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Abstract. Inequalities on networks have played important roles in the the-
ory of netwoks. We study several famous inequalities on networks such as
Wirtinger’s inequality, Hardy’s inequality, Poincaré-Sobolev’s inequality and
the strong isoperimetric inequality, etc. These inequalities are closely related
to the smallest eigenvalue of weighted discrete Laplacian. We discuss some
relations between these inequalities and the potential-theorerteic magnitude
of the ideal boundary of an infinite network.

1. Problem Setting

Let X be a countable set of nodes, Y be a countable set of arcs and K be
the node-arc incidence matrix. Assume that the graph G := {X, Y,K} is locally
finite and connected and has no self-loop. For a strictly positive real valued
function r on Y , N := {G, r} is called a network.

Let L(X) be the set of all real valued functions on X, let L+(X) be the set of
all non-negative u ∈ L(X) and let L0(X) be the set of all u ∈ L(X) with finite
support. We denote by εA the characteristic function of the subset A of X and
put εx := εA in case A = {x}.

The discrete derivative du and the discrete Laplacian ∆u(x) of u ∈ L(X) are
defined by

du(y) := −r(y)−1
∑

x∈X
K(x, y)u(x),

∆u(x) :=
∑

y∈Y
K(x, y)[du(y)].

Denote by the total conductance at x ∈ X by

c(x) :=
∑

y∈Y
|K(x, y)|r(y)−1.

1991 Mathematics Subject Classification. 31C20, 90C35, 90C50, 39A12.
Key words and phrases. Infinite network, Discrete inequalities, Eigenvalue of discrete Lapla-

cian .
This work was supported in part by Grant-in-Aid for Scientific Research (C)(No. 11640202),

Japanese Ministry of Education, Science and Culture.
47



48 ATSUSHI MURAKAMI AND MARETSUGU YAMASAKI

In case r(y) = 1 on Y , this quantity is equal to the number of the neighboring
nodes of x and is called the degree of x. For x, z ∈ X with x 6= z, the conductance
c(x, z) between x and z is defined by

c(x, z) :=
∑

y∈Y
r(y)−1|K(x, y)K(z, y)|.

We set c(x, x) = 0 for every x ∈ X. Notice that

∆u(x) = −c(x)u(x) +
∑

z∈X
c(x, z)u(z).

The mutual Dirichlet sum D(u, v) of u, v ∈ L(X) is defined by

D(u, v) :=
∑

y∈Y
r(y)[du(y)][dv(y)]

if the sum on the right hand side converges. We callD(u) := D(u, u) the Dirichlet
sum of u and consider the following set of discrete Dirichlet functions:

D(N) := {u ∈ L(X);D(u) <∞}.

Letm be a strictly positive real valued function onX and consider the following
inner product:

< u, v >m:=
∑

x∈X
m(x)u(x)v(x)

if the sum on the right hand side converges. Let us put for simplicity

‖u‖m := [< u, u >m]1/2 and L2(X;m) := {u ∈ L(X); ‖u‖m <∞}.

For a nonempty subset B of X (Y resp.) and a function w on X (Y resp.),
denote by w(B) the sum of w(·) on B.

In this paper, we always assume that A0 is a fixed nonempty finite subset of
X such that A0 6= X.

We shall study the following conditions related to inequalities on the network
N .
(C.1; m) There exists a constant C1 > 0 such that

‖u‖2
m ≤ C1D(u) for all u ∈ L0(X).

(C.2; m,A0) There exists a constant C2 > 0 such that

‖u‖2
m ≤ C2D(u) for all u ∈ L0(X;A0),

where
L0(X;A0) := {u ∈ L0(X); u = 0 on A0}.

For simplicity, we introduce the following function

χm(u) :=
D(u)

‖u‖2
m

on D(N) and consider the following values of extremum problems:

λ(1)
m := inf{χm(u); u ∈ L0(X)},

λ(2)
m (A0) := inf{χm(u); u ∈ L0(X;A0)}.
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Notice that they are the best possible values of 1/C1 and 1/C2 respectively.

Therefore Conditions (C.1; m) and (C.2; m,A0) are equivalent to λ
(1)
m > 0 and

λ
(2)
m (A0) > 0 respectively.

Clearly λ
(1)
m ≤ λ

(2)
m (A0). In case N is a finite network, we have

λ(1)
m = 0 < λ(2)

m (A0).

We shall be concerned with the problem when does λ
(2)
m (A0) > 0 imply λ

(1)
m > 0.

We also give some suitable lower bounds for λ
(1)
m and λ

(2)
m (A0) by using potential-

theoretic method. Applications of our inequalities to the study of discrete po-
tentials will be given in §5. We shall show in §6 some partial answers to the

existence of optimal solutions for λ
(1)
m and λ

(2)
m (A0).

Remark 1.1. Condition (C.1; m) implies the generalized strong isoperimetric
inequality (GSI):

‖εA‖
2
m ≤ C1D(εA) or m(A) ≤ C1r

−1(∂A)

for every nonempty finite subset A of X. Here ∂A is the set of y ∈ Y which
connects A and X \ A directly.

In case m = 1 on X and r = 1 on Y , Condition (C.1; m) is known as the
Poincaré-Sobolev’s inequality. In [1], it was proved that the Poincaré-Sobolev’s
inequality is equivalent to the following isoperimetric inequality under the con-
dition that X is of bounded degree, i.e., sup{c(x); x ∈ X} <∞:
(SI) There exists a constant C4 > 0 such that

|A| ≤ C4|∂A|

for every nonempty finite subset A of X. Here |A| denotes the cardinality of A.
In case m(x) = c(x) on X, it was proved in [17] that the generalized Poincaré-

Sobolev’s inequality (C.1; m) holds if and only if the generalized strong isoperi-
metric inequality (GSI) does.

2. Preliminaries

Lemma 2.1. For every u ∈ D(N), the following inequality holds:

D(u) ≤ 2
∑

x∈X
c(x)u(x)2

Proof. By definition, we have

D(u) ≤ 2
∑

y∈Y
r(y)−1

[

∑

x∈X
K(x, y)2u(x)2

]

= 2
∑

x∈X
u(x)2

[

∑

x∈X
K(x, y)2r(y)−1

]

= 2
∑

x∈X
c(x)u(x)2.

We recall the following useful result(cf. Lemma 3 in [21]):
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Lemma 2.2. (Green′sformula) Let u ∈ L(X), f ∈ L0(X). Then

D(u, f) = −
∑

x∈X
[∆u(x)]f(x) = −

∑

x∈X
[∆f(x)]u(x).

Let us further introduce the following set of functions:

D(N ;A0) := {u ∈ D(N); u = 0 on A0}.

Notice that D(N ;A0) is a Hilbert space with the inner product D(u, v). Denote
by D0(N ;A0) the closure of L0(X;A0) in D(N ;A0). There exist the unique
reproducing kernels g̃∗x and g̃x of D0(N ;A0) and D(N ;A0) respectively, i.e.,

D(u, g̃∗x) = u(x) for all u ∈ D0(N ;A0),

D(u, g̃x) = u(x) for all u ∈ D(N ;A0).

We called g̃x the Kuramochi kernel of N with pole at x in [13].
We also notice that D(N) is a Hilbert space with the inner product

((u, v))D := D(u, v) + u(x0)v(x0),

where x0 is a fixed node. We set ‖u‖D = ((u, u))
1/2
D . The set D0(N) of discrete

Dirichlet potentials is defined as the closure of L0(X) in D(N).
Recall that N is of parabolic type if the value

d(A,∞) := inf{D(u); u ∈ L0(X), u = 1 on A}

vanishes for some nonempty finite subset A of X (cf. [22]). We say that N is
of hyperbolic type if it is not of parabolic type. Notice that N is of parabolic
type if and only if D(N ;A0) = D0(N ;A0). In case N is of hyperbolic type, there
exists a unique reproducing kernel gx of D0(N), i.e.,

v(x) = D(v, gx) for all v ∈ D0(N).

We call gx the Green function of N with pole at x.
For every f ∈ L+(X), let us define potentials G̃f, G̃∗f and Gf of f with

respect to the above reproducing kernels g̃x, g̃
∗
x and gx. For example,

G̃∗f(x) :=
∑

z∈X
g̃∗x(z)f(z).

We see that G̃f and G̃∗f are superharmonic on X \A0 if they have finite values
at some x ∈ X \ A0. Similarly if Gf(x) < ∞ for some x ∈ X, then Gf is
superharmonic on X (cf. [23]).

For mutually disjoint nonempty subsets A and B of X, let us consider two
values of convex programs:

d0(A,B) := inf{D(u); u ∈ L0(X), u = 0 on A, u = 1 on B},

d(A,B) := inf{D(u); u ∈ L(X), u = 0 on A, u = 1 on B}.

Notice that d(A,B) = d(B,A). We have by Theorem 2.1 in [14]

Lemma 2.3. Let x ∈ X \ A0. Then

d0(A0, {x}) = 1/g̃∗x(x) and d(A0, {x}) = 1/g̃x(x).

We have by Theorem 2.2 in [16]
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Lemma 2.4. Let A be a finite subset of X. For any exhaustion {Nn} (Nn =<
Xn, Yn >) of N with A ⊂ X1, d(A,X \Xn) → d(A,∞) as n→ ∞.

We shall prove

Theorem 2.1. If N is an infinite network which is of parabolic type, then {g̃x(x); x ∈
X} is unbounded.

Proof. Suppose that {g̃x(x); x ∈ X} is bounded, i.e., there exists a constant
C > 0 such that 0 < g̃x(x) ≤ C for all x ∈ X \ A0. Let {Nn}(Nn =< Xn, Yn >)
be an exhaustion of N with A0 ⊂ X1 and take a sequence {xn} of nodes such
that xn ∈ X \Xn. Then

1

C
≤

1

g̃xn
(xn)

= d(A0, {xn}) ≤ d(A0, X \Xn)

for every n. It follows from Lemma 2.4 that

d(A0,∞) ≥
1

C
> 0.

Thus N is of hyperbolic type. This is a contradiction.

3. Relations between λ
(1)
m and λ

(2)
m (A0)

Theorem 3.1. Let A0 and A′
0 be nonempty finite subsets of X such that A′

0 ⊂

A0. Then λ
(2)
m (A′

0) > 0 if and only if λ
(2)
m (A0) > 0.

Proof. Since A′
0 ⊂ A0, we have λ

(2)
m (A′

0) ≤ λ
(2)
m (A0), so that the only if part

holds. Assume that λ
(2)
m (A′

0) = 0. There exists a sequence {fn} in L0(X;A′
0)

such that ‖fn‖m = 1 and D(fn) → 0 as n → ∞. Since fn(x) = 0 on A′
0, we see

that {fn} converges pointwise to 0. Let vn = fn − un with un := fnεA0
. Then

vn ∈ L0(X;A0) and

‖vn‖
2
m = 1 −

∑

x∈A0

m(x)fn(x)2 → 1

as n→ ∞. Since N is locally finite, ∆fn and ∆un converge pointwise to 0. Here
we remark

∆un(x) =
∑

z∈A0

c(x, z)fn(x).

Since A0 is a finite set, we have by Lemma 2.2

D(vn) = D(fn) − 2D(fn, un) +D(un)

= D(fn) + 2
∑

x∈A0

[∆fn(x)]fn(x) −
∑

x∈A0

[∆un(x)]fn(x) → 0

as n→ ∞, and hence

λ(2)
m (A0) ≤

D(vn)

‖vn‖2
m

→ 0.

Corollary 3.1. If there exists a nonempty finite subset A0 ofX such that λ
(2)
m (A0) >

0, then λ
(2)
m (A) > 0 for all nonempty finite subset A of X.
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Lemma 3.1. Let m1, m2 ∈ L+(X) satisfy 0 < m1 ≤ m2. Then (C.1; m2) and
(C.2; m2, A0) imply (C.1; m1) and (C.2; m1, A0) respectively.

Theorem 3.2. Assume that m is bounded. Then (C.1; 1) implies (C.2; m,A0).

Proof. There exists M > 0 such that m(x) ≤ M for all x ∈ X. If Condition
(C.1; 1) holds, then there exists C1 > 0 such that

‖u‖2
m ≤ M‖u‖2

1 ≤MC1D(u)

for every u ∈ L0(X). Since L0(X;A0) ⊂ L0(X), we have χm(u) ≥ 1/(MC1) > 0

for all u ∈ L0(X;A0), and hence λ
(2)
m (A0) ≥ 1/(MC1) > 0.

Theorem 3.3. If N is of parabolic type, then λ
(1)
m = 0.

Proof. Suppose that λ
(1)
m > 0 and let A be a nonempty finite subset of X. Since

N is of parabolic type, there exists a sequence {fn} in L0(X) such that fn(x) = 1
on A and D(fn) → 0 as n→ ∞. Then,

0 < m(A)λ(1)
m ≤ λ(1)

m ‖fn‖
2
m ≤ D(fn) → 0

as n→ ∞. This is a contradiction.

Theorem 3.4. Assume that N is of hyperbolic type. Then Condition (C.2;
m,A0) is equivalent to Condition (C.1; m).

Proof. Since λ
(1)
m ≤ λ

(2)
m (A0) in general, we see that Condition (C.1; m) implies

Condition (C.2; m,A0). Assume that Condition (C.2; m,A0) holds. By Theorem
3.1, we may assume that A0 is a singleton {a}. For any u ∈ L0(X), let f =

u − uεa. Then f ∈ L0(X; {a}). Let C2 = 1/λ
(2)
m ({a}). By our assumption, we

have
∑

x∈X
m(x)f(x)2 ≤ C2D(f)

Since N is of hyperbolic type, we can find a constant C0 > 0 depending only on
a such that

|v(a)| ≤ C0[D(v)]1/2

for all v ∈ L0(X) by Theorem 3.2 in [19]. We have

D(uεa) = u(a)2D(εa) ≤ C2
0D(u)c(a),

so that
D(f) ≤ 2(D(u) +D(uεa)) ≤ 2(1 + C2

0c(a))D(u).

It follows that

‖u‖2
m =

∑

x∈X
m(x)f(x)2 +m(a)u(a)2

≤ C2D(f) +m(a)D(u)

≤ [2(1 + C2
0c(a))C2 +m(a)C2

0 ]D(u).

Thus we have
λ(1)

m ≥
(

2(1 + C2
0c(a))C2 +m(a)C2

0

)−1
> 0.
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By Lemma 2.3, we have

Theorem 3.5. For every b ∈ X \ A0, the following inequality holds:

λ(2)
m (A0) ≤

d0(A0, {b})

m(b)
=

1

m(b)g̃∗b (b)
.

Proof. For every u ∈ L0(X;A0) with u(b) = 1, we have

λ(2)
m (A0) ≤ χm(u) =

D(u)

‖u‖2
m

≤
D(u)

m(b)
,

which gives our first inequality.

By Theorem 3.5, we have

Theorem 3.6. If {m(x)g̃∗x(x); x ∈ X} is unbounded, then λ
(2)
m (A0) = 0.

Corollary 3.2. Assume that m(x) ≥ 1 on X \ A0 and that N is an infinite

network. If N is of parabolic type, then λ
(2)
m (A0) = 0.

Proof. Since m(x) ≥ 1 on X \ A0, we have by Theorem 3.5

λ(2)
m (A0) ≤

1

g̃∗x(x)
=

1

g̃x(x)

for any x ∈ X \ A0. Since {g̃x(x); x ∈ X} is unbounded by Theorem 2.1, it

follows that λ
(2)
m (A0) = 0.

We can not omit the assumption that N is an infinite network in Corollary

3.2, since λ
(2)
m (A0) > 0 if N is a finite network.

4. Estimation of λ
(1)
m and λ

(2)
m (A0)

Hereafter we always assume that X \ A0 is connected, i.e., any two nodes in
X \ A0 can be connected by a path whose nodes are in X \ A0.

For a finite subnetwork N ′ =< X ′, Y ′ > of N such that A0 ⊂ X ′ and X ′ \ A0

is connected, we consider the following extremum problems:

λ(1)
m (N ′) := inf{χm(u); u ∈ L(X), u = 0 on X \X ′},

λ(2)
m (A0;N

′) := inf{χm(u); u ∈ D(N ′;A0)},

where we set for simplicity

D(N ′;A0) := {u ∈ L(X); u = 0 on A0 ∪ (X \X ′)}.

As in [18], we have

Lemma 4.1. Let N ′ =< X ′, Y ′ > be a finite subnetwork of N with A0 ⊂ X ′.
There exists a unique u′ ∈ D(N ′;A0) which has the following properties:

(1) λ
(2)
m (A0;N

′) = χm(u′),

(2) ∆u′(x) = −λ(2)
m (A0;N

′)m(x)u′(x) on X ′ \ A0.
(3) u′(x) > 0 on X ′ \ A0 and ‖u′‖m = 1.
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Lemma 4.2. Let N ′ =< X ′, Y ′ > be a finite subnetwork of N . There exists a
unique u′ ∈ L(X) which has the following properties:
(1) u′(x) = 0 on X \X ′,

(2) λ
(1)
m (N ′) = χm(u′),

(3) ∆u′(x) = −λ(1)
m (N ′)m(x)u′(x) on X ′,

(4) u′(x) > 0 on X ′ and ‖u′‖m = 1.

For each x ∈ X ′ \A0, there exists a unique function g̃N ′

x ∈ D(N ′;A0) such that

u(x) = D(u, g̃N ′

x ) for all u ∈ D(N ′;A0),

since D(N ′;A0) is a Hilbert space. We see that ∆g̃N ′

x = −εx on X ′ \ A0 and
0 ≤ g̃N ′

x (z) on X.

Lemma 4.3. Let N ′ =< X ′, Y ′ > be a finite subnetwork of N with A0 ⊂ X ′

and let u′ be the function obtained in Lemma 4.1. Then, for every x ∈ X ′ \ A0

u′(x) = λ(2)
m (A0;N

′)
∑

z∈X
g̃N ′

x (z)m(z)u′(z)

Proof. By the above observation, we have by Lemma 2.2

u′(x) = D(u′, g̃N ′

x )

= −
∑

z∈X
g̃N ′

x (z)∆u′(z)

= λ(2)
m (A0;N

′)
∑

z∈X
g̃N ′

x (z)m(z)u′(z).

For every f ∈ L+(X), we put

G̃N ′

f(x) :=
∑

z∈X
g̃N ′

x (z)f(z).

Corollary 4.1. The following relation holds:

1

max{G̃N ′m(x); x ∈ X ′}
≤ λ(2)

m (A0;N
′) ≤

1

min{G̃N ′m(x); x ∈ X ′}
.

Corollary 4.2. The following relation holds:

1

m(X ′) max{g̃N ′

x ; x ∈ X ′}
≤ λ(2)

m (A0;N
′) ≤

1

m(X ′) min{g̃N ′

x ; x ∈ X ′}
.

As in Urakawa[20], we have

Lemma 4.4. Let N ′ =< X ′, Y ′ > be a finite subnetwork of N such that A0 ⊂ X ′

and assume that X ′ \ A0 is connected. If f ∈ D(N ′;A0) satisfies the condition
that f(x) > 0 on X ′ \ A0, then the following inequality holds:

min{
−∆f(x)

m(x)f(x)
; x ∈ X ′ \ A0} ≤ λ(2)

m (A0;N
′) ≤ max{

−∆f(x)

m(x)f(x)
; x ∈ X ′ \ A0}.
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Proof. Let u′ be the function obtained in Lemma 4.1. Then

u′(x) = 0 on A0 ∪ (X \X ′), u′(x) > 0 on X ′ \ A0,

∆u′(x) = −λ(2)
m (A0;N

′)m(x)u′(x) on X ′ \ A0.

For x ∈ X ′ \ A0, we have

λ(2)
m (A0;N

′) =
−∆u′(x)

m(x)u′(x)

=
−∆f(x)

m(x)f(x)
+

ψ(x)

m(x)f(x)u′(x)
.

Here ψ(x) = u′(x)∆f(x)−f(x)∆u′(x). Since f, u′ ∈ L0(X) and f(x) = u′(x) = 0
on A0 ∪ (X \X ′), we have by Lemma 2.2

∑

x∈X′\A0

ψ(x) =
∑

x∈X
ψ(x)

=
∑

x∈X
u′(x)∆f(x) −

∑

x∈X
f(x)∆u′(x)

= D(u′, f) −D(f, u′) = 0.

Namely we see that either ψ(x) = 0 on X or ψ(x) changes its sign on X ′ \ A0.
If ψ(x) = 0 on X, then

−∆f(x)

m(x)f(x)
=

−∆u′(x)

m(x)u′(x)
= λ(2)

m (A0;N
′)

for every x ∈ X ′ \ A0. Otherwise, there exists a, b ∈ X ′ \ A0 such that ψ(a) >
0, ψ(b) < 0. Since f(x)u′(x) > 0 on X ′ \ A0, it follows that

−∆f(a)

m(a)f(a)
≤ λ(2)

m (A0;N
′) ≤

−∆f(b)

m(b)f(b)
.

Remark 4.1. Let us take f = G̃N ′

m in the this lemma. Then ∆f(x) = −m(x)
on X ′ \ A0, so that we have

min{
1

G̃N ′m(x)
; x ∈ X ′ \ A0} ≤ λ(2)

m (A0;N
′) ≤ max{

1

G̃N ′m(x)
; x ∈ X ′ \ A0}.

This is the same inequality as in Corollary 4.1.

Let {Nn}(Nn =< Xn, Yn >) be an exhaustion of N such that A0 ⊂ X1 and
X1 \ A0 is connected. Then we have

Theorem 4.1. The sequence {λ
(1)
m (Nn)} converges to λ

(1)
m .

Proof. We have
λ(1)

m ≤ λ(1)
m (Nn+1) ≤ λ(1)

m (Nn).

For any ε > 0 we can find u ∈ L0(X) such that χm(u) < λ
(1)
m + ε. There exists

n0 such that u = 0 on X \ Xn for all n ≥ n0. Thus λ
(1)
m (Nn) ≤ χm(u) for all

n ≥ n0. Hence {λ
(1)
m (Nn)} converges to λ

(1)
m .
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Similarly we can prove

Theorem 4.2. The sequence {λ
(2)
m (A0;Nn)} converges to λ

(2)
m (A0).

Let g̃
∗(n)
x := g̃N ′

x and G̃∗(n)f(x) := G̃N ′

f(x) with N ′ = Nn. We have by the

minimum principle that g̃
∗(n)
x ≤ g̃

∗(n+1)
x ≤ g̃∗x on X. Notice that

lim
n→∞

g̃∗(n)
x (z) = g̃∗x(z)

for each z ∈ X.

Theorem 4.3. If the G̃∗-potential G̃∗m of m is bounded on X, then

λ(2)
m (A0) ≥

1

sup{G̃∗m(x); x ∈ X}
> 0.

Proof. Let {Nn}(Nn =< Xn, Yn >) be an exhaustion of N with A0 ⊂ X1. Since

G̃∗(n)m(x) ≤ G̃∗m(x) and γ := sup{G̃∗m(x); x ∈ X} < ∞ by our assumption,
we have by Corollary 4.1

λ(2)
m (A0;Nn) ≥

1

γ
> 0

for all n, and our inequality follows from Theorem 4.2.

Corollary 4.3. Assume that N is of parabolic type and let m̃ be a strictly posi-
tive real valued function on X such that m̃(X) < ∞. Let m(x) := 1 on A0 and
m(x) := m̃(x)/g̃∗x(x) for x ∈ X \ A0. Then λm(A0) > 0.

Proof. Since g̃∗x(z) ≤ g̃∗x(x), we have

G̃∗m(x) =
∑

z∈X\A0

g̃∗x(z)m̃(z)

g̃∗z(z)
≤ m̃(X) <∞

for all x ∈ X \ A0.

Similarly we have by Corollary 4.2

Theorem 4.4. If {g̃∗x(x); x ∈ X} is bounded and if m(X) <∞, then

λ(2)
m (A0) ≥

1

m(X) sup{g̃∗x(x); x ∈ X}
> 0.

By taking the Green function g
(n)
x of Nn in place of g̃

∗(n)
x , we can prove

Theorem 4.5. If the Green potential Gm of m is bounded on X, then (C.1; m)
holds and

λ(1)
m ≥

1

sup{Gm(x); x ∈ X}
> 0.

Theorem 4.6. If {gx(x); x ∈ X} is bounded and if m(X) <∞, then

λ(1)
m ≥

1

m(X) sup{gx(x); x ∈ X}
> 0.
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5. Dirichlet potentials

As applications of our inequalities, we shall study the relations between D0(N)
and L2(X;m).

Theorem 5.1. Assume that Condition (C.1; m) holds. ThenD0(N) ⊂ L2(X;m)
and there exists C1 > 0 such that

‖u‖2
m ≤ C1D(u)

for every u ∈ D0(N).

Proof. Let u ∈ D0(N). There exists a sequence {fn} in L0(X) such that ‖u −
fn‖D → 0 as n → ∞. It follows that D(fn) → D(u) as n → ∞ and {fn}
converges pointwise to u. By Condition (C.1; m), there exists C1 > 0 such that

∑

x∈X
m(x)fn(x)2 ≤ C1D(fn).

By Fatou’s lemma,
∑

x∈X
m(x)u(x)2 ≤ lim inf

n→∞

∑

x∈X
m(x)fn(x)2.

Thus we have
∑

x∈X
m(x)u(x)2 ≤ C1D(u),

so that u ∈ L2(X;m).

Similarly we have

Theorem 5.2. If Condition (C.2; m,A0) holds, then D0(N ;A0) ⊂ L2(X;m)

and ‖u‖2
m ≤ λ

(2)
m (A0)D(u) for every u ∈ D0(N ;A0).

Lemma 5.1. Assume that there exists a constant C > 0 such that c(x) ≤ Cm(x)
on X. Then L2(X;m) ⊂ D0(N).

Proof. Let u ∈ L2(X;m) and take and an exhaustion {Nn}(Nn =< Xn, Yn >)
of N . Define fn by fn(x) := u(x) for x ∈ Xn and fn(x) := 0 for x ∈ X \Xn. We
have by Lemma 2.1

D(u− fn) ≤ 2
∑

x∈X
c(x)(u(x) − fn(x))2

≤ 2C
∑

x∈X\Xn

m(x)u(x)2 → 0,

as n → ∞. Since fn ∈ L0(X) and {fn} converges pointwise to u, we see that
‖u− fn‖D → 0 as n→ ∞, and therefore u ∈ D0(N).

By Theorem 5.1 and Lemma 5.1, we have

Theorem 5.3. Assume that Condition (C.1; m) holds and that there exists a
constant C > 0 such that c(x) ≤ Cm(x) on X. Then D0(N) = L2(X;m).

Corollary 5.1. Assume that m(x) = 1 on X, r(y) = 1 on Y and sup{c(x); x ∈
X} <∞. Then D0(N) = L2(X;m).
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Corollary 5.2. Assume that N is of hyperbolic type. If Condition (C.1; m)
holds, then gx ∈ L2(X;m) for all x ∈ X and {m(x)gx(x); x ∈ X} is bounded.

Proof. Since gx ∈ D0(N), we see by Theorem 5.1 that gx ∈ L2(X;m) for all
x ∈ X and there exists C1 > 0 such that

m(x)gx(x)
2 ≤

∑

z∈X
m(x)gx(z)

2 ≤ C1D(gx) = C1gx(x).

Therefore {m(x)gx(x); x ∈ X} is bounded.

Denote by D̃0(N) the closure of L0(X) in D(N) with respect to the norm:

|u|2D := D(u) + ‖u‖2
m.

Since ‖u‖D ≤ |u|D, we see that D̃0(N) ⊂ D0(N).

Theorem 5.4. If Condition (C.1; m) holds, then D̃0(N) = D0(N).

Proof. Let u ∈ D0(N). There exists a sequence {fn} in L0(X) such that ‖u −
fn‖D → 0 as n→ ∞. By Theorem 5.1, there exists C1 > 0 such that

‖u− fn‖
2
m ≤ C1D(u− fn) ≤ C1‖u− fn‖

2
D

for all n. Therefore ‖fn − u‖m → 0 as n → ∞, and hence |u − fn|D → 0 as
n→ ∞. Namely u ∈ D̃0(N).

Remark 5.1. We see easily that λ
(1)
m = inf{χm(u); u ∈ D̃0(N)}. If Condition

(C.1; m) holds, then

λ(1)
m = inf{χm(u); u ∈ D0(N)}.

Similarly, if Condition (C.2; m,A0) holds, then

λ(2)
m (A0) = inf{χm(u); u ∈ D0(N ;A0)}.

6. Existence of an optimal solution

First we shall give a characterization of λ
(2)
m (A0).

Theorem 6.1. Let Λ(A0) be the set of λ > 0 for which there exists u ∈ L(X)
satisfying the following condition:
(E) ∆u+ λmu = 0 on X \ A0, u = 0 on A0 and u > 0 on X \ A0.

Then sup Λ(A0) ≤ λ
(2)
m (A0).

Proof. Let λ ∈ Λ(A0) and u be a function which satisfies condition (E). Consider
an exhaustion {Nn}(Nn =< Xn, Yn >) be of N such that A0 ⊂ X1. There

exists vn ∈ L(X) such that ∆vn + λ
(2)
m (A0;Nn)mvn = 0 on Xn \ A0, vn = 0 on

A0 ∪ (X \Xn) and vn ≥ 0 on Xn \ A0. Put

P := (λ− λ(2)
m (A0;Nn))

∑

x∈Xn\A0

m(x)u(x)vn(x).
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Since ∆u+ λmu = 0 on Xn \ A0, we have by Lemma 2.2

P = −
∑

x∈Xn

vn(x)[∆u(x)] +
∑

x∈Xn

u(x)[∆vn(x)]

= −
∑

x∈X
vn(x)[∆u(x)] +

∑

x∈X
u(x)[∆vn(x)]

−
∑

x∈X\Xn

u(x)[∆vn(x)]

= D(vn, u) −D(u, vn) −
∑

x∈X\Xn

u(x)[∆vn(x)]

= −
∑

x∈X\Xn

u(x)[∆vn(x)].

For each boundary node x of Xn \ A0, i.e., x /∈ Xn \ A0 and there exists y ∈ Yn

such that K(x, y) 6= 0, we have

∆vn(x) =
∑

z∈Xn\A0

c(x, z)vn(z) ≥ 0.

Therefore P ≤ 0. Since u(x)vn(x) ≥ 0 on Xn \ A0, we obtain λ ≤ λ
(2)
m (A0;Nn).

Our assertion follows from Theorem 4.1.

Similarly we have

Theorem 6.2. Let Λ be the set of λ > 0 for which there exists u ∈ L(X) such

that ∆u+ λmu = 0 on X and u > 0 on X. Then sup Λ ≤ λ
(1)
m .

This result was proved in [6] in case r = 1 and m = 1.

Now we shall be concerned with the existence of an optimal solution for λ
(1)
m

and λ
(2)
m (A0) in D0(N) and D0(N ;A0) respectively (cf. Remark 5.1).

Theorem 6.3. If Condition (C.1; m) holds, then there exists a nonconstant
u∗ ∈ L(X) such that u∗(x) > 0 on X and

∆u∗(x) = −λ(1)
m m(x)u∗(x) on X.

Proof. Let {Nn}(Nn =< Xn, Yn >) be an exhaustion of N and let u∗n be the
function determined in Lemma 4.2. Take x0 ∈ X1 and put vn(x) := u∗n(x)/u

∗
n(x0).

Then vn(x0) = 1, χm(vn) = χm(u∗n) = λ
(1)
m (Nn), vn(x) > 0 on Xn and ∆vn(x) =

−λ
(1)
m (Nn)m(x)vn(x) on Xn. For any x ∈ X, x 6= x0, there exists n0 such that

x ∈ Xn for all n ≥ n0. Since vn is superharmonic on Xn, we see by Harnak’s
inequality (cf. Theorem 2.3 in [24]) that there exists a constant α(x0, x) > 0
(depending only on x0 and x) such that

vn(x) ≤ α(x0, x)vn(x0) = α(x0, x)

for all n ≥ n0. Namely {vn(x)} is bounded for every x ∈ X. By using the
diagonal process, we may assume that {vn} converges pointwise to a function
u∗ ∈ L(X). Clearly u∗ ∈ L+(X) and u∗(x0) = 1. It follows from Theorem 4.1
that

∆u∗(x) = −λ(1)
m m(x)u∗(x)
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for all x ∈ X. Since ∆u∗(x) ≤ 0 on X, we see by the minimum principle that

u∗(x) > 0 on X. By the relation ∆u∗(x0) = −λ
(1)
m m(x0)u

∗(x0) < 0, we see that
u∗ is nonconstant.

Corollary 6.1. If λ
(1)
m > 0, then max Λ = λ

(1)
m .

Similarly to Theorem 6.3, we have

Theorem 6.4. If Condition (C.2; m,A0) holds, then there exists ũ ∈ L(X) such
that ũ(x) = 0 on A0, ũ(x) > 0 on X \ A0 and

∆ũ(x) = −λ(2)
m (A0)m(x)ũ(x) on X.

Corollary 6.2. If λ
(2)
m (A0) > 0, then max Λ(A0) = λ

(2)
m (A0).

Theorem 6.5. Assume that λ
(1)
m > 0 and that u∗ ∈ D0(N) satisfies the differ-

ence equation:
∆u∗(x) = −λ(1)

m m(x)u∗(x) on X.

Then χm(u∗) = λ
(1)
m .

Proof. There exists a sequence {fn} in L0(X) such that ‖u∗ − fn‖D → 0 as
n→ ∞.

λ(1)
m ‖u∗ − fn‖

2
m ≤ D(u∗ − fn) → 0

as n → ∞, so that {fn} converges weakly to u∗ both in L2(X;m) and D0(N).

By our assumption, we have D(u∗, fn) = λ
(1)
m < u∗, fn >m, and hence D(u∗) =

λ
(1)
m ‖u∗‖2

m.

Theorem 6.6. Assume that the Poincaré-Sobolev inequality, or Condition (C.1;

1)) holds. If m(X) < ∞, then λ
(2)
m (A0) ∈ Λ(A0) and there exists ũ ∈ D0(N ;A0)

which satisfies λ
(2)
m (A0) = χm(ũ), ũ(x) > 0 on X \ A0, and

∆ũ(x) = −λ(2)
m (A0)m(x)ũ(x) on X \ A0.

Proof. By Theorem 3.2, λ
(2)
m (A0) > 0. Let {Nn}(Nn =< Xn, Yn >) be an exhaus-

tion of N such that A0 ⊂ X1 and let un be the function determined in Lemma
4.1. By the Poincaré-Sobolev inequality, there exists C1 > 0 such that

∑

x∈X
un(x)

2 ≤ C1D(un)

for all n. Since λ
(2)
m (A0;Nn) = D(un) and {λ

(2)
m (A0;Nn)} converges to λ

(2)
m (A0)

by Theorem 4.1, we see that {D(un)} is bounded. It follows that there exists
M ′ > 0 such that |un(x)| ≤ M ′ on X for all n. By using the diagonal process,
we may assume that {un} converges pointwise to a function ũ ∈ L(X). It follows
that ũ ∈ L+(X), |ũ(x)| ≤M ′ on X and

∆ũ(x) = −λ(2)
m (A0)m(x)ũ(x)

on X \ A0. We see by Lemma 2.2 that

D(ũ, un) = λ(2)
m (A0) < ũ, un >m .
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Since ‖un‖m = 1, {un(x)} is uniformly bounded and m(X) <∞, it follows from
the Lebegue’s dominated convergence theorem that

lim
n→∞

< un, ũ >m= lim
n→∞

∑

x∈X
m(x)un(x)ũ(x) = ‖ũ‖2

m = 1.

Since {D(un)} is bounded and un ∈ L0(X) converges pointwise to ũ(x), we see
that {un} converges weakly to ũ ∈ D0(N), so that D(un, ũ) → D(ũ) as n→ ∞.

Thus we have D(ũ) = λ
(2)
m (A0). By the minimum principle, we see that ũ > 0 on

X \ A0.

Remark 6.1. Theorem 6.6 does not hold in general if we replace the condition

λ
(1)
m > 0 by λ

(2)
m (A0) > 0. This was shown in [11].
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