FUNCTIONAL FREENESS FOR THE BERMAN CLASS $K_{m, n}$ OF OCKHAM ALGEBRAS

Michiro Kondo

(Received December 25, 1996)

Abstract

In this paper we show that an algebra $\Omega(m, n)$ is functionally free for the Berman class $K_{m, n}$ of Ockham algebras, that is, for any two polynomials f and g, they are identically equal in $K_{m, n}$ if and only if $f=g$ holds in $\Omega(m, n)$. This result can be applied to the well-known algebras, e.g., Boolean, de Morgan, Kleene, Stone, Bunge algebras, and so on.

1. Introduction

It is well known that, in order to show whether two polynomials f and g are identically equal in the class of Boolean algebras, we only calculate the values of polynomials in the typical Boolean algebra $2=\{0,1\}$. If their values are always identical then they are equal as polynomials otherwise not. The property is called a functional freeness of Boolean algebras. There are results about the properties of other algebras, e.g., de Morgan, Kleene algebras ([1],[2]). The classes of these algebras are subvarieties of the Berman class $K_{m, n}$ of Ockham algebras. In this paper we think about the functional freeness of the algebras in the Berman class $K_{m, n}$ and show that the algebra $\Omega(m, n)$ defined below is functional free for the Berman class $K_{m, n}$. From the result we can deduce the properties of the other algebras (e.g., Boolean, de Morgan, Kleene, Stone, Bunge algebras) without difficulty.

2. Algebras in $K_{m, n}$

We shall define algebras in the Berman class $K_{m, n}$ of Ockham algebras. Let m and n be intergers such that $m \geq 1$ and $n \geq 0$. An algebraic structure $L=(L ; \wedge, \vee, N, 0,1)$ of type $(2,2,1,0,0)$ is called an Ockham algebra when
(1) $(L ; \wedge, \vee, N, 0,1)$ is a bounded distributive lattice;
(2) $N: L \rightarrow L$ is a map satisfying the following conditions

[^0](c1) $N 0=1, N 1=0$
(c2) $N(x \wedge y)=N x \vee N y, N(x \vee y)=N x \wedge N y$
An algebra in the Berman class $K_{m, n}$ is the Ockham algebra satisfying the condition
$$
\text { (c3) } N^{2 m+n} x=N^{n} x \text {, }
$$
where $N^{n} x$ is defined recursively as $N^{0} x=x, N^{n+1} x=N\left(N^{n} x\right)$.
We have many examples of the algebras in the Berman class. We list some familiar algebras which form the subvarieties of the Berman class $K_{m, n}$.
(a) $K_{1,0}$: It is the class of de Morgan algebras.
(b) $K_{1,0}$ with the condition $x \wedge N x=0$: This is the class of Boolean algebras.
(c) $K_{1,0}$ with the condition $x \wedge N x \leq y \vee N y$: The class of Kleene algebras [2].
(d) $K_{1,1}$ with the condition $x \wedge N x=0$: The class of Stone algebras [3].
(e) $K_{1,1}$ with the condition $x \vee N x=1$: The class of Bunge algebras [9].

Now we define an algebraic structure $\Omega(m, n)$ which is in the Berman class $K_{m, n}$. The algebra plays an important role to prove the functional freeness for the class of algebras.

For brevity we put $k=2 m+n$. Let $\Omega(m, n)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mid x_{i} \in\{0,1\}\right\}$. We denote an element of $\Omega(m, n)$ by x and the i-th factor by $(x)_{i}=x_{i}$. For $x, y \in \Omega(m, n)$, we define $x=y$ if every factor of the elements is identical, that is, $(x)_{i}=(y)_{i}$ hence $x_{i}=y_{i}$ for every $i(1 \leq i \leq k)$. We introduce the operations \wedge, \vee, and N in the set $\Omega(m, n)$. If no confusion arises then we denote $\Omega(m, n)$ simply by Ω.

For every $x=\left(x_{i}\right)_{i}, y=\left(y_{i}\right)_{i} \in \Omega$, we define

$$
\begin{aligned}
& (x \wedge y)_{i}= \begin{cases}\min \left\{x_{i}, y_{i}\right\}=x_{i} \cdot y_{i} & \text { if } i \text { is odd } \\
\max \left\{x_{i}, y_{i}\right\}=x_{i}+y_{i}-x_{i} \cdot y_{i} & \text { if } i \text { is even }\end{cases} \\
& (x \vee y)_{i}= \begin{cases}\max \left\{x_{i}, y_{i}\right\}=x_{i}+y_{i}-x_{i} \cdot y_{i} & \text { if } i \text { is odd } \\
\min \left\{x_{i}, y_{i}\right\}=x_{i} \cdot y_{i} & \text { if } i \text { is even }\end{cases}
\end{aligned}
$$

$N x=\left(x_{2}, x_{3}, \ldots, x_{k}, x_{n+1}\right)$, that is,

$$
(N x)_{i}= \begin{cases}x_{i+1} & \text { if } i \neq k \\ x_{n+1} & \text { if } i=k\end{cases}
$$

We set the special elements $0=(0,1,0,1, \ldots)$ and $1=(1,0,1,0, \ldots)$.
Clearly the structure $\Omega=(\Omega ; \wedge, \vee, N, 0,1)$ is a bounded lattice.

Lemma 1. $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
$x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$
$N(x \wedge y)=N x \vee N y$
$N(x \vee y)=N x \wedge N y$

Proof. We show only the first case. The other cases can be proved similarly.
If i is odd, then the left-hand side is
$(x \wedge(y \vee z))_{i}$
$=\min \left\{x_{i}, \max \left\{y_{i}, z_{i}\right\}\right\}$
$=x_{i} \cdot\left(y_{i}+z_{i}-y_{i} \cdot z_{i}\right)$
$=x_{i} \cdot y_{i}+x_{i} \cdot z_{i}-x_{i} \cdot y_{i} \cdot z_{i}$.
On the right-hand side is

$$
\begin{aligned}
& ((x \wedge y) \vee(x \wedge z))_{i} \\
& =\max \left\{\min \left\{x_{i}, y_{i}\right\}, \min \left\{x_{i}, z_{i}\right\}\right\} \\
& =\max \left\{x_{i} \cdot y_{i}, x_{i} \cdot z_{i}\right\} \\
& =x_{i} \cdot y_{i}+x_{i} \cdot z_{i}-\left(x_{i}\right)^{2} \cdot y_{i} \cdot z_{i} \text {, since }\left(x_{i}\right)^{2}=x_{i} \text {, } \\
& =x_{i} \cdot y_{i}+x_{i} \cdot z_{i}-x_{i} \cdot y_{i} \cdot z_{i} .
\end{aligned}
$$

We can also show the equality in case of i being even. Therefore we have $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$.

The above indicates that the structure $\Omega=(\Omega ; \wedge, \vee, N, 0,1)$ is the Ockham algebra.

It is neccessary to show that the structure Ω is in the Berman class $K_{m, n}$. Before doing so, we think about the i-th factor of $N^{p} x$ for every integer $p \geq 1$. To see each factor of the element $N^{p} x$, when x is denoted by $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, we consider an infinite sequence of factors of x :
$x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}\left(=x_{n+1}\right), x_{k+2}\left(=x_{n+2}\right), \ldots, x_{k+2 m}\left(=x_{k}\right), x_{k+2 m+1}\left(=x_{n+1}\right)$,
$x_{k+2 m+2}\left(=x_{n+2}\right), \ldots, x_{k+2 m+2 m}\left(=x_{k}\right), x_{k+2 m+2 m+1}\left(=x_{n+1}\right), \ldots$.
It follows that $\left(N^{p} x\right)_{i}=x_{i+p}$ for every i. In general the j-th term of the sequence is obtained as follows. When j is denoted as $2 m \cdot \alpha+\beta(0 \leq \alpha, 0 \leq$ $\beta<2 m$), the j-th term x_{j} is x_{β}. Using the fact, we can show the next lemma.

Lemma 2. For every $x \in \Omega$ and $i \leq k$, we have $N^{k} x=N^{n} x$
Proof. It is sufficient to show that $\left(N^{k} x\right)_{i}=\left(N^{n} x\right)_{i}$ for every $i \leq k$. By the argument above, we have that $\left(N^{k} x\right)_{i}=x_{i+k}$ and $\left(N^{n} x\right)_{i}=x_{i+n}$. If we denote $i+n=2 m \cdot a+b \quad(0 \leq a, 0 \leq b<2 m)$, since $i+k=2 m \cdot(a+1)+b$, then we have $\left(N^{k} x\right)_{i}=x_{i+k}=x_{b}=x_{i+n}=\left(N^{n} x\right)_{i}$. This means that $\left(N^{k} x\right)_{i}=\left(N^{n} x\right)_{i}$ and hence that $N^{k} x=N^{n} x$.

Consequently we can conclude that the structure $\Omega=(\Omega ; \wedge, \vee, N, 0,1)$ is in the Berman class $K_{m, n}$.

3. Functional freeness

In this section we show that the algebra Ω is functionally free for the Berman class $K_{m, n}$ of Ockham algebras. In general, an algebra A is said to be functionally free for a non-empty class C of algebras provided that the following condition is satisfied: any two polynomials are identically equal in A iff they are identically
equal in each algebra in C. For example, (1) two-element Boolean algebra $2=$ $\{0,1\}$ is functionally free for the class B of all Boolean algebras, (2) three-element Kleene algebra $3=\{0, a, 1\}$ is so for the class K of all Kleene algebras, and (3) four-element de Morgan algebra $M=\{0, a, b, 1\}$ is so for the class M of all de Morgan algebras.

We define polynomials before proving the functional freeness of Ω.
Let $V=\left\{p_{1}, p_{2}, \ldots\right\}$ be the set of varibles. We define polynomials as follows.

1. Every variable $p_{n} \in V$ is a polynomial;
2. If f and g are polynomials, then so are $f \wedge g, f \vee g$, and $N f$.

Let L be an arbitrary algebra. The map $v: V \rightarrow L$ is called a valuation on L. The valuation v is extended uniquely to v^{*} of all the polynomials as follows; For any polynomials f and g,
(v1) $v^{*}\left(p_{n}\right)=v\left(p_{n}\right)$ for every $p_{n} \in V$
(v2) $v^{*}(f \wedge g)=v^{*}(f) \wedge v^{*}(g)$
(v3) $v^{*}(f \vee g)=v^{*}(f) \vee v^{*}(g)$
$(\mathrm{v} 4) \quad v^{*}(N f)=N\left(v^{*}(f)\right)$
Hence the value $v^{*}(f)$ of the polynomial f is determined by the values of p_{n} which are components of f. We note that the symbols \wedge, \vee, and N of the righthand side of the equations are in L. If no confusion arises we denote v^{*} by v simply.

We say that f and g are identically equal in L (or simply $f=g$ in L) if $v^{*}(f)=v^{*}(g)$ for every valuation v on L. We also say that f and g are identically equal in the class C of algebras (or simply $f=g$ in C) when $f=g$ holds in every algebra L in C. In the following, we shall show that $f=g$ in $K_{m, n}$ iff $f=g$ in Ω. Therefore, to investigate whether $f=g$ holds or not in the class $K_{m, n}$ of Ockham algebras, it is sufficient only to calculate the values $v^{*}(f)$ and $v^{*}(g)$ for all valuations v on Ω.

Proposition 1. Let D be any bounded distributive lattice and $a, b \in D$. If $a \neq b$, then there is a prime filter P of D such that $a \in P$ but $b \notin P$.

Proof. This is a well-known fact about distributive lattices. Hence we omit the proof. See [5].

In general if there is a partition of a set then we can introduce an equivalence relation on it. Let P be a prime filter of $L \in K_{m, n}$. The set L can be divided into 2^{k} subsets by P as follows:

$$
\begin{aligned}
L_{111 \ldots 1} & =\left\{x \mid x \in P, N x \in P, N^{2} x \in P, \ldots, N^{k-1} x \in P\right\} \\
L_{101 \ldots 1} & =\left\{x \mid x \in P, N x \notin P, N^{2} x \in P, \ldots, N^{k-1} x \in P\right\} \\
& \ldots \\
L_{000 \ldots 0} & =\left\{x \mid x \notin P, N x \notin P, N^{2} x \notin P, \ldots, N^{k-1} x \notin P\right\}
\end{aligned}
$$

Thus we can define an equivalence relation \sim_{P} on L as

$$
\sim_{P} \ni(x, y) \Longleftrightarrow \exists L_{s_{1} s_{2} \ldots s_{k}}\left(x, y \in L_{s_{1} s_{2} \ldots s_{k}}\right), \text { where } s_{i} \in\{0,1\} .
$$

This means that

$$
(x, y) \in \sim_{P} \text { iff } \forall i\left(N^{i} x \in P \Leftrightarrow N^{i} y \in P\right) .
$$

We say \sim_{P} an induced equivalence relation by P. For that relation we can show the next lemma.

Lemma 3. If P is a prime filter of L, then the induced relation \sim_{P} by P is a congruent relation on L.

Proof. We have to prove that for any $(x, y),(a, b) \in \sim_{P}$
(1) $(x \wedge a, y \wedge b) \in \sim_{P}$;
(2) $(x \vee a, y \vee b) \in \sim_{P}$;
(3) $(N x, N y) \in \sim_{P}$.

From the fact $N^{k} x=N^{n} x$, it is clear that the condition (3) holds. We only show the case of (1).

We simply denote an element $x \in L$ as a sequence of 0 and 1 as follows:
$x=x_{1} x_{2} x_{3} \ldots x_{k}$, where x_{i} is deined by

$$
x_{k}= \begin{cases}1 & \text { if } N^{i} x \in P \\ 0 & \text { if } N^{i} x \notin P\end{cases}
$$

By definition of \sim_{P}, we have

$$
(x, y) \in \sim_{P} \text { iff } \forall i\left(x_{i}=y_{i}\right) .
$$

Hence it is sufficient to show that $\forall i\left((x \wedge a)_{i}=(y \wedge b)_{i}\right)$ when $x_{i}=y_{i}$ and $a_{i}=b_{i}$ for all i.

Since P is the prime filter, we have that

$$
\begin{aligned}
& (x \wedge y)_{i}=\min \left\{x_{i}, y_{i}\right\} \text { if } i \text { is even } \\
& (x \wedge y)_{i}=\max \left\{x_{i}, y_{i}\right\} \text { if } i \text { is odd }
\end{aligned}
$$

Thus if i is even then it follows that

$$
(x \wedge a)_{i}=\min \left\{x_{i}, a_{i}\right\}=\min \left\{y_{i}, b_{i}\right\}=(y \wedge b)_{i} .
$$

In case of i odd, we also obtain that

$$
(x \wedge a)_{i}=\max \left\{x_{i}, a_{i}\right\}=\max \left\{y_{i}, b_{i}\right\}=(y \wedge b)_{i} .
$$

Therefore in either case we can conclude that $\forall i\left((x \wedge a)_{i}=(y \wedge b)_{i}\right)$, that is, $(x \wedge a, y \wedge b) \in \sim_{P}$.

The other case (2) can be proved similarly. This means that \sim_{P} is the congruence relation on L.

When P is the prime filter of L, we define $L / \sim_{\sim_{P}}=\{[x] \mid x \in L\}$ and $[x]=$ $\left\{y \in L \mid x \sim_{P} y\right\}$. Since the relation \sim_{P} is congruent on L, we can consistently define the oparations \wedge, \vee, and N on L / \sim_{P} :

$$
\begin{aligned}
& {[x] \wedge[y]=[x \wedge y]} \\
& {[x] \vee[y]=[x \wedge y]} \\
& N[x]=[N x]
\end{aligned}
$$

It is easy to show the next theorem.

Theorem 1. (1) The structure $L / \sim_{\sim_{P}}=\left(L / \sim_{P} ; \wedge, \vee, N,[0],[1]\right)$ is in the Berman class.
(2) The map $\eta: L \rightarrow L / \sim_{\sim_{P}}$ defined by $\eta(x)=[x]$ is a homomorphism.

Lemma 4. The map $\xi: L / \sim_{P} \rightarrow \Omega$ is an embedding, where ξ is defined by $\xi([x])=\left(s_{1}, s_{2}, . ., s_{k}\right)$ if $x \in L_{s_{1} s_{2} \ldots s_{k}}$.

Proof. It is clear that ξ is well-defined and an injection. We only show that ξ is a homomorphism, that is,

$$
\begin{aligned}
& \xi([x] \wedge[y])=\xi([x]) \wedge \xi([y]) \\
& \xi([x] \vee[y])=\xi([x]) \vee \xi([y]) \\
& \xi(N[x])=N(\xi([x])) .
\end{aligned}
$$

Since P is the prime filter, it follows that $x \wedge y \in P$ iff $x \in P$ and $y \in P$,
$N(x \wedge y) \in P$ iff $N x \in P$ or $N y \in P$,
Hence we have $\xi([x] \wedge[y])=\xi([x]) \wedge \xi([y])$. The other cases are proved similarly.

Theorem 2. Ω is functionally free for the Berman class $K_{m, n}$ of Ockham algebras, that is, $f=g$ in $K_{m, n}$ if and only if $f=g$ in Ω.

Proof. It is clear that a equation $f=g$ holds for polynomials f and g in $K_{m, n}$ then it holds in Ω. To prove the converse we suppose that $f=g$ does not hold in $K_{m, n}$. It is sufficient to indicate the existence of some algebra in $K_{m, n}$ and a valuation τ on it such that $\tau(f) \neq \tau(g)$.

By definition there are algebra $L \in K_{m, n}$ and a valuation $v: V \rightarrow L$ such that $v^{*}(f) \neq v^{*}(g)$. By Proposition 1, there is a prime filter P of L such that $v^{*}(f) \in P$ but $v^{*}(g) \notin P$. We devide L into 2^{k} subsets by use of P and take the congruent relation \sim_{P} induced by P. That is, for every $x, y \in L$,
$x \sim_{P} y \Longleftrightarrow \exists L_{s_{1} s_{2} \ldots s_{k}}$ such that $x, y \in L_{s_{1} s_{2} . . s_{k}}$.
We define a valuation $\tau: V \rightarrow \Omega$ by $\tau=\xi \circ \eta \circ v$, that is, $\tau\left(p_{n}\right)=\xi\left(\left[v\left(p_{n}\right)\right]\right)$.
It is clear from definition that for each polynomial h,

$$
\tau^{*}(h)=\xi\left(\left[v^{*}(h)\right]\right)
$$

Since $v^{*}(f) \in P$ but $v^{*}(g) \notin P$, we have $\left[v^{*}(f)\right] \neq\left[v^{*}(g)\right]$. Since ξ is injective, it follows that $\xi\left(\left[v^{*}(f)\right]\right) \neq \xi\left(\left[v^{*}(g)\right]\right)$. This means that $\tau^{*}(f) \neq \tau^{*}(g)$.

Thus the theorem can be proved completely.

References

1. A. Bialynicki-Birula, Remarks on quasi-Boolean algebras, Bull. Ac. Pol. Sc, 5 (1957), 615619.
2. A. Bialynicki-Birula and H. Rasiowa, On constructible falsity in the constructive logic with strong negation, Colloquium Mathematicum, 6 (1958), 287-310.
3. T.S. Blyth and J.C. Varlet, Ockham algebras, Oxford Sicence Publications, 1994.
4. M. Dunn, Relevance logic and entailment, in Handbook of Philos. Logic 3, 117-224, D.Gabbay and F. Guenthner eds., D. Reidel, 1987.
5. G.Gratzer, Lattice theory : first concepts and distributive lattices, Freeman, San Francisco, 1971.
6. M.Kondo, Completeness theorem of Kleene logic, Mem. Fac. Sci. Shimane univ., 29 (1995), 77-87.
7. M.Kondo, Characterization theorem of 4-valued DeMorgan logic, submitted.
8. J.Lukasiewicz, On three-valued logic, in Polish Logic, McCall, ed., Clarendon Press, Oxford, 1967.
9. J. P. Marquis, Approximation and logic, Notre Dame J. of Formal Logic, 32 (1992), 184196.
10. H. Rasiowa, An Algebraic Approch to Non-Classical Logics, North-Holland, Amsterdam, 1974.

Department of Mathematics, Shimane University, Matsue 690 JAPAN
E-mail address: kondo@cis.shimane-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. 06D30.
 Key words and phrases. Ockham algebras, Berman class, functional freeness.

