A WEIGHTED SOBOLEV-POINCARÉ'S INEQUALITY ON INFINITE NETWORKS

Atsushi Murakami and Maretsugu Yamasaki

(Received: January 15, 2001)

Abstract

Inequalities on networks have played important roles in the theory of networks. We study the famous Sobolev-Poincare's inequality on infinite networks in the weighted form. This inequality is closely related to the smallest eigenvalue of a weighted discrete Laplacian. We give a dual characterization for the smallest eigenvalue.

1. PROBLEM SETTING

Let X be a countable set of nodes, Y be a countable set of arcs and K be the node-arc incidence matrix. Assume that the graph $G:=\{X, Y, K\}$ is locally finite and connected and has no self-loop. For a strictly positive real valued function r on $Y, N:=\{G, r\}$ is called a network.

Let $L(X)$ be the set of all real valued functions on $X, L^{+}(X)$ be the set of all non-negative $u \in L(X)$ and $L_{0}(X)$ be the set of all $u \in L(X)$ with finite support. We denote by ε_{A} the characteristic function of the subset A of X and put $\varepsilon_{x}:=\varepsilon_{A}$ in case $A=\{x\}$.

The discrete derivative $d u$ and the discrete Laplacian $\Delta u(x)$ of $u \in L(X)$ are defined by

$$
\begin{aligned}
d u(y) & :=-r(y)^{-1} \sum_{x \in X} K(x, y) u(x), \\
\Delta u(x) & :=\sum_{y \in Y} K(x, y)[d u(y)] .
\end{aligned}
$$

The mutual Dirichlet sum $D(u, v)$ of $u, v \in L(X)$ is defined by

$$
D(u, v):=\sum_{y \in Y} r(y)[d u(y)][d v(y)]
$$

[^0]if the sum on the right hand side converges. We call $D(u):=D(u, u)$ the Dirichlet sum of u and put
$$
D(N):=\{u \in L(X) ; D(u)<\infty\} .
$$

Notice that $D(N)$ is a Hilbert space with the inner product

$$
((u, v))_{D}:=D(u, v)+u\left(x_{0}\right) v\left(x_{0}\right),
$$

where x_{0} is a fixed node. We set $\|u\|_{D}=((u, u))_{D}^{1 / 2}$. We shall use the set of Dirichlet potentials $D_{0}(N)$ which is defined as the closure of $L_{0}(X)$ in $D(N)$.

Let m be a strictly positive real valued function on X and put

$$
((u, v))_{m}:=\sum_{x \in X} m(x) u(x) v(x)
$$

if the sum on the right hand side converges. We put $\|u\|_{m}:=\left[((u, u))_{m}\right]^{1 / 2}$ and

$$
L_{2}(X ; m):=\left\{u \in L(X) ;\|u\|_{m}<\infty\right\} .
$$

We shall be concerned with the following weighted Sobolev-Poincaré's inequality on N :
(C;m) There exists a constant $c>0$ such that

$$
\|u\|_{m}^{2} \leq c D(u) \quad \text { for all } \quad u \in L_{0}(X)
$$

For simplicity, we use the function $\chi_{m}(u)$ on $D(N)$ defined by

$$
\chi_{m}(u):=\frac{D(u)}{\|u\|_{m}^{2}} \quad \text { for } \quad u \neq 0
$$

and $\chi_{m}(u)=\infty$ for $u=0$.
We shall consider the following extremum problem:

$$
\lambda_{m}(N):=\inf \left\{\chi_{m}(u) ; u \in L_{0}(X)\right\} .
$$

Then it is easily seen that $\lambda_{m}(N)$ is the best possible value of $1 / c$. Therefore the weighted Sobolev-Poincare's inequality $(\mathrm{C} ; m$) is equivalent to the fact that $\lambda_{m}(N)>0$.

Let $E_{+}(\Delta)$ be the set of all $\lambda>0$ such that there exists $u \in L(X)$ satisfying the condition:

$$
\begin{equation*}
\Delta u+\lambda m u=0 \quad \text { on } X \quad \text { and } u>0 \text { on } X \tag{E}
\end{equation*}
$$

We shall give a characterization of $\lambda_{m}(N)$ with the aid of $E_{+}(\Delta)$. Namely it will be shown that $E_{+}(\Delta)$ is equal to the interval $\left(0, \lambda_{m}(N)\right]$ and $\lambda_{m}(N)=\max E_{+}(\Delta)$ if $\lambda_{m}(N)>0$.

For notation and terminology, we mainly follow [7].

2. Preliminaries

Given a finite subnetwork $N^{\prime}=<X^{\prime}, Y^{\prime}>$ of N, we consider the following extremum problem:

$$
\lambda_{m}\left(N^{\prime}\right):=\inf \left\{\chi_{m}(u) ; u \in S\left(N^{\prime}\right)\right\}
$$

where we set

$$
S\left(N^{\prime}\right):=\left\{u \in L(X) ; u=0 \text { on } X \backslash X^{\prime}\right\}
$$

As in [8], we have
Lemma 2.1. For every finite subnetwork $N^{\prime}=<X^{\prime}, Y^{\prime}>$ of N, there exists a unique $\tilde{u} \in S\left(N^{\prime}\right)$ which has the following properties:
(1) $\lambda_{m}\left(N^{\prime}\right)=\chi_{m}(\tilde{u})$,
(2) $\Delta \tilde{u}(x)=-\lambda_{m}\left(N^{\prime}\right) m(x) \tilde{u}(x)$ on X^{\prime}.
(3) $\tilde{u}(x)>0$ on X^{\prime} and $\|\tilde{u}\|_{m}=1$.

Theorem 2.1. Let $\left\{N_{n}\right\}\left(N_{n}=<X_{n}, Y_{n}>\right)$ be an exhaustion of N. Then the sequence $\left\{\lambda_{m}\left(N_{n}\right)\right\}$ converges to $\lambda_{m}(N)$.

Proof. We have

$$
\lambda_{m}(N) \leq \lambda_{m}\left(N_{n+1}\right) \leq \lambda_{m}\left(N_{n}\right)
$$

For any $\varepsilon>0$ we can find $u \in L_{0}(X)$ such that $\chi_{m}(u)<\lambda_{m}(N)+\varepsilon$. There exists n_{0} such that $u=0$ on $X \backslash X_{n}$ for all $n \geq n_{0}$. Thus $\lambda_{m}\left(N_{n}\right) \leq \chi_{m}(u)$ for all $n \geq n_{0}$. Hence $\left\{\lambda_{m}\left(N_{n}\right)\right\}$ converges to $\lambda_{m}(N)$.

3. A characterization of $\lambda_{m}(N)$

Let $E_{+}(\Delta)$ be the set of all $\lambda>0$ such that there exists $u \in L(X)$ satisfying the condition:

$$
\begin{equation*}
\Delta u+\lambda m u=0 \quad \text { on } X \quad \text { and } u>0 \text { on } X \tag{E}
\end{equation*}
$$

We shall prove
Theorem 3.1. Assume that $E_{+}(\Delta) \neq \emptyset$. Then $\sup E_{+}(\Delta) \leq \lambda_{m}(N)$.
Proof. Let $\lambda \in E_{+}(\Delta)$. There exists $u \in L(X)$ which satisfies Condition (E). Consider an exhaustion $\left\{N_{n}\right\}\left(N_{n}=<X_{n}, Y_{n}>\right)$ of N. By Lemma 2.1, there exists $v_{n} \in L(X)$ such that $v_{n}=0$ on $X \backslash X_{n}, v_{n}>0$ on X_{n} and $\Delta v_{n}+\lambda_{m}\left(N_{n}\right) m v_{n}=$ 0 on X_{n}. Put

$$
P:=\left(\lambda-\lambda_{m}\left(N_{n}\right)\right) \sum_{x \in X_{n}} m(x) u(x) v_{n}(x) .
$$

Since $\Delta u+\lambda m u=0$ on X_{n}, we have

$$
\begin{aligned}
P & =-\sum_{x \in X_{n}} v_{n}(x)[\Delta u(x)]+\sum_{x \in X_{n}} u(x)\left[\Delta v_{n}(x)\right] \\
& =-\sum_{x \in X} v_{n}(x)[\Delta u(x)]+\sum_{x \in X} u(x)\left[\Delta v_{n}(x)\right]-\sum_{x \in X \backslash X_{n}} u(x)\left[\Delta v_{n}(x)\right] \\
& =D\left(v_{n}, u\right)-D\left(u, v_{n}\right)-\sum_{x \in X \backslash X_{n}} u(x)\left[\Delta v_{n}(x)\right] \\
& =-\sum_{x \in X \backslash X_{n}} u(x)\left[\Delta v_{n}(x)\right] .
\end{aligned}
$$

For each boundary node x of X_{n} (i.e., $x \notin X_{n}$ and x is a neighboring node of X_{n}), we have

$$
\Delta v_{n}(x)=\sum_{z \in X_{n}} t(x, z) v_{n}(z) \geq 0
$$

where

$$
t(x, z):=\sum_{y \in Y}|K(x, y) K(z, y)| r(y)^{-1}
$$

Therefore $P \leq 0$. Since $u(x) v_{n}(x)>0$ on X_{n}, we obtain $\lambda \leq \lambda_{m}\left(N_{n}\right)$. Our assertion follows from Theorem 2.1.

This result was proved in [3] in case $r=1$ and $m=1$. To prove the converse of the above result, we prepare

Lemma 3.1. Let $0<\lambda<\lambda_{m}(N)$. For each $a \in X$, there exists a unique $\pi_{a} \in L(X)$ which satisfies the following conditions:
(1) $\pi_{a}(x)>0$ on X.
(2) $\Delta \pi_{a}(x)+\lambda m(x) \pi_{a}(x)=-\varepsilon_{a}(x)$ on X.

Proof. Notice that N is of hyperbolic type by Theorem 3.3 in [7]. Since $0<\lambda<$ $\lambda_{m}(N)$, we see that $D(u)>\lambda\|u\|_{m}^{2}$ for every $u \in D_{0}(N)$ with $u \neq 0$. Let $a \in X$ and consider the following minimizing problem:

$$
\begin{equation*}
\rho(a):=\inf \left\{D(u)-\lambda\|u\|_{m}^{2} ; u \in D_{0}(N), u(a)=1\right\} . \tag{P}
\end{equation*}
$$

Let $\left\{u_{n}\right\}$ be a minimizing sequence, i.e., $u_{n} \in D_{0}(N), u_{n}(a)=1$ and $D\left(u_{n}\right)-$ $\lambda\left\|u_{n}\right\|_{m}^{2} \rightarrow \rho(a)$ as $n \rightarrow \infty$. Since $\lambda_{m}(N)\left\|u_{n}\right\|_{m}^{2} \leq D\left(u_{n}\right)$, we have

$$
D\left(u_{n}\right)-\lambda\left\|u_{n}\right\|_{m}^{2} \geq\left(1-\frac{\lambda}{\lambda_{m}(N)}\right) D\left(u_{n}\right)
$$

so that $\left\{D\left(u_{n}\right)\right\}$ is bounded. For every $x \in X$, there exists a constant $M(x)>$ 0 such that $\left|u_{n}(x)\right| \leq M(x)\left[D\left(u_{n}\right)\right]^{1 / 2}$ for all n (cf. [10]). Therefore $\left\{u_{n}(x)\right\}$ is bounded. By choosing a subsequence if necessary, we may assume that $\left\{u_{n}\right\}$ converges pointwise to $\tilde{u} \in L(X)$. It follows that $\tilde{u} \in D_{0}(N), \tilde{u}(a)=1$ and $\rho(a)=D(\tilde{u})-\lambda\|\tilde{u}\|_{m}^{2}$. Notice that $\rho(a)>0$. In fact, if $\rho(a)=0$, then

$$
\lambda=\frac{D(\tilde{u})}{\|\tilde{u}\|_{m}^{2}} \geq \lambda_{m}(N)
$$

which is a contradiction.
Next we show that

$$
\begin{equation*}
\Delta \tilde{u}(x)+\lambda m(x) \tilde{u}(x)=-\rho(a) \varepsilon_{a}(x) \text { on } X \tag{Q}
\end{equation*}
$$

For any real number t and any $f \in D_{0}(N)$ with $f(a)=0$, we have

$$
\Phi(t):=D(\tilde{u}+t f)-\lambda\|\tilde{u}+t f\|_{m}^{2} \geq \rho(a)=\Phi(0)
$$

so that the derivative of $\Phi(t)$ at $t=0$ vanishes, i.e., $\Phi^{\prime}(0)=0$. It follows that

$$
-\sum_{z \in X}[\Delta \tilde{u}(z)] f(z)-\lambda((\tilde{u}, f))_{m}=0
$$

Taking $f=\varepsilon_{x}(x \in X, x \neq a)$, we obtain $\Delta \tilde{u}(x)+\lambda m(x) \tilde{u}(x)=0$. For $f=\tilde{u}-\varepsilon_{a}$, we have

$$
-\sum_{z \in X}[\Delta \tilde{u}(z)]\left(\tilde{u}(z)-\varepsilon_{a}(z)\right)-\lambda\left(\left(\tilde{u}, \tilde{u}-\varepsilon_{a}\right)\right)_{m}=0
$$

so that

$$
\Delta \tilde{u}(a)+\lambda m(a) \tilde{u}(a)=-D(\tilde{u})+\lambda\|\tilde{u}\|_{m}^{2}=-\rho(a)
$$

Namely every optimal solution \tilde{u} of the problem (P) satisfies the above equation (Q). We show the uniqueness of the solution of the equation (Q). Let $\tilde{u}_{1}, \tilde{u}_{2}$ be
solutions of the equation (Q). Then $v:=\tilde{u}_{1}-\tilde{u}_{2} \in D_{0}(N), v(a)=0$ and $\Delta v(x)+$ $\lambda m(x) v(x)=0$ on X. Thus $D(v)=\lambda\|v\|_{m}^{2}$, and hence $v=0$. Therefore $\tilde{u}_{1}=\tilde{u}_{2}$.

We show that $\tilde{u} \geq 0$. Let $v:=|\tilde{u}|$. Then v is a feasible solution of the problem (P). We have $D(v) \leq D(\tilde{u})$ and $\|v\|_{m}^{2}=\|\tilde{u}\|_{m}^{2}$, so that

$$
\rho(a) \leq D(v)-\lambda\|v\|_{m}^{2} \leq D(\tilde{u})-\lambda\|\tilde{u}\|_{m}^{2} .
$$

Therefore $|\tilde{u}|$ is also an optimal solution of the problem (P). By the above observation, we conclude that $\tilde{u}=|\tilde{u}| \geq 0$.

It follows that \tilde{u} is a nonnegative superharmonic function on X. By the minimum principle, we see that $\tilde{u}(x)>0$ on X. Now we may conclude that $\pi_{a}(x):=$ $\tilde{u}(x) / \rho(a)$ satisfies our requirement.
Theorem 3.2. Let $0<\lambda<\lambda_{m}(N)$. Then there exists $u^{*} \in L(X)$ such that $u^{*}(x)>0$ on X and

$$
\Delta u^{*}(x)+\lambda m(x) u^{*}(x)=0 \text { on } X
$$

Proof. Let $\left\{N_{n}\right\}\left(N_{n}=<X_{n}, Y_{n}>\right)$ be an exhaustion of N and define $u_{n} \in L(X)$ by

$$
u_{n}(x):=\lambda \sum_{a \in X_{n}} \pi_{a}(x) m(a)
$$

Then $u_{n}>0$ on X and
$\Delta u_{n}(x)+\lambda m(x) u_{n}(x)=\lambda\left[\sum_{a \in X_{n}}\left(\Delta \pi_{a}(x)+\lambda m(x) \pi_{a}(x)\right) m(a)\right]=-\lambda m(x) \varepsilon_{X_{n}}(x)$ for every $x \in X$. Notice that u_{n} is superharmonic on X. First we consider the case where there exists $b \in X$ such that $\left\{u_{n}(b)\right\}$ is bounded. Notice that $\left\{u_{n}(x)\right\}$ is bounded for every $x \in X$ by Harnack's inequality (cf. Theorem 2.3 in [11]). By choosing subsequences if necessary, we may assume that $\left\{u_{n}(x)\right\}$ converges pointwise to $\tilde{u}(x)$. Then we have

$$
\Delta \tilde{u}(x)+\lambda m(x) \tilde{u}(x)=-\lambda m(x)
$$

so that $u^{*}:=\tilde{u}+1$ satisfies our requirement.
Next we consider the case where there exists $b \in X$ such that $u_{n}(b) \rightarrow \infty$ as $n \rightarrow \infty$. We put $v_{n}(x):=u_{n}(x) / u_{n}(b)$. Then v_{n} is positive and superharmonic and $v_{n}(b)=1$. By Harnack's inequality, we see that $\left\{v_{n}(x)\right\}$ is bounded for each $x \in X$. Therefore we may assume that $\left\{v_{n}\right\}$ converges pointwise to \tilde{v}. We see easily that $\tilde{v}(b)=1, \tilde{v}>0$ on X and $\Delta \tilde{v}(x)+\lambda m(x) \tilde{v}(x)=0$ on X. This completes the proof.
J. Dodziuk and L. Karp [3] gave a proof for this theorem by using the reasoning for manifolds in [4]. Their reasoning seems to contain a gap which occurs in the discrete case.

By Theorems 3.1 and 3.2, we obtain
Theorem 3.3. If $\lambda_{m}(N)>0$, then $E_{+}(\Delta)$ is equal to the interval $\left(0, \lambda_{m}(N)\right]$ and $\lambda_{m}(N)=\max E_{+}(\Delta)$.

Proof. By Theorem 3.2, we see that $\left(0, \lambda_{m}(N)\right) \subset E_{+}(\Delta)$. The fact that $\lambda_{m}(N) \in$ $E_{+}(\Delta)$ follows from Theorem 6.3 in [7].

Theorem 3.4. Assume that $\lambda_{m}(N)>0$ and that $u^{*} \in D_{0}(N)$ satisfies the difference equation:

$$
\Delta u^{*}(x)+\lambda_{m}(N) m(x) u^{*}(x)=0 \quad \text { on } \quad X .
$$

Then $\chi_{m}\left(u^{*}\right)=\lambda_{m}(N)$.
Proof. There exists a sequence $\left\{f_{n}\right\}$ in $L_{0}(X)$ such that $\left\|u^{*}-f_{n}\right\|_{D} \rightarrow 0$ as $n \rightarrow \infty$.

$$
\lambda_{m}(N)\left\|u^{*}-f_{n}\right\|_{m}^{2} \leq D\left(u^{*}-f_{n}\right) \rightarrow 0
$$

as $n \rightarrow \infty$, so that $\left\{f_{n}\right\}$ converges weakly to u^{*} both in $L_{2}(X ; m)$ and $D_{0}(N)$ By our assumption, we have $D\left(u^{*}, f_{n}\right)=\lambda_{m}(N)\left(\left(u^{*}, f_{n}\right)\right)_{m}$, and hence $D\left(u^{*}\right)=$ $\lambda_{m}(N)\left\|u^{*}\right\|_{m}^{2}$.

4. An Example

Let $G=\{X, Y, K\}$ be the binary tree rooted at x_{0} and $r=1$ on Y (cf. [9]). Denote by $d\left(x_{0}, x\right)$ the geodesic distance between x_{0} and x (i.e., the number of arcs in the path connecting two nodes x_{0} and $\left.x\right)$ and let $Z_{k}:=\left\{x \in X ; d\left(x_{0}, x\right)=k\right\}$ and

$$
Q_{k}:=Z_{k} \ominus Z_{k-1}=\left\{y \in Y ; K(x, y) K\left(x^{\prime}, y\right)=-1 \text { for } x \in Z_{k} \text { and } x^{\prime} \in Z_{k-1}\right\} .
$$

Then we have $\operatorname{Card}\left(Z_{k}\right)=2^{k}$ for $k \geq 0$ and $\operatorname{Card}\left(Q_{k}\right)=2^{k}$ for $k \geq 1$, where $\operatorname{Card}(A)$ stands for the cardinality of a set A.

We shall determine $\lambda_{m}(N)$ in case $m=1$. For simplicity, we put $\|u\|=\|u\|_{m}$. Let us define a subset $L(X ; d)$ of $L(X)$ by $u \in L(X ; d)$ if and only if $u(x)=u_{k}$ for all $x \in Z_{k}$. For $u \in L(X ; d)$, we have

$$
\begin{aligned}
\Delta u\left(x_{0}\right) & =-2 u_{0}+2 u_{1} \quad\left(x \in Z_{0}\right) \\
\Delta u(x) & =-3 u_{k}+2 u_{k+1}+u_{k-1} \quad\left(x \in Z_{k} ; k=1,2, \cdots\right) .
\end{aligned}
$$

Let us find a contant $\lambda>0$ and a function $u>0$ on X which satisfy $\Delta u(x)+$ $\lambda u(x)=0$ on X. First consider the following difference equation:

$$
\begin{equation*}
2 u_{k+1}-(3-\lambda) u_{k}+u_{k-1}=0 \quad(k=1,2, \cdots) . \tag{DE}
\end{equation*}
$$

Let us put $\lambda^{*}:=3-2 \sqrt{2}$. This value gives a double solution for the equation:

$$
2 t^{2}-\left(3-\lambda^{*}\right) t+1=0
$$

We see easily that

$$
u_{k}^{*}=(\alpha+\beta k)\left(\frac{1}{\sqrt{2}}\right)^{k} \quad(k=0,1,2, \cdots)
$$

is a general solution of the difference equation (DE) with $\lambda=\lambda^{*}$. Determine α and β so that $u_{0}=1$ and $-2 u_{0}+2 u_{1}=-\lambda^{*} u_{0}$. Then we obtain

$$
u_{k}^{*}:=\left[1+\left(1-\frac{1}{\sqrt{2}}\right) k\right]\left(\frac{1}{\sqrt{2}}\right)^{k}
$$

for $k=0,1,2, \cdots$. Define $u^{*} \in L(X ; d)$ by $\left\{u_{k}^{*}\right\}$. Then λ^{*} and u^{*} satisfies our requirement. Therefore we have $\lambda_{1}(N) \geq 3-2 \sqrt{2}$ by Theorem 3.1.

To prove the converse inequality, we consider a sequence $\left\{u^{(n)}\right\}$ in $L(X ; d)$ defined by

$$
u_{k}^{(n)}:=\left\{\begin{array}{rll}
(1 / \sqrt{2})^{k} & \text { for } & 0 \leq k \leq n \\
0 & \text { for } & k \geq n+1
\end{array}\right.
$$

Then $u^{(n)} \in L_{0}(X)$ and

$$
\begin{aligned}
\left\|u^{(n)}\right\|^{2} & =\sum_{k=0}^{n} 2^{k}\left[u_{k}^{(n)}\right]^{2}=n+1 \\
D\left(u^{(n)}\right) & =\sum_{k=0}^{n} 2^{k+1}\left[u_{k}^{(n)}-u_{k+1}^{(n)}\right]^{2} \\
& =2\left(1-\frac{1}{\sqrt{2}}\right)^{2} n+2 .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\lambda_{1}(N) & \leq \frac{D\left(u^{(n)}\right)}{\left\|u^{(n)}\right\|^{2}} \\
& =2\left(1-\frac{1}{\sqrt{2}}\right)^{2} \frac{n}{n+1}+\frac{2}{n+1} \\
& \rightarrow 2\left(1-\frac{1}{\sqrt{2}}\right)^{2}=3-2 \sqrt{2} \quad(n \rightarrow \infty)
\end{aligned}
$$

Therefore we have
Theorem 4.1. Let G be the binary tree rooted at x_{0} and let $r=1$ on Y and $m=1$ on X. Then $\lambda_{m}(N)=3-2 \sqrt{2}$.

Notice that we have $\left\|u^{*}\right\|^{2}=\infty$.

REFERENCES

[1] N.L. Biggs, B. Mohar and J. Shawe-Taylor, The spectral radius of infinite graphs, Bull. London Math. Soc. 20(1988), 116-120.
[2] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc. 284(1984), 787-794.
[3] J. Dodziuk and L. Karp, Spectral and function theory for combinatorial Laplacians, Contemporary Math. 73(1988), 25-40.
[4] D. Fisher-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3manifolds of non-negative scalar curvature, Comm. Pure Appl. Math. 33(1980), 199-211.
[5] J. Friedman, Some geometric aspects of graphs and their eigenfunctions, Duke Math. J. 69(1993), 487-525.
[6] P. Gerl, Random walks on graphs, Lecture Notes in Math. 1210(1986), 285-303, Springer, Berlin.
[7] A. Murakami and M. Yamasaki, Inequalities on infinite networks, to appear in Mem. Fac. Sci. Eng. Shimane Univ. Ser B: Mathematical Science 33(2000), 47-62.
[8] Y. Shogenji and M. Yamasaki, Hardy's inequality on finite netwoeks, Mem. Fac. Sci. Eng. Shimane Univ. Ser B: Mathematical Science 32(1999), 75-84.
[9] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima Math. J.7(1977), 135146.
[10] M. Yamasaki, Discrete potentials on an infinite network, Mem. Fac. Shimane Univ. 13(1979), 31-44.
[11] M. Yamasaki, The equation $\Delta u=q u$ on an infinite network, Mem. Fac. Shimane Univ. 21(1987), 31-46.

Department of Mathematics, Hiroshima Institute of Technology, Hiroshima, 731-5193 JAPAN

E-mail address: atsumura@cc.it-hiroshima.ac.jp
Department of Mathematics and Computer Science, Shimane University, MatSUE, 690-8504 JAPAN

E-mail address: yamasaki@math.shimane-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. 31C20, 39A10.
 Key words and phrases. Infinite network, Sobolev-Poincaré's inequality, the smallest eigenvalue, the discrete Laplacian .

 This work was supported in part by Grant-in-Aid for Scientific Research (C)(No. 11640202), Japanese Ministry of Education, Science and Culture.

