have











L0 = L ⊗ OX(−2P0) = OX ,

L1 = L ⊗ OX(−P0 −Q0) = OX((∞) − (0)),

L2 = L ⊗ OX(−2Q0) = OX(2(∞) − 2(0)),

which implies that we may set s0 = 1, s1 = ζ, s2 = ζ2 and s0(z) = ea, s1(z) =
eaζ, s2(z) = eaζ2, where a = zζ − zζ−1. Since π−1(1) = {1, ω, ω2}, where
ω = (−1 −

√
−3)/2, we have

M =





1 1 1
1 ω ω2

1 ω2 ω



 , M(z) =





ez−z ez−z ez−z

ezω−zω ezω−zωω ezω−zωω2

ezω2−zω2

ezω2−zω2

ω2 ezω2−zω2

ω



 .

Therefore, we can easily obtain F (z, 1) = M−1 ·M(z) and we see that ϕ : R2 −→
CP 2 is a harmonic map of isotropy order 2. Note that ϕ is doubly periodic.
We recommend the readers to obtain the explicit form of F (z, 1). In the same
way, we may calculate F (z, 1) in the case where π is given by π(ζ) = ζ−(n+1),
where we choose L = OX(n(∞)) and obtain a harmonic map ϕ : R2 −→ CPn

of isotropy order n (cf. [T]), which is doubly periodic for n = 1, 2, 3, 5. The case
of π(ζ) = ζn+1 is also similar, where we choose L = OX(n(0)) and we see that
1, ζ−1, · · · , ζ−n are global sections, respectively, of L0,L1, · · · ,Ln.

Example 2.2. Consider π : X −→ P1
λ defined by π(ζ) = 1

α
ζ3 (ζ−α)

(ζ−α−1)
= λ,

where 0 < α < 1. Then we have (π) = 3(0) + (α) − 3(∞) − (α−1), (R) =
2(0) + (p) + (p−1) + 2(∞) and X = P1

ζ , where

p =
α2 + 2 −

√
α4 − 5α2 + 4

3α
.

Hence, there is no branch points on XR. In this case, P0 = {ζ = 0}, P1 =
{ζ = α}, Q0 = {ζ = ∞} and Q1 = {ζ = α−1}. Define L = OX(3P0) Then
f : L ⊗ ρX∗L −→ OX(R) is given by

f =
−ζ

(ζ − p)(ζ − p−1)
,

which is non-negative on XR. We have











L0 = L ⊗ OX(−2P0 − P1) = OX(P0 − P1),

L1 = L ⊗ OX(−P0 −Q0 − P1) = OX(2P0 −Q0 − P1),

L2 = L ⊗ OX(−2Q0) = OX(3P0 − 2Q0).
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Set














s0 =
1√
3α

ζ − α

ζ
, s1 =

1√
3α

ζ − α

ζ2
,

s2 =

√

1 − α2

3α

1

ζ2
, s3 =

√

1

3α

(1 − αζ)

ζ3
.

We see that s0 is a global section of L0, s1 is a global section of L1 and s2, s3
global sections of L2. Evaluating h(si, sj) at λ = 0(π−1(0) = {0, 0, 0, α}), we
easily see that s0, · · · , s3 are orthonormal basis of H0(X,L). A si(z) is given
by si(z) = ea(z,ζ)si for i = 0, · · · , 3, where a(z, ζ) = ζ−1z − ζz. We obtain
F (z, 1) = AdM(0)−1diag(a(z, ζ0), · · · , a(z, ζ3)), where {ζ0, · · · , ζ3} = π−1(1).

Example 2.3. We will give an example of which the spectral curve is an elliptic
curve. First of all, we will address some fundamental facts on elliptic functions.
[Weierstrass zeta-function]
Let L = Z⊕ τZ, where τ is a complex number with Im(τ) > 0. The Weierstrass
zeta-function ζw(u) is defined by

ζw(u) =
1

u
+

∑

ω∈L\(0,0)

{ 1

(u− ω)
+

u

ω2
+

1

ω
},

which has a pole of order 1 at u = 0. Set

P(u) = − d

du
ζw(u) .

This function uniformly converges on each compact subset and it is called Weier-
strass P−function. We have

d

du
P(u) = −2

∑

ω∈L

1

(u− ω)3
.

The definition of the summation means that d
duP(u) is invariant under the trans-

lations u → u + 1 and u → u + τ . Hence, d
duP(u) is doubly-periodic function.

Therefore we may set
{

P(u+ 1) − P(u) = c1

P(u+ τ) − P(u) = c2

where c1, c2 are some complex numbers. On the other hand, since P(u) is obvi-
ously even function, by setting u = −1/2 or u = −τ/2 in the above equations
we have c1 = c2 = 0. Therefore we see that the Weierstrass P−function is
doubly-periodic with periods 1, τ . Integrating P−function, we have

{

ζw(u+ 1) − ζw(u) = A

ζw(u+ τ) − ζw(u) = B
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where A,B are some complex numbers. Notice that the residue theorem yields
that

1

2π
√
−1

∫

∂Pa

ζw(u)du = 1

where Pa is some fundamental domain of the torus R2/L. The integration of
ζw(u) on Pa turns out to be Aτ −B, which yields, so-called, Legendre’s relation :

Aτ −B = 2π
√
−1.

[Jacobi’s 1st theta function]
Let p(u) = exp(π

√
−1u), q = exp(π

√
−1τ). Then the Jacobi’s 1st theta function

θ1(u) is defined by

θ1(u) =
√
−1

∑

n∈Z

(−1)np(u)2n−1q(n−
1

2
)2 .

By changing n→ −n+ 1 in the summation we see that θ1(u) is an odd function.
In particular, we have θ1(0) = 0. Moreover, since (n− 1

2)2+(2n−1) = (n+ 1
2 )2−1,

the definition of the summation gives the following relations :

{

θ1(u+ 1) = −θ1(u)
θ1(u+ τ) = −p(u)−2q−1θ1(u)

(2.1)

With these facts in mind, we may construct a meromorphic function on some
elliptic curve.

Let X = R2/L be a two-torus with lattice L = Z ⊕
√
−1tZ, where t is some

positive real number. In this case, we have ζw(u) = ζw(u). Define a function
ψ(z, z, u) on X by

ψ(z, z, u) = exp((ζw(u− P0) −Au)z − (ζw(u−Q0) − Au)z)×
(2.2)

θ1(u− F1) · · ·θ1(u− Fk)θ1(u− P0)
mθ1(u− P1) · · ·θ1(u− Pn−m)θ1(u−G)

θ1(u− E1)θ1(u− E2) · · ·θ1(u−En+k+1)

where


























L ∼= OX(D), D =

n+k+1
∑

i=1

Ei −
k

∑

i=1

Fi,

G = D −mP0 −
n−m
∑

i=1

Pi + z − z .
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Hence, L is a divisor line bundle of degree (n + 1). It follows from (2.1) that
ψ(z, z, u+ 1) = ψ(z, z, u), ψ(z, z, u+

√
−1t) = ψ(z, z, u), i.e., ψ(z, z, u) is a mero-

morphic function on X with fixed z, z. Moreover, since ψ behaves like exp(zζ−1+
O(ζ)) near P0 and behaves like exp(−zζ + O(1/ζ)) near Q0 and ψ has a divisor
−D on X \{P0, Q0},we see that ψ(z, z, u)θA belongs to H0(X,OX(D)⊗L(a))(see
[T]).

Now, consider a function

g(u) = exp(4π
√
−1u)

(θ1(u− R1)

θ1(u− R2)

)4

on X, where R1 =
√
−1/4, R2 = 3

√
−1/4 = ρX(R1) and ρX(P ) = P mod L. It

follows from (2.1) that g(u) is a meromorphic function on X. Define a covering
map π : X −→ CP 1 by π(u) = g(u)/g(

√
−1/2). Then we have

{

(π) = 4(R1) − 4(R2)

R = 3(R1) + (R3) + (ρX(R3)) + 3(R2)

for some point R3 ∈ X \ XR. Therefore, we have P0 = R1, Q0 = R2. Let
L = OX(3R1 + R3) be a line bundle over X of degree 4. We see that π−1(1) =
{0, 1/2,

√
−1/2, 1/2 +

√
−1/2}. It follows that each point of π−1(1) is fixed by

the real structure ρX . In this case, we have L0 = OX(R3),L1 = OX(R1 + R3 −
R2),L2 = OX(2R1 + R3 − 2R2),L3 = OX(3R1 + R3 − 3R2). Set η0 = 0, η1 =
1/2, η2 =

√
−1/2, η3 = 1/2 +

√
−1/2. By choosing some constants c0, c1, c2, c3,

we may define an orthonormal basis {si} of H0(X,L) by

si = ci
θ1(u− η0) · · ·θ1(u− η̂i) · · · θ1(u− η3)

θ1(u− R1)3θ1(u−R3)
,

where η̂i = 3R1 + R3 − (η0 + · · · ηi−1 + ηi+1 + · · · + η3). In fact, it follows from
the positive definiteness of h that η̂i 6= ηi. Now, we set






















































s0(z) =
1

c0

θ1(u− R1)
3θ1(u−R3 − z − z)

θ1(u− η̂0)θ1(u− η1)θ1(u− η2)θ1(u− η3)
exp(f(z, u)),

s1(z) =
1

c1

θ1(u− R1)
2θ1(u−R2)θ1(u−R1 − R3 + R2 − z − z)

θ1(u− η0)θ1(u− η̂1)θ1(u− η2)θ1(u− η3)
exp(f(z, u)),

s2(z) =
1

c2

θ1(u− R1)θ1(u− R2)
2θ1(u− 2R1 −R3 + 2R2 − z − z)

θ1(u− η0)θ1(u− η1)θ1(u− η̂2)θ1(u− η3)
exp(f(z, u)),

s3(z) =
1

c3

θ1(u− R2)
3θ1(u− 3R1 −R3 + 3R2 − z − z)

θ1(u− η0)θ1(u− η1)θ1(u− η2)θ1(u− η̂3)
exp(f(z, u)),

where f(z, u) = exp((ζw(u−R1)−Au)z− (ζw(u−R2)−Au)z). Then F (z, 1) =
M−1 ·M(z) is computable and the first column vector of F (z, 1) gives a harmonic
map of R2 into CP 3 with isotropy order 3(i.e., superconformal harmonic map).
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3. Non-isotropic harmonic maps of R2 into G2(C
4)

Represent G2(C
4) as G2(C

4) = G/K. Denote by g and k the Lie algebras
of G and K, respectively. We have a reductive decomposition g = k + m. Set
αλ = λ−1α′

m +αk + λα′′
m. The equation dαλ + 1

2 [αλ ∧αλ] = 0 is the integrability

condition for αλ = F (z, λ)−1dF (z, λ) with F (z, 1) : R2 −→ U(4). If αλ(∂/∂z)
is a holomorphic matrix for fixed complex coordinate z then [α′

λ, α
′′
λ] = 0, where

α′
λ(resp. α′′

λ) is the (1,0)-part (resp. (0,1)-part) of the 1-form αλ. Therefore, α′
λ

is a normal matrix. We construct examples of such properties from spectral data.

Let π : X −→ P1
λ be defined by π(ζ) = ζ4 = λ. Define L by L = OX(3(0)).

For τ, µ, ν, κ ∈ C, define a(z, ζ) ∈ gR by

{

a(z, ζ) = b(z, ζ) − ρX∗(b(z, ζ))

b(z, ζ) = (τ + µζ−1 + νζ−2 + κζ−3)z .
(3.1)

Set si(z) = exp(a(z, ζ))ζ−i and si = si(0) for i = 0, · · · , 3. Define F (z, λ) by

(s0(z), · · · , s3(z)) = (s0, · · · , s3)F (z, λ).

We have

F (z, λ)−1∂F (z, λ) =







τ κλ−1 νλ−1 µλ−1

µ τ κλ−1 νλ−1

ν µ τ κλ−1

κ ν µ τ






.

To investigate whether F (z, 1) is a framing of a harmonic map or not, we set

Aλ =







τ κ νλ−1 µλ−1

µ τ κλ−1 νλ−1

νλ−1 µλ−1 τ κ
κλ−1 νλ−1 µ τ






.

Set αλ = Aλ − (A
λ
−1)∗.

Lemma 3.1. αλ(∂/∂z) is a normal matrix for each λ ∈ C∗ if and only if κµ =
κµ.

Therefore, we assume that κµ = κµ. Let ζ0, · · · , ζ3 be 1,−1, i,−i, respectively,

which are elements of π−1(1). If we setM(z) =







s0(z) |ζ0
· · · s3(z) |ζ0

...
. . .

...
s0(z) |ζ3

· · · s3(z) |ζ3






then
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we have M(z) = diag(exp(a(z, ζ0)), · · · , exp(a(z, ζ3))) ·M(0) and the framing of
the corresponding harmonic map is given by























F (z, 1) = AdM(0)−1diag(exp(a(z, ζ0)), · · · , exp(a(z, ζ3))),

M(0) =







1 1 1 1
1 −1 1 −1
1 −i −1 i
1 i −1 −i






.

(3.2)

The corresponding harmonic map R2 −→ G2(C
4) is R2-equivariant and non-

isotropic.

Proposition 3.1. F (z, 1) given by (3.2) is a framing of a non-isotropic harmonic
map ϕ : R2 −→ G2(C

4). Moreover, the following hold :
(1) ϕ is weakly conformal if and only if ν2 + µκ ≡ 0,
(2) ϕ is irreducible and of non-semisimple type if and only if either µ ≡ 0, νκ 6= 0
or κ ≡ 0, µν 6= 0.

4. Non-isotropic harmonic map of non-semisimple type

Suppose that κ ≡ 0 in the previous section. In this case, ∂ ′-first return map
AFR of the harmonic sequence of the harmonic map p ◦ F (z, 1) is represented
by non-semisimple, rank 2-matrix, where p : U(4) −→ G2(C

4) is the coset pro-
jection(see [U1]). In the following, we consider the case where AFR is a non-
semisimple rank 2-matrix. We assume that α(∂/∂z) is a constant matrix for
some fixed complex coordinate z. Then, the harmonic map equation is written
as

{

[α′
k(∂/∂z), α

′′
m(∂/∂z)] = 0,

[α′
k(∂/∂z), α

′′
k (∂/∂z)] + [α′

m(∂/∂z), α′′
m(∂/∂z)] = 0.

(4.1)

Clearly, the equations in (4.1) are invariant under Ad(U(2) × U(2))-action on
α′(∂/∂z). Choose unitary basis e0, · · · , e3 of C4 such that α′(∂/∂z) is represented
by

α′(∂/∂z) =







a0 0 a2 a3

b0 b1 b2 b3
c0 c1 c2 c3
0 d1 d2 d3






.

The first equation in (4.1) yields

{

c3 = 0, a0 = c2, b0b2 = 0, d3 = b1, b1b2 = c2b2,

b2d2 = 0, c2c1 + d2d1 = b0c0 + b1c1, a0a3 + b0b3 = d2a2 + d3a3.

(4.2)
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If b2 6= 0, then b0 = d2 = 0, b1 = c2. Therefore, we see that α′
k(∂/∂z) is a scalar

matrix, which, together with second equation in (4.1), means that α′
m(∂/∂z) is

semisimple. Thus, AFR is semisimple. Hence, we may assume that b2 = 0. This,
together with (4.2) and the second equation in (4.1), yields



































a1 = b2 = c3 = d0 = 0,

c1(a0 − b1) = b0c0 − d2d1, a3(a0 − b1) = a2d2 − b0b3,

b0(a0 − b1) = c0c1 − a3b3, d2(a0 − b1) = a2a3 − c1d1,

| b0 |2 + | c0 |2 =| a2 |2 + | a3 |2, | c1 |2 + | d1 |2=| b0 |2 + | b3 |2,
| a2 |2 + | d2 |2 =| c0 |2 + | c1 |2 .

(4.3)

The first return map is given by AFR =

(

a2c0 a2c1 + a3d1

0 b3d1

)

. Hence, AFR is

non-semisimple, rank 2-matrix if and only if

a2c0 = b3d1, a2c1 + a3d1 6= 0.(4.4)

By the equations in the second line in (4.3) and the first equation in (4.4), we
have (b3c1 + c0a3)(a0 − b1) = 0, hence a0 = b1 or a3c0 + b3c1 ≡ 0. Suppose that
a0 6= b1. Then the first equation in (4.4) and a3c0 + b3c1 = 0 yield that

a2c1 + a3d1 = c1
b3d1

c0
+ d1(−

b3c1
c0

) = 0,

which contradicts the second equation in (4.4). Therefore, we must have a0 = b1.
In this case, by (4.3) we can set

r :=
d1

c0
=
a2

b3
=
b0

d2

, s :=
c1
a3

=
b3
c0
.(4.5)

Note that any denominator of the equations in (4.5) is non-zero by the assump-
tions on AFR. By the equations in the fourth line of (4.3) we see that | s |= 1 or
| a3 |2=| c0 |2 + | d1 |2. Each case is considered separately.

Case 1 (case of | s |= 1)

In this case, the equations in the fourth and fifth lines of (4.3) mean that
| r |= 1 or | d2 |2= 2 | c0 |2. First, consider the case where | r |= 1. Set s =
exp(iθ), r = exp(iϕ). The equation in the fourth line of (4.3) yields that | d2 |2=|
a3 |2 and hence we may set d2 = a3 exp(iθ̂), where θ̂ is a real number. Setting

τ = a0, µ = d2 exp(−iϕ), ν = c0 exp(−i(ϕ+θ−θ̂)), λ−1 = exp( i
2 (3ϕ+θ−2θ̂)) and
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choosing new unitary basis ê0 = exp(i(ϕ− θ)/2)e0, ê1 = exp(i(ϕ− θ)/2)e1, ê2 =
e2, ê3 = exp(iϕ)e3, we see that

α′(∂/∂z) = λ−1







0 0 nu µ
0 0 0 ν
ν µ 0 0
0 ν 0 0






+







τ 0 0 0
µ τ 0 0
0 0 τ 0
0 0 µ τ






.

(4.6)

Next, consider the case where | d2 |2= 2 | c0 |2. We have | b0 |2=| d2 |2| r |2=
2 | c0 |2| r |2= 2 | d1 |2. Moreover, | s |= 1 means that | c1 |2=| a3 |2 and
| b3 |2=| c0 |2. Therefore, the equation | c1 |2 + | d1 |2=| b0 |2 + | b3 |2 in (4.3)
gives an equation | a3 |2=| c0 |2 + | d1 |2. Thus, this case is a special case of Case
2 below.

Case 2. (case of | a3 |2=| c0 |2 + | d1 |2)
In this case, by the equations in the fourth line of (4.3) we obtain

{

| a3 |2 =| c0 |2 (| r |2 +1),

| d2 |2 =| c0 |2 (| s |2 +1),

which, together with a3 = c1s
−1, d2 = b0r

−1, yield
{

| c1 |2 =| c0 |2| s |2 (| r |2 +1),

| b0 |2 =| c0 |2| r |2 (| s |2 +1).
(4.7)

By (4.7), we can set

r = r̂ exp(iϕ), s = ŝ exp(iθ),

c1 = ŝ
√

r̂2 + 1c0 exp(iψ), b0 = r̂
√

ŝ2 + 1c0 exp(iγ),

where r̂ =| r |, ŝ =| s | and ϕ, θ, ψ, γ ∈ R. Then, choosing new basis ê0 =
exp( i

2 (ϕ − θ))e0, ê1 = exp( i
2 (ϕ − θ − 2ψ))e1, ê2 = e2, ê3 = exp(i(ϕ − ψ))e3 and

setting τ = a0, δ = c0 exp(i(γ + ψ)), λ−1 = exp( i
2 (ϕ− θ − 2γ − 2ψ)) we see that

α′(∂/∂z) =λ−1









0 0 r̂ŝδ
√
r̂2 + 1δ

0 0 0 ŝδ
δ ŝ

√
r̂2 + 1δ 0 0

0 r̂δ 0 0









(4.8)

+







τ 0 0 0
r̂
√
ŝ2 + 1δ τ 0 0
0 0 τ 0
0 0

√
ŝ2 + 1δ τ






.

Thus, we obtain
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Proposition 4.1. Let α be the pull-back of the Maurer-Cartan form by F :
R2 −→ U(4). Assume that the first return map AFR of the harmonic map
p ◦ F : R2 −→ G2(C

4) is represented by non-semisimple, rank 2-matrix and
that α′(∂/∂z) is a constant matrix with respect to some fixed complex coordinate
system. Then α′(∂/∂z) is of the form (4.6) or (4.8) under the Ad(U(2)×U(2))-
action.

5. Dressing action on harmonic map and spectral data

First of all, we review the definition of the dressing actions (see [BP2]). Let
G be a compact semisimple Lie group with an automorphism τ of finite order
k(≥ 2), of which fixed set K. We fix an Iwasawa decomposition of the reductive
group KC : KC = KB, where B is a solvable subgroup of KC. Fix 0 < ε < 1.
For a Riemann sphere P1 = C ∪ {∞}, define open subsets by

Iε = {λ ∈ P1 :| λ |< ε}, I1/ε = {λ ∈ P1 :| λ |> 1/ε},
E(ε) = {λ ∈ P1 : ε <| λ |< 1/ε}.

Let Cε and C1/ε be the circles of radius ε and 1/ε about 0 ∈ C, respectively.

Setting I(ε) = Iε ∪ I1/ε and C(ε) = Cε ∪ C1/ε we have P1 = I(ε) ∪ C(ε) ∪ E(ε).
Define the group of smooth maps ΛεGτ by

ΛεGτ = {g : C(ε) → GC | g(ωλ) = τg(λ), g(λ) = g(1/λ) for all λ ∈ C(ε)}.

Define some subgroups of ΛεGτ by

Λε
EGτ = {g ∈ ΛεGτ | g extends holomorphically to g : E(ε) → GC},

Λε
IGτ = {g ∈ ΛεGτ | g extends holomorphically to g : I (ε) → GC}.

Any element g of these subgroups satisfies g(λ) = g(1/λ), g(ωλ) = τg(λ) for all
λ in its domain of definition. If g ∈ Λε

IGτ then g(0) ∈ KC. Hence, we define the
subgroup

Λε
I,BGτ = {g ∈ Λε

IGτ | g(0) ∈ B}.

Then, McIntosh[M1] proved that multiplication Λε
EGτ × Λε

I,BGτ −→ ΛεGτ is a
diffeomorphism onto. This is, what we call, Iwasawa decomposition of ΛεGτ . Any
g ∈ ΛεGτ has a unique factorization g = gEgI , where gE ∈ Λε

EGτ , gI ∈ Λε
I,BGτ .

The action of Λε
IGτ on Λε

EGτ is given by

g]εh = (gh)E,
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for g ∈ Λε
IGτ , h ∈ Λε

EGτ . We call this action dressing action on Λε
EGτ .

[Dressing action on extended framing]
Define ΛholGτ by

ΛholGτ = {g : C∗ → GC | g is holomorphic and g(λ) = g(1/λ), g(ωλ) = τg(λ)}.

Then we have

ΛholGτ =
⋂

0<ε<1

Λε
EGτ .

A map F : R2 −→ ΛholGτ is an extended framing if F−1dF = λ−1α′
m +αk +λα′′

m.
For an extended framing F (z, λ) and g(λ) ∈ Λε

IGτ , define (g]F )(z, λ) : R2 −→
Λε

EGτ by

(g]F )(z, λ) = g(λ)](F (z, λ)).

Then g]F is also an extended framing. We may write

g(λ)F (z, λ) = F̂ (z, λ)B(z, λ)(5.1)

for some B(z, λ) : R2 −→ Λε
I,BGτ and extended framing F̂ (z, λ).

[Dressing action on spectral data]
Recall that we may represent (s0(z), · · · sn(z)) = (s0, · · · , sn)F (z, λ). We may

also represent (ŝ0(z), · · · , ŝn(z)) = (ŝ0, · · · , ŝn)F̂ (z, λ), where F̂ = g]F for some

g ∈ Λε
IGτ . Now, we use (5.1). We suppose that F (0, λ) = F̂ (0, λ) = I. Notice

that B(0, λ) = g(λ) in this case. We compute

(s0(z), · · · , sn(z))B(z, λ)−1 = (s0(z), · · · , sn(z))F (z, λ)−1g(λ)−1F̂ (z, λ)

= (s0, · · · , sn)B(0, λ)−1F̂ (z, λ).

Hence, we may take (ŝ0(z), · · · , ŝn(z)) = (s0(z), · · · , sn(z))B(z, λ)−1. This is a
dressing action on spectral data. By the results in [BP2] and [M2], we have

Theorem 5.1. A spectral data for non-isotropic harmonic map of finite type with
isotropy order r : R2 −→ CPn is obtained by dressing action on the spectral data
of genus zero with isotropy order r, of which the spectral curve is given by λ =

ζr+1 (ζ−α1)···(ζ−αn−r)
(ζ−β1)···(ζ−βn−r) , where βj = ρX(αj) and 0 <| αj |< 1 for j = 1, · · · , n− r.

Proof. Since dressing action on extended framing preserves the isotropy order
of the corresponding non-isotropic harmonic map, the result follows from the
fact that non-isotropic harmonic map of finite type R2 −→ CPn is obtained
by dressing action on the vacuum solution(see [BP2]). The vacuum solution is
R2-equivariant and its spectral curve has genus zero(see [M2]) and Theorem 8 in
[M2] and a result in [T] imply that we may take the spectral curve of genus zero
of the form in our theorem. q.e.d.
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Theorem 5.2. Let ϕ : R2 −→ G2(C
4) be a harmonic map of non-semisimple

type. Let F : R2 −→ U(4) be a framing of ϕ. Assume that F−1∂F (∂/∂z)
is constant with respect to some fixed complex coordinate system. Then F is
congruent, up to Ad(U(2) × U(2))-action, to (3.2) with κ ≡ 0 or to a dressing
orbit of (3.2) with κ ≡ 0 and ν = cµ for some positive constant c.

Proof. We only have to show that (4.8) is obtained by dressing action of (4.6).
Write

g(λ) = g0 + g1λ+ g2λ
2 + · · · ,

B(z, λ) = B0(z) +B1(z)λ+ B2(z)λ
2 + · · · .

Hence, we have gj = Bj(0) for j = 0, 1, · · · . Let α′
m and α′

k be λ−1-coefficient
matrix and λ0-coefficient matrix of α′(∂/∂z) in (4.6). In the same way, let α̂′

m

and α̂′
k be λ−1- coefficient matrix and λ0-coefficient matrix of α′(∂/∂z) in (4.8).

We know that α′′
m = −(α′

m)∗, α′′
k = −(α′

k)
∗ hold. The same relations hold for α̂′′

m

and α̂′′
k . The relation (5.1) yields that

{

α̂′
m = B0α

′
mB

−1
0 ,

α̂′′
k = B0α

′′
kB

−1
0 − ∂B0 ·B−1

0 .
(5.2)

Suppose that ν = cµ for some positive constant c. We choose δ and b by

δ =
ν√
r̂ŝ
, b =

(

√
r̂2 + 1(ŝ2 + 1)c

2r̂ŝ
√
ŝ

)1/2
.

Define B0(z) by

B0(z) =











√
r̂ŝb

√
r̂ŝf(z, z) 0 0

0 1√
r̂b

0 0

0 0 b f(z, z) +
√

r̂2+1(ŝ2−1)

2br̂ŝ
√

ŝ

0 0 0 1√
ŝb











,

where f(z, z) = ( c
√

ŝ2+1√
r̂ŝb

− b)µz + ( c
√

ŝ2+1√
r̂ŝb

− b)µz. Now, we can verify that the

relations (5.2) hold for this chosen B0(z). This B0 already determines F̂ (z, λ).
The uniqueness of Iwasawa decomposition and appropriate choice of gj, Bj(j =
1, 2, · · · ) yield the result. q.e.d.
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6. Some generalizations of the previous construction

We define spectral data as follows :
Definition. (1) X : compact Riemann surface of genus p with real structure

ρX ,
(2) π : X −→ P1

λ is a holomorphic covering map of degree 2n such that π ◦ ρX =
π−1 and

(λ ◦ π) = 2(m+ 1)P0 + E0 − 2(m+ 1)Q0 −E∞,

where
E0 =

∑2n−2m−2
i=1 Pi, E∞ =

∑2n−2m−2
i=1 Qi, Qi = ρX(Pi) for i = 0, 1, · · · , 2n −

2m− 2,
(3) L is a line bundle overX of degree (2n−1+p) such that f : L⊗ρX∗L → OX (R)
is ρX -equivariant isomorphism, where R is the ramification divisor for π,
(4) π has no branch points on S1

λ, ρX fixes each point of π−1(S1
λ) and f is non-

negative on π−1(S1
λ).

Define L̂0, · · · , L̂m by

{

L̂j = L ⊗ OX((2j − 2m)P0 − 2jQ0 − E0) for j = 0, 1, · · · ,m− 1,

L̂m = L ⊗ OX(−2mQ0).

The relation between these line bundles and line bundles defined in section 1 is
given by

{

L2j = L̂j(−P0), L2j+1 = L̂j(−Q0) for j = 0, 1, · · · ,m− 1,

L2m = L̂m(−P0 − E0), L2m+1 = L̂m(−Q0).

Hence, the sheaves of germs of holomorphic sections of L2j and L2j+1 are sub-

sheaves of the sheaf of germs of holomorphic sections of L̂j for j = 0, 1, · · · ,m.
For τ, µ, ν ∈ C, we define a(z, ζ) by

{

a(z, ζ) = b(z, ζ) − ρX∗b(z, ζ),

b(z, ζ) = (τ + µζ−1 + νζ−2)z .

In the same way as in section 3, we may construct non-isotropic, non-semisimple
harmonic map R2 −→ G2(C

2n). Therefore, we obtain

Proposition 6.1. There are many examples of non-isotropic, non-semisimple
harmonic map of finite type R2 −→ G2(C

2n).

Proof. It is only to prove that they are of finite type. However, it follows from
the result in [OU]. q.e.d.
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