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Abstract. In this paper we define a Kleene algebra L and a certain modal logic
Ω and consider the relation between them. We shall show that if L has countable
generators then some quotient algebra L/∼ is isomorphic to a subalgebra of the
Lindenbaum-Tarski algebra Ω/≡ for Ω.

1. Introduction

There are well-known properties between algebras and logics. For example, the
Lindenbaum-Tarski algebra L/∼ for the classical (or intuitionistic) propositional
logic L is a Boolean (Heyting, respectively) algebra. And the intuitionistic proposi-
tional logic can be embedded into the Lewis’ modal logic S4. Hence we can conclude
that the Heyting algebra with countable generators can be embedded into the modal
logic S4. This implies us an expectation that in a sense many familiar algebras are
embeddable into modal logics. Since the set of formulas in logics is essentially count-
able, every algebra can not be embedded into modal logics. Hence any embeddable
algebra has a certain countability property, e.g. has a countable set of generators.

On the other hand, there is so-called a fuzzy algebra which is defined as a Kleene
algebra in this paper. The algebra has as a model the set of all fuzzy subsets of
some non-empty set X, more precisely, the set of all functions from X to the closed
interval I = [0, 1]. Many results about the fuzzy set theory are applied to many
branches of technologies and makes a great success. But, from the view-points of
mathematics, we have a little one. In [2] we prove the embedding theorem of s-fuzzy
algebras into frame algebras in terms of Kripke frames. It seems that this approach
may shed new light on the relation between s-fuzzy algebras and modal logics.

Now we have the following question:

What is the modal logic to which the Kleene algebra with countable gen-
erators can be embedded?

In this paper we define a Kleene algebra L and a certain modal logic Ω and consider
the relation between them. We shall show that the quotient algebra L/∼ for the
Kleene algebra L with countable generators is embeddable in the Lindenbaum-Tarski
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algebra Ω/≡ for Ω. More precisely, the algebra L/∼ is isomorphic to some subalgebra
ξ(L)/≡ of Ω/≡, where ξ is a certain homomorphism defined below. The modal logic
Ω is the answer of the question above.

2. Kleene algebra L and modal logic Ω

Referring to [2] and [3], we define a Kleene algebra L. It has as a model the set
of all fuzzy subsets of some non-empty set with Zadeh’s complementation. By a
Kleene algebra, we mean the algebra L = (L;∧,∨, N, 0, 1) of type (2, 2, 1, 0, 0) such
that

1. (L;∧,∨, 0, 1) is a bounded distributive lattice
2. N : L→ L is a map satisfying the following conditions

(a) N0 = 1, N1 = 0
(b) x ≤ y implies Ny ≤ Nx
(c) N2x = x, where N2x = N(Nx)
(d) x ∧Nx ≤ y ∨Ny (Kleene’s law).

As examples of the Kleene algebras, we introduce here two models as follows.
First, the simple Kleene algebra 3 = {0, 1/2, 1} defined by for every x and y in 3,

x ∧ y = min{x, y}

x ∨ y = max{x, y}

Nx = 1 − x.

Second, IX the set of all functions from some non-empty set X to the closed
interval I = [0, 1], where for any f, g ∈ IX we define

(f ∧ g)(x) = min{f(x), g(x)}

(f ∨ g)(x) = max{f(x), g(x)}

(Nf)(x) = 1 − f(x).

In the rest of this paper, we assume that L is the Kleene algebra generated by
{x1, x2, x3, · · · }. That is, every element of L is constructed from finite combinations
of xi by use of the operations ∧,∨, and N . We regard the element 1 as an empty
conjunction of xj and hence do the element 0 as N1.

We define a modal logic Ω. The language of Ω is

propositional variables; p1, p2, p3, · · ·
primitive symbols; ∧,¬,2

The formulas are defined as usual. We use the meta-variables A,B,C, · · · for
formulas of Ω. The other operators ∨,→, and 2 are defined by

A ∨B = ¬(¬A ∧ ¬B),

A→ B = ¬A ∨ B,

3A = ¬2¬A.
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The logic Ω has the following axiom schemata and rules of inference.

Axiom:
(a1-1) A→ (B → A)
(a1-2) (A→ (B → C)) → ((A→ B) → (A→ C))
(a1-3) (¬A→ ¬B) → (B → A)
(a2) 2(A→ B) → (2A→ 2B)
(a3) A→ 23A
(a4) (23A→ 3A) ∨ (32B → 2B)

Rules of inference:
(MP) infer B from A and A→ B;
(G) infer 2A from A.

We denote `Ω A (or simply ` A when no confusion arises) and say that A is
provable in Ω if there is a sequence A1, A2, · · · , An of finite number of formulas of
Ω such that A = An and for every j

1. Aj is an axiom of Ω,
2. Aj is obtained from Ai and Ak by (MP) for some i, k < j, or
3. Aj is obtained from Ai by (G) for some i < j.

We note that the logical system Ω is consistent, that is, there is a formula A
which is not provable in Ω, or equivalently `Ω B ∧ ¬B for no formula B. For if
`Ω B ∧¬B for some B, then there is a sequence of formulas B1, · · · , Bn(= B ∧¬B)
of a proof B ∧ ¬B in Ω. If we delete the symbol 2 (and also 3) from Ω, then we
obtain the classical propositional logic (CPL) and the sequence of the proof B∧¬B
turns to be the sequence of the proof of B ′ ∧ ¬B′ in CPL, where B′ indicates the
formula obtained from B by deleting the symbol 2 (and 3). This yields that CPL
is inconsistent. But this is not true. Thus Ω is the consistent logical system.

We call a structure < W,R > an Ω-frame (or simply frame) if W is a non-empty
set and R is a relation on W satisfying the next conditions:

(R1): ∀x∀y(xRy ⇒ yRx) i.e., R is symmetric
(R2): ∀x(∃y(xRy & ∀z(yRz ⇒ xRz)) or ∀u∀v(xRv & xRv ⇒ uRv)).

By an Ω-model (or simply model) on the Ω-frame, we mean the structure <
W,R, V >, where < W,R > is the Ω-frame and V is the valuation function from the
set of all propositional variables to the power set of W , that is, V (pj) ⊆ W for every
propositional variable pj. The domain of the valuation function V can be uniquely
extended to the set of all formulas recursively as follows: For every formula A and
B,

V (A ∧ B) = V (A) ∩ V (B)

V (¬A) = 1 − V (A)

V (2A) = {x ∈ W |∀y(xRy ⇒ y ∈ V (A))}.

A formula A is said to be true at x on the model M =< W,R, V > denoted by
M |=x A when x ∈ V (A). If no confusion arises, we denote simply |=x A. It follows
from definition that |=x 2A if and only if (iff) |=x A for every y such that xRy
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and hence dually that |=x 3A iff |=y A for some y with xRy. A formula A is called
true on the Ω-model M =< W,R, V > when M |=x A for every x ∈ W , that is,
V (A) = W . We say that a formula A is Ω-valid if it is true on every Ω-model.

3. Completeness theorem of Ω

In this section we show that our modal logic Ω is complete with respect to the set
of Ω-models, that is, if a formula A is provable in Ω iff it is Ω-valid. First we shall
show that if a formula A is provable in Ω then it is Ω-valid.

Theorem 1. If `Ω A, then A is Ω-valid.

Proof. We show the theorem by induction on the length of a proof of A. For brevity,
we shall only prove that the axiom (a4) is Ω-valid. Suppose that (23A → 3A) ∨
(32B → 2B) is not Ω-valid. There exists an Ω-model < W,R, V > such that
neither |=x 23A→ 3A nor |=x 32B → 2B for some x ∈ W . By condition (R2) of
the Ω-model, we have two cases: ∃y(xRy & ∀z(yRz ⇒ xRz)) or ∀u∀v(xRu& xRv ⇒
uRv) for that x. Suppose that ∃y(xRy & ∀z(yRz ⇒ xRz)). Since |=x 23A but
not |=x 3A, we have |=y 3A for that y. This means that |=z A for some z such
that yRz. Since xRy and yRz yields xRz, It follows that |=x 3A. But this is a
contradiction.

On the other hand we assume that ∀u∀v(xRu & xRv ⇒ uRv). Since |=x 32B
but not |=x 2B, there exist u and v such that xRu, |=u 2B, xRv, but not |=v B.
By supposition, we get that uRv and hence that |=v B by |=u 2B. This is a
contradiction.

Therefore (a4) is Ω-valid. This completes the proof of the theorem.

Conversely we shall prove that if a formula A is Ω-valid then it is provable in Ω.
In order to establish the fact we need some definitions and lemmas.

Let Γ be a set of formulas in Ω. We say that Γ is inconsistent if there are finite
number of formulas A1, · · · , An of Γ such that `Ω ¬(A1 ∧ · · · ∧ An). Otherwise Γ is
called a consistent set. It is easy to show the next lemmas, so we omit their proofs.

Lemma 1. If Γ is a consistent set, then there exists a maximal cosistent set ∆ such
that ∆ includes Γ.

Lemma 2. Let ∆ be any maximal consistent set. Then for every formula A,B in
Ω, we have that

(1) if `Ω A then A∈∆;
(2) A∧B∈∆ iff A∈∆ and B∈∆;
(3) A∨B∈∆ iff A∈∆ or B∈∆;
(4) ¬A∈∆ iff A/∈∆.

Corollary 1. If A ∈ ∆ and A→ B ∈ ∆, then B ∈ ∆.

In order to prove the completeness theorem for Ω, we assume that A is not provable
in Ω. Then it is sufficient to construct an Ω-model in which A is not Ω-valid.

We shall construct such an Ω-model of A. Let WΩ be the collection of all maximal
consistent sets in Ω. Since A is not provable in Ω, the set {¬A} is consistent. There
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exists a maximal consistent set ∆ including {¬A} by lemma 2. This implies that WΩ

is not empty. For every x, y ∈ WΩ, we define RΩ: xRΩy iff (∀A)(2A ∈ x→ A ∈ y).
We also define the valution VΩ as x ∈ VΩ(p) iff p ∈ x, where p is any propositional
variable. We call the structure MΩ =< WΩ, RΩ, VΩ > a canonical Ω-model. By easy
calculation, we can show that the canonical Ω-model is indeed an Ω-model.

Lemma 3. The canonical Ω-model MΩ =< WΩ, RΩ, VΩ > is the Ω-model.

Proof. We only show that RΩ satisfies the condition (R1) and (R2). For (R1),
suppose that xRΩy. Unless yRΩx, there is a formula A such that 2A ∈ y but
A /∈ x. Since x is a maximal consistent set, we have that ¬A ∈ x by lemma 3.
It follows that `Ω ¬A → 23¬A and hence that 23¬A ∈ x by lemma 3. Since
xRΩy, we also obtain that 3¬A ∈ y and thus ¬2A ∈ y by definition. But this is a
contradiction.

Assume that (R2) does not hold. We suppose ∀y(xRΩy ⇒ ∃z(yRΩz & not xRΩz))
and ∃u∃v(xRΩu & xRΩv & not uRΩv) for some x ∈ WΩ. That is, we assume that
for some x ∈ WΩ

(1) If xRΩy, then there exists z ∈ WΩ such that yRΩz but not xRΩz;
(2) There are u, v ∈ WΩ such that xRΩu and xRΩv but not uRΩv.
By (2), since not uRΩv, there is a formula B such that 2B ∈ u but B /∈ v.

Because of xRΩu and xRΩv, we get that 32B ∈ x and 2B /∈ x. Thus we have
32B → 2B /∈ x.

Take any y such that xRΩy (we note that such an element y exists by condition
(2)). Then we have yRΩz but not xRΩz for some z ∈ WΩ by (1). This implies
the existence of a formula A such that 2A ∈ x but A /∈ z. Since yRΩz, we have
2A /∈ y for any y such that xRΩy. On the other hand, since ` (23¬A → 3¬A) ∨
(32B → 2B) for those formulas, we have (23¬A → 3¬A) ∨ (32B → 2B) ∈ x.
Hence it follows that 23¬A → 3¬A ∈ x by 32B → 2B /∈ x. We obtain that
¬(23¬A → 3¬A) /∈ x, 23¬A ∧ 2A /∈ x and hence that 23¬A /∈ x by 2A ∈ x.
This yields to 32A ∈ x. In that case, we can conclude that 2A ∈ s for some s such
that xRΩs. But this is a contradiction. Therefore, RΩ satisfies the condition (R2).

Thus we can prove this lemma completely.

The next fundamental lemma is important to establish the completeness theorem.

Lemma 4. For every formula A and x ∈ WΩ, we have MΩ |=x A iff A ∈ x.

Proof. We show this lemma by induction on the construction of the formula A.
If A is the propositional variable p, then it holds evidently by definition of VΩ.

We only show the case of 2B ∈ x. If 2B ∈ x, then we obtain that B ∈ y for every
y satisfying xRΩy. By induction hypothesis (IH), we get that |=y B and hence that
|=x 2B.

Conversely, suppose that 2B /∈ x. There is a maximal consistent set z ∈ WΩ such
that xRΩz and ¬B ∈ z, because the set {C|2C ∈ x} ∪ {¬B} is consistent. By IH,
this means that it is not |=x 2B.

The lemma can be proved completely.
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Now we shall show the completeness theorem of our modal logic Ω. Suppose
that A is not probable in Ω. Since {¬A} is consistent, by lemma 2, there exists
a maximal consistent set ∆ ∈ WΩ such that ¬A ∈ ∆. For the canonical Ω-model
MΩ =< WΩ, RΩ, VΩ >, we have that A is not true at ∆ in MΩ by lemma 6. This
means the next result.

Theorem 2. If a formula A is Ω-valid, then it is provable in Ω.

4. Relation between L and Ω

In this section we consider the relation between the Kleene algebra L with count-
able generators and the modal logic Ω.

Let ξ be a map from the generator set {x1, x2, x3, · · · } of L to the set of formulas
of Ω defined by ξ(xi) = 2pi, where pi is the propositional variable. Then ξ can be
uniquely extended to all elements of L as follows:
ξ(x ∧ y) = ξ(x) ∧ ξ(y)
ξ(Nx) = 2¬ξ(x).
Concerning to ξ(x ∨ y), we do not have ξ(x ∨ y) = ξ(x) ∨ ξ(y) but only have

ξ(x ∨ y) = ξ(N(Nx ∧Ny)) = 2¬(2¬ξ(x) ∧ 2¬ξ(y)).
If we introduce the order relation v in the modal logic Ω as A v B iff `Ω A→ B,

then < Ω,v becomes a partially ordered set and moreover does a lattice, where
sup{A,B} = A∨B and inf{A,B} = A∧B for any formulas A and B in Ω. In the
following we denote A ≡ B when A v B and B v A.

Proposition 1. If x ≤ y in L, then we have ξ(x) v ξ(y), that is, ξ is a monotone
map.

Proof. Suppose that x ≤ y in L. Since x∧y = y, we have ξ(x) = ξ(x∧y) = ξ(x)∧ξ(y)
and hence ξ(x) v ξ(y).

Proposition 2. For every x ∈ L, there exists a formula A such that ξ(x) ≡ 2A.

Proof. We show the proposition by induction on the construction of element of L
step by step.

(1) If x is identical with the generator xi of L, then it is evident that ξ(xi) ≡ 2pi

(2) If x is the form of y ∧ z, then we have ξ(y) ≡ 2B and ξ(z) ≡ 2C for some
formulas B and C by IH. Then we have ξ(y ∧ z) = ξ(y) ∧ ξ(z) ≡ 2B ∧ 2C ≡
2(B ∧ C) because ` 2(B ∧ C) ↔ 2B ∧ 2C, where the symbol ` A ↔ B means
that ` (A→ B) ∧ (B → A).

(3) If x is the form of Ny, then clearly ξ(x) is the form of 2¬ξ(y).

Proposition 3. We have ξ(x) ∨ ξ(y) v 2¬(2¬ξ(x) ∧ 2¬ξ(y)) for any x, y ∈ L.

Proof. Suppose that ξ(x) = 2A and ξ(y) = 2B. By (a3), we have that ` (2A ∨
2B) → 23(2A∨2B) and hence that ` (2A∨2B) → 2¬(2¬2A∧2¬2B). This
yields the desired result.

The fact that ξ(x ∨ y) 6≡ ξ(x) ∨ ξ(y) in general means that ξ(L) may not be a
lattice which is a homomorphic image of L, that is, the map ξ does not need a
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homomorphism. To overcome this difficulty, we newly define operations 4, 5, ∗ in
Ω as follows: For any formulas A and B in Ω,

A4B = A ∧B,

A5B = (A∗ ∧ B∗)∗

A∗ = 2¬A.

Clearly, < Ω,4,5 > is a lattice under these operations. In this case, we have in
ξ(L)

ξ(x ∧ y) = ξ(x) 4 ξ(y)

ξ(x ∨ y) = ξ(x) 5 ξ(y)

ξ(Nx) = (ξ(x))∗

Thus ξ is the onto homomorphism from L to ξ(L). Since the map ξ is homo-
morphic, ξ(L) = {ξ(x)|x ∈ L} becomes a distributive lattice. The lattice ξ(L) has
a minimum element 2¬2t and a maximum element 2t(= t), where t means any
CPL-tautologous formula such as A → A. Thus ξ(L) =< ξ(L),4,5,2¬2t,2t >
is a bounded distributive lattice. Moreover, the lattice < ξ(L),4,5, ∗,2¬2t,2t >
is the Kleene algebra as shown in the following lemma.

Lemma 5. ξ(L) =< ξ(L),4,5, ∗,2¬2t,2t > is the Kleene algebra.

Proof. We only show that the operation ∗ satisfies the condition (c3): ξ(x) 4
(ξ(x))∗ v ξ(y)5 (ξ(y))∗. We can put ξ(x) = 2A and ξ(y) = 2B for some formulas
A and B by proposition 2. For those formulas, since ` (23¬A → 3¬A)∨ (32B →
2B), we get ` (¬23¬A ∨ 3¬A) ∨ (¬32B ∨ ¬2B) and ` ¬(2A ∧ 2¬2A) ∨
(2B → 2¬2B). This means ` ¬(ξ(x) ∧ (ξ(x))∗) ∨ (ξ(y) ∨ (ξ(y))∗) and hence
` ξ(x) ∧ (ξ(x))∗ → ξ(y) ∨ (ξ(y))∗. Thus we have ξ(x) ∧ (ξ(x))∗ v ξ(y) ∨ (ξ(y))∗.
By proposition 4, we have that ξ(y) ∨ (ξ(y))∗ v ξ(y) 5 (ξ(y))∗ and hence that
ξ(x) 4 (ξ(x))∗ v ξ(y)5 (ξ(y))∗.

We have now two Kleene algebras L and ξ(L). It is meaningful to investigate the
relation between them. Clearly ξ(L) is a homomorphic image of L, but may not
isomorphic.

We define the Lindenbaum-Tarski algebra Ω/≡. In order to define it, we need
a congruence relation on Ω. For every A and B in Ω, we remark that A ≡ B iff
`Ω A ↔ B. It is easy to show that the relation ≡ is a congruence relation on Ω.
Let [A] = {B ∈ Ω| `Ω A↔ B} and Ω/≡ = {[A]|A ∈ Ω}. If we define the operations
u, t, N≡ as below, then it is easy to show that the structure Ω/≡ becomes the
bounded lattice.
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[A] u [B] = [A ∧ B]

[A] t [B] = [A ∨ B]

N≡[A] = [A∗](= [2¬A])

Since the operations above are closed in the subset ξ(L) of Ω, we can define the
subalgebra ξ(L)/∼ of Ω/≡. On the other hand we define a relation ∼ in L as x ∼ y iff
ξ(x) ≡ ξ(y). Clearly ∼ is the congruence relation and L/∼ is the Kleene algebra by
usual argument, where [x]∧ [y] = [x∧y], [x]∨ [y] = [N(Nx∧Ny)], and N [x] = [Nx].

Now we state the main theorem.

Theorem 3. L/∼ ∼= ξ(L)/≡.

Proof. The map ψ : L/∼ → ξ(L)/≡ defined by ψ([x]) = [ξ(x)] gives the desired
result.
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