Major and trace element compositions of Cretaceous-Paleocene sandstones and mudrocks from the Idonnappu Zone and the Yezo Supergroup, Urakawa, Hokkaido

Barry Roser*, Hayato Ueda** and Kosuke Maehara**

Abstract

The Idonnappu Zone, a Cretaceous-Paleocene accretionary complex, occurs between the Hidaka and Sorachi-Yezo Belts in central Hokkaido. This report contains whole-rock X-ray fluorescence analyses of 75 Cretaceous-Paleocene sandstones and mudrocks from the accretionary complex Idonnappu Zone and the Yezo Supergroup forearc sequence in the Urakawa district, southern central Hokkaido. The Idonnappu Zone suite comprises 45 samples from the MN-Unit of the Naizawa Complex and the PT-, MH- and T-Units of the Horobetsugawa Complex. The remaining 30 samples are evenly divided between the Upper and Lower Yezo Groups. The suites generally exhibit linear or curvilinear trends on oxide- or element-Al₂O₃ variation diagrams, typical of sorting fractionation. Elemental abundances and trends in the three suites generally overlap, suggestive of a common source. However, contrasts in abundances for some elements between suites, and trends in Basicity Index and K₂O/Na₂O ratios suggest some change in provenance over time, with shift from a mature or dissected arc source in the Early Cretaceous to a more primitive (but still relatively evolved) arc source in the Late Cretaceous and Paleocene. This change is recorded in both the accretionary complex and the forearc sequence.

Introduction

Kiminami et al. (1986) divided Central Hokkaido into two major north-south trending belts, the Sorachi-Yezo Belt in the west, and the Hidaka Belt in the east (Fig. 1). The Sorachi-Yezo Belt (Cretaceous-earliest Paleogene) consists of a forearc basin sequence, represented by the Upper Sorachi Group and the Yezo Supergroup (Fig. 2), overlying a higher-grade upper Jurassic to Cretaceous accretionary complex (Lower Sorachi Group and Kamuikotan Complex). The Hidaka Belt (Cretaceous-early Paleogene) is also an accretionary complex, deposited above a west-dipping subduction zone (Watanabe and Maekawa 1985).

A third belt, the Idonnappu Zone, has since been recognised, occurring at the boundary between the Sorachi-Yezo and Hidaka belts (Kiyokawa, 1992; Watanabe et al. 1994). The Idonnappu Zone is a severely deformed polylithologic accretionary complex of greenstone, chert, limestone and terrigenous sediments, associated with subduction with west to northwest vergence (Kiyokawa, 1992; Ueda et al. 1994). The zone is bounded in the east by the Hidaka

Main Thrust (Fig. 3), but the western margin is less well defined.

This report contains analyses of 45 sandstones and mudrocks (shales, silstones and mudstones) collected from the Idonnappu Zone in the Urakawa area, and 30 analyses of clastic rocks from the Upper and Lower Yezo Supergroup nearby. At present, the whole rock geochemistry of Idonnappu sediments is not well known. The purpose of the collection was to characterise the rocks in the area, and contribute to a growing database of comprehensive analyses of Cretaceous sediments deposited at the Asia margin (e.g. Roser et al. 1998, 1999). The purpose of this report is to present the data, brief description of elemental abundances, and preliminary discussion of tectonic setting signatures. A more detailed account focusing on provenance and relation to depositional environment will be published elsewhere (Roser, Ueda & Kimura, in prep.)

Geological Outline and Sample Suites

The field area lies east and northeast of Urakawa, toward the southern end of the Idonnappu Zone in Hokkaido, in the catchment of the Horobetsugawa River and its tributaries (Figs 1 and 3). The Idonnappu Zone was originally termed the "Idonnappu Belt" by Kiyokawa (1992). Recent work (Ueda et al. ms^a)

^{*} Dept of Geoscience Shimane University, Matsue 690-8504, Japan

^{**} Department of Earth and Planetary Sciences

Hokkaido University, N10 W8, Sapporo 060-0810, Japan

Fig. 1. Map of central Hokkaido showing the distribution of the Sorachi-Yezo Belt, Idonnappu Zone, and the Hidaka Belt; major lithotypes, and the location of the field area near Urakawa. Figure modified from Ueda et al. (ms^a).

favours description as a "Zone", because individual lithofacies are not sufficiently continuous to permit designation as a separate tectonic belt. That usage is adopted here.

The Idonnappu Zone in the Urakawa area trends NW-SE, and is bounded by the Hidaka Main Thrust and the Hidaka Belt to the NE, and by the Nitarachi-Yezo sequence of the Sorachi-Yezo Belt to the SE (Fig. 3). The Idonnappu Zone here is further divided into the Naizawa and Horobetsugawa Complexes, as defined by Ueda et al. (ms^a). These complexes are separated by the Westernmost Hidaka Serpentinite and the Redatoi-Okada Thrust (Fig. 3). Detailed descriptions of the local geology are given by Sakai and Kanie (1986) and Ueda et al. (ms^{a,b}). Relevant units are outlined below. These descriptions are summarised from Sakai and Kanie (1986) and Ueda et al. (ms^{a,b}), supplemented by additional field observation during sample collection. Schematic stratigraphy showing the relationships between the units and position of the sample sites is given in Fig. 2. Sample sites are also plotted on Fig. 3, and latitudes and longitudes given in the Appendix. Alphanumeric numbers (e.g. PT 2) contained in the following text refer to the samples listed in Table 1.

Idonnappu Zone

Naizawa Complex

Naizawa Complex is greenstone-dominant, and is correlated with the Okuniikappu Sub-belt of Kiyokawa (1992). In the Urakawa area the Naizawa Complex forms a wedge-shaped body, bounded by the Redatoi-Okada Thrust to the east, and by the Yezo Group to the west (Fig. 3). The complex is divided into two units on lithological grounds :

1. B-UNIT

The B-UNIT consists of 1-2 km thick slabs of both massive and pillowed MORB-like tholeiitic greenstones. Because of its volcanic nature, this unit was not sampled in this study.

2. MN-UNIT (MNU1-8)

This unit consists of a complex mixture of greenstone, chert, limestone, deformed turbiditic sandstonemudstone alternations, and mudstone. The greenstones occur as both sheets and fault bounded blocks, and consist mainly of ocean-island-type alkali basalt (Ueda at al. ms^b). The MN-UNIT is interpreted as a

Fig. 2. Stratigraphic relationships between the Nitarachi-Yezo forearc sequence and units in the Naizawa and Horobetsugawa Complexes of the Idonnappu Zone, and stratigraphic position of samples suites analysed. Figure based on data and references compiled in Ueda et al. (ms^{a,b}).

deformed trench-fill sequence (Ueda at al. ms^a). Eight samples (5 sandstones, 3 mudstones) were collected from three localities in the Horobetsugawa River (Fig. 3). Most were taken from lensoidal packets of 1-3 dm bedded sandstone-shale alternations. All showed disruption, with tectonic thinning and bunching in the sandstones, and pervasive shearing in the mudstones. Sandstones generally displayed little grading or lamination.

Horobetsugawa Complex

In contrast to the Naizawa Complex, the Horobetsugawa Complex is dominated by clastic sediments. Intercalated bodies of greenstone, chert and limestone do occur, but are of less significance volumetrically. The clastic sediments comprise black mudstones and disrupted sandstone-mudstone alternations. Ueda et al. (ms^a) correlated the Horobetsugawa Complex with the Koiboku Sub-belt of Kiyokawa (1992), and divided it into three units, all of which were sampled.

1. MH-UNIT (MH1-8)

The MH-UNIT (Berriasian-Hauterivian to Coniacian) is a mixed unit consisting of blocks of greenstone, chert, limestone and sandstone in a generally sheared black mudstone matrix. Much of the unit is thought to have been deposited by debris flows and landslides (Ueda et al. ms^a). Geochemically, the included greenstones are mostly ocean-island-type alkali basalts or tholeiites similar to those contained in the MN-UNIT (Ueda et al. ms^b). Eight samples (5 sandstones, 3 mudstones) were collected from three localities in a tributary of the Horobetsugawa River. The sandstones were collected from disturbed 50-70m thick sand packets at two localities. In both, beds were broken, and the sandstones strongly jointed and veined (MH1, 3, 5). Intervening mudstones (MH2, 7) were typically strongly cleaved, though some displayed bedding (MH6).

2. PT UNIT (PT1-17)

The PT-UNIT (~Cenomanian-Campanian) forms

Fig. 3. Geological map of the Urakawa area, showing sample sites. Map based on and extended from that in Ueda et al. (msa).

the majority of the Horobetsugawa Complex in the area. Black mudstone, sandstone-mudstone alternations and massive sandstone are the main lithotypes. Although greenstone, siliceous mudstone and chert also occur, coloured mudstone is rare, and limestone is absent. In contrast to the above units, the greenstones exhibit n-MORB geochemical signatures (Ueda et al. ms^b). Although the sequences are disrupted, individual lithofacies are traceable a few kilometers along strike, and several repetitions from greenstone and chert, through mudstone, to sandstone-mudstone alternations are observed (Ueda at al. ms^a). The PT-UNIT is interpreted as trench-fill deposits, and is regarded as a clastic-dominant accretionary complex (Ueda at al. ms^a).

Seventeen samples (9 sandstones, 8 siltstones and mudstones) were collected from sites across the entire width of the unit in the Rutenbetsugawa River, and from several localities in the Shiman-gawa River (Fig. 3). Most of the sandstones (e.g. PT3, 4, 9, 12-14) were collected from relatively thick packets (50-150 m) of massive or amalgamated sands which contained only subordinate interbedded mudstone. Others (PT6, 8, 10) were taken from thinly-bedded (1-2 dm) sandstone-mudstone alternations. In these the sandstones were typically disrupted, and the mudstones cleaved. Mudstones were also collected from massive mudstone intervals (PT5, 17).

3. T-UNIT (TU1-12)

The T-Unit (Campanian-Danian) is correlated with the K-3 unit of Kiyokawa (1992), and is interpreted as an inner trench-slope basin facies. It consists solely of terrigenous detritus (mudstone, sandstone-mudstone alternations, sandstone); pelagic lithotypes such as greenstones, chert and limestone are absent, although coloured siliceous mudstones do occur. It is also distinguished by a lower degree of deformation than in the units above, although sandstone beds within sand packets are often dismembered. Mudstones are less lithified than in PT- and MH-units, as verified by lower illite crystallinity (Ueda et al ms^a). Twelve samples (9 sandstones, 3 mudstones) were collected across regional strike in the headwaters of the Menashuman-gawa River (Fig. 3). Beds at one site were coherent T_b-T_e turbidite sequences in which bed thicknesses varied from 1-10 dm (TU1-4), and sand : mud ratio was $\sim 8:2$. The sandstones contained mud rip-up clasts, and exhibited moderate grading, and plane and convolute lamination. Other sites consisted of massive or amalgamated sand packets (TU8, 9) or broken formation (TU5, 11, 12). One sample (TU10) was taken from an isolated glauconite-rich sandstone block, interpreted as redeposited upper shelf sediments.

Yezo Supergroup

Coherent Lower to Upper Cretaceous forearc basin sediments of the Nitarachi Formation (Valanginian-Hauterivian) and the Yezo Supergroup (Barremian to Maastrichtian) outcrop in the southwest of the field area (Fig. 3). The Yezo succession is divided into the Lower, Middle and Upper Yezo Groups (Fig. 2). Flysch sandstones and shales are common in the Lower Yezo Group, and sediments generally become progressively muddier upward (Matsumoto and Okada 1971). Sampling for this study was confined to the Lower and Upper Yezo Groups (Tsukenai and Chinomigawa Formations, respectively). These horizons were selected because the Tsukenai Formation (LY) is nearly coeval with the MN-UNIT of the Naizawa Complex, and the U4 and U5 members of the Chinogawa Formation (UY) are coeval with the upper Campanian PT-UNIT of the Horobetsugawa Complex (Fig. 2). The suites collected thus allow direct comparison of the forearc sequence and the accretionary complex.

1. Lower Yezo Group (LY1-15)

In the Urakawa area the Lower Yezo Group consists mainly of sandstone in its lower part (Tsukenai Formation), and claystone and sandstone in its upper part (Becchari Formation) (Sakai and Kanie 1986). Fifteen samples (9 sands, 6 silts and muds) were collected from the Barremian-Aptian Tsukenai Formation in the Motourakawa River, in the northwest of the field area (Fig. 3). Sample sites included alternating Tb-Te turbidite sandstone-mudstone packets (LY1-4), with sand: mud ratios of 8 : 2, and individual beds up to one metre thick; packets of amalgamated sands with little mud (LY9, 15); and thinly bedded Td-Te alternations (LY10). In all outcrops, disruption and induration was much less pronounced than in any of the Idonnappu units sampled.

2. Upper Yezo Group (UY1-15)

Upper Yezo Group (Coniacian to Campanian) sediments in the area are dominated by fossiliferous clay-

SA#	LITH	SiO₂	TiO₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K₂O	P₂O₅	LOI	SUM	Ba	Ce	Cr	Cu	Ga	La	Nb	Ni	Pb	Rb	Sc	Sr	Th	U	V	Y	Zn	Zr
IDON	IDONNAPPU ZONE																														
NAIZA	NAIZAWA COMPLEX																														
MN-UNI MNU1 MNU2 MNU3 MNU4 MNU5 MNU6 MNU7 MNU8	T FS MST FS FS MST MS MST MS	75.49 60.12 72.45 81.08 72.01 73.48 65.11 73.81	0.35 0.90 0.45 0.31 0.54 0.39 0.65 0.42	12.28 15.96 12.43 8.89 13.88 13.34 17.35 12.83	2.70 9.50 4.38 2.99 4.34 2.21 5.18 2.57	0.05 0.17 0.09 0.07 0.04 0.04 0.07 0.04	1.01 2.72 1.47 0.99 1.22 0.85 1.89 0.78	0.73 1.09 0.93 0.73 0.33 1.73 0.54 2.00	4.94 2.32 4.60 2.79 2.07 4.53 1.68 4.24	0.72 2.39 0.81 1.13 2.77 1.76 3.89 1.55	0.07 0.16 0.07 0.07 0.11 0.07 0.12 0.06	1.30 4.04 2.00 1.53 2.66 2.24 3.61 2.51	99.63 99.38 99.69 100.59 99.97 100.63 100.10 100.82	138 341 204 276 443 182 243 173	33 29 32 32 37 20 64 56	20 87 19 23 33 24 37 25	12 41 15 13 52 7 24 8	9 17 10 8 14 12 18 11	20 12 19 17 21 13 24 22	6 13 6 5 9 7 14 7	10 48 6 14 21 6 18 8	18 17 15 17 32 19 20 18	22 86 28 38 114 51 131 44	6 12 10 4 9 4 13 5	140 67 162 120 153 212 63 123	7.3 12.2 8.2 6.5 11.3 9.2 13.8 9.9	1.5 1.3 1.7 1.5 2.1 1.4 1.5 1.4	33 128 63 33 75 37 94 37	18 21 17 13 27 18 31 18	38 129 52 35 95 34 83 37	131 157 114 135 212 180 233
HORO	BETSUC	GAWA	COMF	PLEX																											
<i>МН-UNI</i> МН1 МН2 МН3 МН4 МН5 МН6 МН7 МН8	T FS MST VFS MST FS MST VFS FS	74.26 68.73 69.71 66.23 68.64 66.73 68.38 71.57	0.44 0.55 0.47 0.56 0.55 0.54 0.51 0.44	12.75 15.31 11.83 16.00 13.92 16.45 14.38 13.92	3.69 4.81 3.29 4.64 4.92 4.11 4.08 3.43	0.07 0.08 0.20 0.07 0.08 0.05 0.07 0.06	1.19 1.55 1.09 2.11 1.85 2.32 1.56 1.36	1.08 0.45 4.41 1.37 2.29 1.00 2.32 1.78	3.20 1.74 3.92 2.87 3.71 1.64 4.63 4.07	2.04 3.63 1.21 3.10 1.93 4.40 1.68 2.00	0.06 0.09 0.08 0.10 0.12 0.09 0.11 0.10	1.50 3.12 4.24 3.16 2.24 3.04 2.57 1.67	100.28 100.06 100.43 100.20 100.24 100.36 100.28 100.40	510 477 337 292 509 971 420 553	36 57 39 73 45 68 50 56	20 39 24 39 33 40 36 32	11 48 12 24 23 24 16 14	13 18 12 17 13 18 13 12	16 25 21 25 18 25 23 22	9 13 9 15 6 15 8 6	6 21 7 19 11 18 13 10	15 21 16 24 16 25 19 18	59 149 39 130 51 178 52 53	4 7 8 10 7 8 7 7	218 94 209 120 398 204 332 345	7.6 14.5 7.6 16.1 9.5 19.6 9.2 9.7	1.8 2.3 1.4 2.1 1.7 2.7 1.7 1.5	50 84 58 78 107 75 64 60	20 29 20 31 18 31 19 17	52 87 53 82 57 76 57 42	129 167 140 113 138 161 158 153
PT-UNI PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9 PT10 PT11 PT12 PT13 PT14 PT15 PT16 PT17	T FS MST FS MST VFS MST FS ZST MST FS MS MST	75.06 63.90 75.18 69.05 68.53 66.17 63.57 61.75 63.92 66.95 65.74 67.00 71.34 68.46 64.34 70.68 67.93	0.37 0.75 0.44 0.66 0.74 0.63 0.63 0.68 0.66 0.46 0.43 0.67 0.51 0.63	12.90 17.75 13.81 14.81 15.75 16.25 16.63 16.69 15.38 16.00 14.55 14.19 14.55 16.71 13.27 14.97	$\begin{array}{c} 3.38\\ 5.66\\ 2.60\\ 3.37\\ 4.38\\ 4.83\\ 6.16\\ 5.22\\ 5.60\\ 4.50\\ 5.45\\ 5.11\\ 3.48\\ 4.64\\ 6.17\\ 4.67\\ 5.55\end{array}$	0.05 0.05 0.04 0.06 0.07 0.08 0.13 0.09 0.07 0.06 0.07 0.06 0.07 0.06 0.07 0.14 0.14	0.93 1.81 0.71 0.84 1.32 1.79 2.34 1.94 2.05 1.69 1.02 1.16 2.25 1.69 1.22 1.88	0.99 0.30 0.92 2.61 1.56 3.94 1.55 1.55 0.86 2.47 1.20 1.76 0.29 1.17 1.04	3.55 1.95 3.40 4.89 3.05 4.32 2.62 3.86 4.73 2.62 3.86 4.73 2.55 4.04 3.48 3.24 2.63 4.21 2.53	1.44 3.75 1.93 1.49 2.82 1.88 3.18 2.26 1.95 2.23 3.08 1.39 2.31 2.70 2.99 1.09 2.60	0.06 0.10 0.05 0.15 0.10 0.11 0.15 0.17 0.16 0.11 0.13 0.11 0.06 0.10 0.08 0.11	1.75 3.96 1.56 2.83 3.00 2.29 3.04 1.84 2.23 2.77 2.41 2.00 2.18 2.98 2.05 3.05	100.49 99.97 100.63 100.54 100.25 100.49 99.32 99.59 99.27 99.41 99.35 99.50 99.59 99.65 99.59 99.65 99.32 99.32 99.33 100.42	420 716 570 449 673 491 567 561 562 640 432 598 610 726 407 652	33 54 44 39 27 38 63 51 46 46 47 30 49 33 58 39 48	20 49 14 37 46 52 49 56 9 17 58 55 55	12 74 13 11 20 54 40 21 7 36 11 14 96 53	12 19 14 15 17 17 15 19 13 15 12 15	17 23 20 21 12 17 18 26 23 33 18 13 22 20 23 17 19	7 11 8 9 10 6 9 11 7 8 9 6 9 9 10 6 8	8 27 5 17 19 33 24 17 26 13 6 7 9 33	17 23 18 17 24 17 24 16 22 17 18 20 21 16 25	49 147 68 52 104 56 108 69 50 67 103 40 71 81 116 34 100	8 9 7 11 12 14 12 9 9 13 12 7 6 7 10 11	276 95 260 453 172 362 251 426 409 350 202 366 252 279 148 326 173	$\begin{array}{c} 8.6 \\ 14.6 \\ 8.5 \\ 10.3 \\ 11.2 \\ 6.9 \\ 9.8 \\ 11.2 \\ 8.7 \\ 8.3 \\ 11.1 \\ 6.4 \\ 8.3 \\ 9.5 \\ 11.8 \\ 6.5 \\ 10.1 \end{array}$	1.7 1.9 1.8 2.2 2.1 1.9 2.5 1.1 1.3 2.5 1.4 2.1	39 137 47 53 104 108 143 107 111 90 130 113 51 45 127 81 111	18 26 21 29 31 23 24 26 18 20 28 27 18 21	47 124 55 53 66 70 93 85 70 73 85 70 73 86 75 54 54 113 64 97	117 139 151 137 148 141 163 182 140 174 168 142 137 148 151 115 144

Table 1Major and trace element analyses of Idonnappu Zone and Yezo Supergroup sandstones, siltstones and mudstones, Urakawa district, Hokkaido. Major elements wt%,
trace elements p.p.m. LOI=loss on ignition. LITH=lithology (MS=medium grained sst; FS=fine sst; VFS=very fine sst; ZST=siltstone; MST=mudstone/shale).

Table 1 (ctd)

SA#	LITH	SiO₂	TiO₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K₂O	P₂O₅	LOI	SUM	Ва	Ce	Cr	Cu	Ga	La	Nb	Ni	Pb	Rb	Sc	Sr	Th	U	V	Y	Zn	Zr
HORC	BETSU	GAWA	сомі	PLEX	(ctd)																										
T-UNIT TU1 TU2 TU3 TU4 TU5 TU6 TU7 TU8 TU7 TU8 TU9 TU10 TU11 TU12	VFS MS MST VFS ZST VFS VFS VFS ZSTG VFS MST	65.33 66.73 60.89 67.06 72.11 61.81 63.48 63.39 61.54 61.85 72.85 66.59	0.71 0.55 0.83 0.59 0.34 0.64 0.70 0.63 0.59 0.46 0.47 0.59	15.63 12.74 17.99 14.54 13.55 16.40 16.33 15.02 16.23 9.49 12.36 14.75	5.15 4.03 5.83 5.25 2.91 5.58 6.11 5.29 14.48 3.83 6.05	0.07 0.09 0.05 0.07 0.12 0.10 0.09 0.10 0.12 0.06 0.22 0.30	2.10 1.27 2.13 1.72 0.84 1.69 2.10 1.74 1.96 3.95 1.14 2.02	1.54 4.43 0.65 1.80 0.38 2.95 1.71 3.34 3.56 0.93 1.38 0.56	3.89 4.41 3.03 3.71 3.25 3.87 3.07 3.71 3.11 0.93 3.68 2.12	2.39 1.34 3.72 2.05 3.33 2.27 2.50 2.49 3.06 2.10 1.83 2.92	0.11 0.13 0.12 0.11 0.08 0.13 0.11 0.13 0.12 0.13 0.11 0.09	2.39 3.89 3.87 2.55 2.86 3.42 3.19 3.77 3.94 4.26 1.95 3.32	99.31 99.62 99.12 99.44 99.76 98.87 99.38 99.42 99.53 98.65 99.81 99.30	774 516 688 760 873 867 696 917 799 204 553 348	31 40 52 24 53 33 40 31 59 30 37 59	51 24 67 47 22 72 78 74 68 337 110 51	21 16 48 22 21 31 20 21 25 24 82	15 11 20 13 14 15 13 16 10 10	21 12 24 14 26 18 23 22 14 19 23	7 6 10 7 10 8 9 8 12 6 6 10	16 10 31 18 13 39 38 23 26 80 31 33	19 16 23 19 23 26 21 19 21 16 17 26	71 28 152 57 105 65 78 76 100 92 56 120	10 13 14 11 7 12 12 12 12 11 9 8	327 272 177 323 110 348 224 221 246 65 233 79	7.6 5.3 11.4 8.5 18.4 9.2 10.2 8.6 11.9 6.8 7.1 11.3	1.7 1.5 2.2 1.8 3.3 2.0 2.1 2.4 2.2 2.1 1.6 2.7	106 80 155 92 46 93 110 97 88 133 68 118	24 22 25 22 29 23 24 25 32 16 20 25	75 67 105 71 57 80 90 74 78 106 55 103	155 110 180 138 108 153 172 162 177 104 134 124
YEZO	SUPEF	RGROL	IP																												
LOWER LY1 LY2 LY3 LY4 LY5 LY6 LY7 LY7 LY8 LY9 LY10 LY11 LY12 LY13 LY14 LY15	PYEZO GF FS FS MS MS FS MS FS FS FS S ST ZST ZST MST FS FS	COUP (Ts 74.16 70.73 71.69 64.20 79.09 76.27 74.99 75.66 79.20 63.34 69.31 67.65 65.88 66.30 69.26	ukena 0.36 0.38 0.35 0.73 0.36 0.44 0.44 0.40 0.39 0.69 0.45 0.52 0.64 0.66 0.48	i Forma 12.08 14.01 8.72 19.47 10.67 11.95 12.29 12.16 10.00 17.50 14.73 15.26 16.22 19.16 12.71	tion) 2.79 2.81 0.97 2.52 2.09 1.75 2.20 3.82 3.09 4.56 3.04 4.01 4.52 2.26 1.47	0.03 0.04 0.18 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.76 0.96 0.28 1.65 0.57 0.90 1.09 2.40 0.85 1.08 1.43 1.40 0.59	1.29 1.20 7.58 0.69 1.04 1.87 0.60 0.71 0.68 1.65 1.06 0.70 0.37 4.71	2.87 2.50 2.27 0.03 2.38 3.31 3.10 3.22 2.21 1.70 3.21 2.72 1.69 1.50 2.54	2.12 2.78 1.79 4.70 2.05 1.98 2.19 1.64 1.89 4.21 1.81 2.22 3.40 4.24 2.53	$\begin{array}{c} 0.08\\ 0.09\\ 0.06\\ 0.11\\ 0.05\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.10\\ 0.08\\ 0.10\\ 0.15\\ 0.10\\ 0.06\end{array}$	3.55 4.36 6.68 5.58 2.30 2.52 2.21 1.49 1.61 4.35 4.35 4.95 4.92 3.89 5.98	100.08 99.87 100.58 99.97 100.11 99.89 99.98 99.99 100.28 99.57 99.53 99.61 99.59 99.90 100.41	584 707 506 576 511 489 423 490 413 294 320 416 405 877	44 50 41 63 50 54 51 51 38 51 46 58 63 63 56	20 17 20 42 21 24 23 32 60 35 37 38 51 29	8 9 10 23 6 7 7 26 7 12 36 15 18 27 32 5	10 14 21 10 11 12 11 9 19 14 16 18 22 11	23 44 21 27 20 41 28 19 23 25 28 32 28 22 28 22	7 8 6 6 9 8 7 5 3 11 12 12 14 9	5 6 7 10 5 6 5 8 10 23 15 16 13 6 13 6	17 19 26 17 19 18 16 15 24 21 21 21 21 21 17	60 82 44 191 56 57 60 49 61 200 69 86 145 188 66	5 5 8 9 4 4 6 5 6 5 9 9 2 9 7 7 9 9 2 9 7	204 217 204 179 176 212 134 160 140 140 149 126 253	$\begin{array}{c} 6.9\\ 8.6\\ 5.8\\ 17.2\\ 7.6\\ 10.0\\ 10.3\\ 9.2\\ 8.3\\ 15.6\\ 11.5\\ 10.6\\ 12.7\\ 16.5\\ 9.3\\ \end{array}$	1.7 2.0 1.4 3.0 1.4 1.6 1.2 1.8 1.2 2.4 1.5 1.9 2.1 2.9 1.3	31 33 29 86 29 32 31 57 122 50 60 89 96 42	17 22 18 35 14 33 26 14 30 23 27 29 26 22	34 43 28 86 29 32 40 42 37 56 95 69 95 61 39	167 174 150 205 185 279 228 195 112 165 208 196 148 165 314
UPPER UY1 UY2 UY3 UY4 UY5 UY6 UY7 UY7 UY7 UY10 UY10 UY112 UY12 UY13 UY14 UY15	YEZO GR MS MS ZST MST MS ZST ZST FS FS FS MS ZST MS ZST	OUP (Ch 67.00 68.06 68.95 67.97 65.87 68.09 63.93 64.19 64.36 68.00 68.33 66.91 67.16 66.37 67.49	inomig 0.40 0.46 0.39 0.51 0.55 0.43 0.37 0.68 0.53 0.50 0.59 0.59 0.31 0.60	Jawa Fo 13.36 14.39 12.74 14.74 15.70 13.03 11.57 16.14 16.59 14.83 13.92 15.38 15.29 12.02 14.56	5.27 5.22 2.42 4.27 4.84 7.32 5.67 4.97 5.51 4.31 4.32 4.97 4.53 4.01 4.91	n) 0.08 0.05 0.17 0.04 0.03 0.05 0.13 0.06 0.04 0.03 0.05 0.04 0.03 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.16 0.03 0.03 0.04 0.05 0.16 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.16 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.05 0.16 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.05 0.16 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0	1.05 1.14 0.55 1.40 1.48 1.27 0.96 1.72 1.60 1.30 1.40 1.40 0.81 1.39	3.54 2.21 5.40 1.97 1.81 1.51 6.68 2.46 1.71 1.22 2.11 1.66 2.14 6.28 1.64	3.07 3.38 3.91 1.83 2.46 2.32 2.25 2.32 3.06 3.08 2.07 2.31 2.47 1.98	2.46 2.68 1.41 2.36 2.58 2.83 2.39 3.12 2.68 3.24 2.57 3.17 2.52 2.73 2.42	$\begin{array}{c} 0.13\\ 0.12\\ 0.13\\ 0.08\\ 0.12\\ 0.08\\ 0.11\\ 0.11\\ 0.11\\ 0.10\\ 0.10\\ 0.14\\ 0.12\\ 0.12\\ 0.15\\ \end{array}$	3.28 2.09 4.23 4.51 4.71 2.59 5.63 3.89 3.97 3.25 3.50 3.34 3.53 5.17 4.40	99.64 99.81 100.31 99.68 99.58 99.59 99.57 99.59 99.57 99.88 99.54 99.63 100.43 99.57	444 598 528 349 363 374 357 445 324 519 416 498 361 469 457	46 58 33 45 47 71 63 44 38 50 40 51 51 31	25 24 15 29 40 34 49 42 31 28 30 19 32	12 11 37 38 14 12 35 37 21 31 30 12 31	13 14 15 16 13 16 15 15 15 14 11 15	25 31 19 22 14 28 22 15 19 20 16 17 22 24 21	66689868898969	8 5 19 11 9 21 10 16 6 5	19 15 22 22 17 19 22 21 19 21 19 21 19	62 68 34 97 76 101 93 107 85 111 83 70 86	8 9 9 11 12 8 9 13 14 11 9 11 11 8 11	198 210 229 173 164 122 191 227 198 159 191 197 216 190 167	7.4 6.8 7.5 10.1 11.2 9.8 5.3 7.9 10.0 10.7 10.7 10.7 10.0 9.3 7.0 9.0	1.6 1.4 1.5 2.0 1.6 1.4 1.9 1.7 2.1 2.1 2.1 2.1 2.1 2.7	70 69 85 91 87 67 118 120 80 78 92 92 45 92	23 22 19 24 26 24 23 28 24 25 27 25 33	74 59 88 91 79 56 93 90 86 77 84 79 56 91	92 85 86 126 131 132 148 147 165 156 152 159 85 137

17

stone and siltstone; sandstone is subordinate (Sakai and Kanie 1986). Fifteen samples (9 sands, 6 silts and muds) were collected from the Chinomigawa Formation along two traverses west of Urakawa (Fig. 3). Medium- to very-fined grained sandstone beds occurs in isolated beds \sim 1-5 m thick. The sandstone beds were usually massive (possibly amalgamated), and thus exhibited little grading or sedimentary structures. Many were strongly glauconitic (UY1, 2, 6, 7 14). Most of the sequence (\sim 95%) consisted of monotonous grey to greenish-grey siltstone (UY4, 9, 12, 13, 15).

Analytical Methods

Samples were coarsely chipped (<1 cm diameter) in a manual hydraulic rock splitter, removing any surficial weathering or oxide staining. Any chips containing visible mud rip-up clasts or significant veining were also discarded. The fresh chip was rinsed repeatedly in tap water, followed by distilled water, and steeped overnight in deionised distilled water. Oven-dried sample chip was then crushed for 30-60 seconds in a tungsten-carbide ring mill, with sample weights ranging from 70 g in the shales to a maximum of 200 g in the sandstones.

Major and trace element analyses were made by XRF, using a Philips PW1404 instrument at Hokkaido University. Analyses were carried out on an anhydrous basis, using the ignited material from loss on ignition (LOI) determinations. LOI was measured by weight loss in 5-6 g of oven dried $(110^{\circ}C)$ sample after ignition for two hours at 1000° C in an electric furnace. Both major and trace element determinations were made on fused glass beads prepared with commercial lithium metaborate/tetraborate flux (Johnson Matthey Spectroflux 100B) in a Toyyo Kagaku NT-2000 automatic bead sampler, with preheat, fusion and agitation times of 120, 120 and 400 seconds, respectively. The fusion mixture comprised 1.8000 g sample, 3.6000 g of flux, and 0.54 g LiNO₃. Bead preparation essentially follows that of Tanaka and Orihashi (1997), except that their addition of 50 g lithium iodide during melt agitation was not necessary.

Major and trace element calibration was made using standard reference samples produced by the Geological Survey of Japan and the United States Geological Survey. Details of the methods, instrument conditions, precision and lower limits of detection are given by Tanaka and Orihashi (1997). Analyses were monitored by repeat analyses of several GSJ standards, from new beads not included in the calibration.

Results

Results for major and trace elements are listed in Table 1, by formation. The data are listed on a hydrous basis. Lithology was estimated from hand specimens using a hand lens and grain size comparator. All elements except Sc and U were present at levels above the theoretical lower limits of detection (LLD) in all samples. Sc was >LLD (3.8 ppm) in all except two samples. Although U was below the LLD (1.9 ppm) in over half the samples, data are listed as analysed in Table 1, as relatively coherent trends with Al₂O₃ are still displayed despite the low abundances.

Abundances and trends

Variation diagrams for selected elements plotted against Al₂O₃ are given in Fig. 4 (major elements) and Fig. 5 (trace elements). All are plotted on an anhydrous basis. Most elements show linear or curvilinear trends due to sorting fractionation between sand-sized detritus (quartz, feldspar and lithic fragments) and clays. Among the major elements this is most marked for SiO₂ (Fig 4a), as is usually the case in such suites. The majority of the Idonnappu and Upper Yezo sandstones have SiO₂ contents <75%, but Lower Yezo sandstones have up to 80%, and total fractionation between sandstone and mudstone is greater than in the other suites. These features are reflected by antipathetic variations of TiO₂ (Fig. 4b), Fe₂O₃, MgO, K₂O and P2O5, which increase with increasing Al2O3, reflecting residence largely in the clay fraction. Linear detrital trends (DT) of these elements intersect the Al₂O₃ axis at \sim 7.5%, indicative of quartz-feldsparlithics verses clay unmixing (Fig. 4b). However, a small number of sandstones from the Lower Yezo Group lie closer to the silica dilution line (SDL), suggesting that simpler quartz-clay unmixing may be responsible for their chemistry.

Na₂O and CaO (Figs 4c and 4b) generally decrease with increasing Al₂O₃, and sandstones generally have higher abundances than mudstones in the same suite. This pattern is consistent with residence largely in

Fig. 4. Example oxide-Al₂O₃ variation dagrams, plotted on an anhydrous normalised basis. Sst=sandstone; mst=siltstone and mudstone. Solid lines (DT) are illustrative detrital trends (draw by eye); dashed line (SDL) on the CaO plot is a silica dilution line drawn from the aluminous end of the detrital trend.

feldspar in the sandstones. Accretionary complex Idonnappu sandstones generally have greater Na₂O contents (>3 wt%) than the forearc sandstones from the Yezo Supergroup (<3%). CaO contents show little contrast, however, except that a small number of sandstones from all groups scatter to higher values of 3-8 wt% (Fig. 4d), probably due to presence of carbonate cement. MnO contents of both sandstones and mudstones are generally low (0.10 wt%), but some scatter to higher values (0.10-0.30) occurs in all suites. This is likely to be due to redistribution during surficial weathering.

The majority of the trace elements also show

positive correlation with Al₂O₃ and thus highest concentrations in the mudstones, reflecting primary residence in the clay fraction. Correlation is strongest for Ga (Fig. 5a), reflecting its close geochemical affinity with Al, but relatively coherent trends are also observed for V (Fig. 5b), Cr (Fig. 5c), Cu, Nb, Ni, Pb, Rb, Sc, Th, U, Y and Zn. Two elements generally linked with mafic detritus (Cr, Ni) show some scatter to higher values in Idonnappu sandstones and mudstones (Fig. 5c). Most of the samples which exhibit enrichment are from the T-UNIT. A similar trend is shown by Cu.

Four elements (Ba, Sr, Ce and La) show little

Fig. 5. Example trace element-Al₂O₃ variation dagrams, plotted on an anhydrous normalised basis. Sst =sandstone; mst=siltstone and mudstone. Solid lines (DT) are illustrative detrital trends (draw by eye). Dashed arrowed line (HMC) on the Zr plot illustrates the trend expected from zircon concentration in sandstones.

overall correlation with Al₂O₃ content. Within individual suites, however, both Ba and Sr tend to have higher values in sandstones than in mudstones (Fig. 5d and 5e). This pattern is not uncommon in clastic sediments (e.g. Roser et al., 1999), and most likely reflects partial Sr and Ba residence in feldspar. Scatter is induced by varying feldspar proportions, diagenetic effects, and, in the case of Sr, carbonate contents. In detail, Ce and La show the opposite trend, with a tendency for higher contents in muds than in sands within individual suites, reflecting primary control by the clay fraction. Scatter may be due in part to heavy mineral concentration, but may also be influenced by poor analytical precision. At the amounts present in the samples, analytical precision is poorer for both elements (coefficients of variation of \sim 10-11%; Tanaka and Orihashi, 1997) than it is for the other elements positively correlated with Al₂O₃ (<5%).

Zirconium shows contrasting behaviour between the suites (Fig. 5f). Idonnappu and Upper Yezo samples exhibit a relatively coherent increase with increasing Al₂O₃. Although this might imply residence in the clay fraction, Zr abundances are usually controlled by zircon in suites such as these. The coherence of the Idonnappu and Upper Yezo Group trends suggests that if zircons are the control, they must be finely comminuted. The Lower Yezo suite shows a trend more common in accretionary sediments, with sandstones scattering to higher values above the detrital trend, with concentrations up to twice those of the mudstones. This is typical of density concentration of zircons in the sandstones.

Tectonic setting

The tectonic setting of deposition of clastic sediments can be assessed using a number of chemical parameters, including SiO₂-K₂O/Na₂O (Roser and Korsch 1986) and Al₂O₃/SiO₂-Basicity Index relations (Kiminami et al. 1992; Kumon and Kiminami 1994). On a Basicity Index plot (Fig 6a), the three suites analysed lie almost entirely within the EIA (Evolved Island Arc) and CA&DA (continental arc-dissected arc) fields. Middle Yezo Group sandstones were used by Kiminami et al. (1992) to originally define the EIA field. Data plotted in a later revision of the fields (Kiminami 1998) mostly lie at the upper end of EIA. A clear contrast, however, is seen between the Lower and Upper Yezo suites analysed here. The Lower Yezo

Fig. 6. Tectonic setting discrimination plots. Symbols as in Figs 3 & 4. (a) Basicity Index plot of Kiminami et al. (1992); fields modified after Kiminami (1998). IIA =immature island arc; EIA=evolved island arc; CA& DA=continental island arc and dissected arc. (b) SiO₂-K₂O/Na₂O plot of Roser & Korsch (1986). PM=passive margin; ACM=active continental margin; ARC=arc.

data fall within CA&DA, whereas Upper Yezo samples lie almost entirely within the lower part of the EIA field. This shows that the nature of the Yezo source changed from a relatively mature dissected arc in the Early Cretaceous to an evolved island arc in the Late Cretaceous.

The Idonnappu suite sandstones spread across both CA&DA and EIA (Fig. 6a). Although not distinguished at a formation level on the figure for clarity, they also show shifts in Basicity Index and Al₂O₃/SiO₂ with time, with the MH- and MN-units falling mostly

within CA&DA, and the younger PT- and T-units largely within EIA. The forearc Yezo sediments and the Idonnappu accretionary complex thus both record the same shift in source, supporting their correlation.

The three suites fall almost entirely within the active continental margin (ACM) field on an SiO₂-K₂O/Na₂O plot (Fig. 6b), with only a few mudstones spreading into the passive margin (PM) field, probably as a result of diagenetic K-enrichment. This result is compatible with the CA&DA-EIA signatures from the Basicity Index, since both categories share chemical signatures with more classical Andean-type margins. Lower Yezo samples lie high in the ACM field along the ACM-PM join, and show marked fractionation of both SiO2 and K2O/Na2O ratio between sandstones and mudstones. Both features are typical of derivation from a relatively evolved source. Upper Yezo Group samples, however, have lower SiO2 and K2O/Na2O, plotting near the middle of the ACM field. Although decrease in both parameters is partly due to their finer grain size, it is also consistent with a less evolved source. Idonnappu sediments span almost the entire width of the ACM field. Examination on at a formation level, however, shows that SiO₂ decreases and K₂O/Na₂O increases progressively from the MN-Unit through to the T-UNIT. All sandstones plotting at the low-SiO2, high K2O/Na2O end of the data cloud near the ARC-ACM boundary are from the T-UNIT, and are the least evolved of the Idonnappu units. Plot positions of the individual suites and formations thus show the same pattern as the Basicity Index plot, with decreasing arc maturity upsequence in both the forearc and in the accretionary complex.

Conclusions

Sediments from the Idonnappu Zone, Lower Yezo Group and Upper Yezo Group in the Urakawa area generally exhibit linear or curvilinear trends on Al₂O₃ variation diagrams. Such trends are typical of sorting fractionation. The overall similarity of elemental abundances and trends in the three suites are suggestive of a common source. In detail, however, some contrasts in abundances occur (e.g. enriched Na₂O, Cr, and Ni in the Idonnappu suite ; CaO in the Upper Yezo, and more extensive fractionation and greater Zr contents in the Lower Yezo Group). These features and trends in Basicity Index and K₂O/Na₂O ratio suggest changes in

provenance occurred over time, with a shift from a mature or dissected arc source in the Early Cretaceous to a more primitive (but still relatively evolved) arc source in the Late Cretaceous, recorded in both the forearc sequence and in the accretionary complex. The significance of these changes in relation to depositional environment, provenance, and variation at a formation level will be discussed in more detail in a future paper.

Acknowledgements

Our thanks to Eiko Kitayama and Takashi Morita for their assistance with laboratory logistics and the XRF analysis.

References

- Kiminami, K. 1998, Application of B.I. diagram to Paleozoic and Mesozoic sandstones of the Japanese Islands (extended abstract). Shinshu University, Project Newsletter 4, "Sandstone Composition and Tectonics of Eastern Asian Terranes" (Kyoto meeting, Dec. 20-21, 1997), 1-7.*
- Kiminami, K., Komatsu, M., Niida, K. and Kito, N. 1986, Tectonic divisions and stratigraphy of the Mesozoic rocks of Hokkaido, Japan. *Monograph of the Association for Geological Collaboration of Japan*, **31**, 1-15.
- Kiminami, K., Kumon, F., Nishimura, T. and Shiki, T. 1992, Chemical composition of sandstones derived from magmatic arcs. The Memoirs of the *Geological Society of Japan*, **38**, 361-372.**
- Kumon, F. and Kiminami, K. 1994, Modal and chemical compositions of the representative sandstones from the Japanese Islands and their tectonic implications. *Proceedings of the 29th Geological Congress, Part A*, 135-151.
- Kiyokawa, S. 1992. Geology of the Idonnappu Belt, Central Hokkaido Japan : Evolution of a Cretaceous accretionary complex. *Tectonics*, **11**, 1180-1206.
- Matsumoto, T. and Okada, H. 1971. Clastic sediments of the Cretaceous Yezo Geosyncline. *The Memoirs* of the Geological Society of Japan, **6**, 61-74.
- Roser, B.P. and Korsch, R.J. 1986, Determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K₂O/Na₂O ratio. *Journal of Geology*, 94, 635-650.
- Roser, B.P., Ishiga, H., Bessho, T. and Dozen, K. 1998. Major and trace element analyses of Creta-

ceous to Miocene sedimentary rocks from the Shimanto terrane, Kii Peninsula, SW Japan. *Geoscience Reports of Shimane University*, **17**, 57-68.

- Roser, B.P., Ishiga, H., Lee, H.K., Dozen, K. and Yamazaki, C. 1999. Major and trace element analyses of Cretaceous sedimentary rocks from the Euisong block, Gyeongsang Supergroup, Korea. *Geoscience Reports of Shimane University*, 18 (this volume).
- Sakai, A. and Kanie, Y. 1986. Geology of the Nishicha district. With geological sheet map at 1:50,000. *Geological Survey of Japan*, 92 pp.**
- Tanaka, R. and Orihashi, Y. 1997. XRF analysis of major and trace elements for silicate rocks using low dilution ratio fused glass. *Hokkaido University*, *Graduate School of Science*, *HUEPS Technical Report*, 2, 20 pp.
- Ueda, H., Kawamura, M. and Kato, M. 1994. Structure and metamorphism of the Mesozoic accretionary complex in North Pacific rim- A study of the Idon'nappu Belt, Hokkaido, Northern Japan. In: Hanquan, W., Bai, T. and Yiqun, L. (eds), *IGC Project 294 International Symposium., Very Low Grade Metamorphism : Mechanism and Geological Application*, 132-144.
- Ueda, H., Kawamura, M., and Iwata, K. (ms^a):

Tectonic evolution of the Cretaceous accretionary complex in the Idonnappu Zone, Urakawa area, central Hokkaido, northern Japan : with reference to radiolarian ages and thermal structure. *Journal of the Geological Society of Japan (submitted)*.

- Ueda, H., Kawamura, M., and Niida, K. (ms^b): Mode of occurrence and geochemistry of greenstones in the Cretaceous accretionary complex of the Idonnappu Zone, Urakawa area, Hokkaido, northern Japan. *The Island Arc (submitted)*.
- Watanabe, T. and Maekawa, H. 1985. Early Cretaceous dual subduction system in and around the Kamuikotan tectonic belt, Hokkaido, Japan. *In* : Nasu, N. (ed.) *Formation of Active Ocean Margins*, Tokyo, Terra Scientific Publishing, 677-676.
- Watanabe, T., Iwasaki, I., Itaya, H., Ueda, H. and Koitabashi, S. 1994. K-Ar ages and structure of Mesozoic accretionary complex in NW Pacific rima case study of the Kamuikotan metamorphic and Idon'nappu belts. *In*: IGCP Project 294 International Symposium, *Very Low Grade Metamorphism and Geological Applications*, Beijing, The Seismological Press, 145-155.

* In Japanese

- ** In Japanese, English abstract.
- (Received: 1 Nov. 1999, Accepted: 1 Dec. 1999)

(要 旨)

Barry Roser・植田勇人・前原恒祐, 1999, 北海道浦河における白亜系〜古第三系イドンナップ 帯および蝦夷累層群の砂岩・泥岩の主成分および微量成分組成,島根大学地球資源環境学研 究報告, 18, 11-24

白亜紀から古第三紀の付加帯コンプレックスであるイドンナップ帯は、北海道中部、日高 帯と蝦夷帯の間に露出する.本報告では、中部北海道南部、浦河地域における白亜系から古 第三系イドンナップ帯付加帯コンプレックス、ならびに蝦夷累層群前弧シークエンスの、砂 岩・泥岩 75 試料の全岩蛍光 X 線分析結果を報告する.イドンナップ地域の試料は、内沢コン プレックス MN-ユニット、幌別川コンプレックスの PT-、MH-、T-ユニットからの 45 試料で ある.残り 30 試料は上部および下部蝦夷層群から層序学的に均等に採取したものである.こ れらの試料群は全般に、Al₂O₃ 変化図において分級分別に典型的な直線的あるいはやや屈曲 した直線的トレンドを示す.上記の3 試料群における元素濃度および元素トレンドはお互い に重複し、共通の起源物質を有することがわかる.しかしながら、いくつかの元素に見られ る試料群間の元素濃度の違い、塩基性度や K₂O/Na₂O 比にみられる違いは、時間とともに給源 地域に変化があったことを示している.これは前期白亜紀にみられる「成熟もしくは開析さ れた島弧」給源から、後期白亜紀~古第三紀の「より始原的であるが比較的発達した島弧」給 源への変化である.この変化は、付加帯コンプレックスと前弧シークエンスの双方に共通し て認められる.

APPENDIX: Sample Localities

IDONNAPPU ZONE

YEZO SUPERGROUP

	1.4.81			long		
SaNr	lat N deg	min	sec	⊢ deg	min	sec
MNU1	42	13	21	142	53	59
MNU2	42	13	32	142	54	16
MNU3	42	13	32	142	54	16
MNU4	42	13	32	142	54	16
MNU5	42	13	32	142	54	16
MNU6	42	13	34	142	53	21
MNU7	42	13	35	142	53	23
MNU8	42	13	37	142	53	24
MHU1	42	15	41	142	55	5
MHU2	42	15	43	142	55	9
MHU3	42	15	45	142	55	10
MHU4	42	16	37	142	54	16
MHU5	42	16	41	142	54	16
MHU6	42	16	42	142	54	14
MHU7	42	16	48	142	54	15
MHU8	42	16	50	142	54	15
PT1	42	17	25	142	53	34
PT2	42	17	25	142	53	34
PT3	42	17	28	142	53	33
PT4	42	18	5	142	53	23
PT5	42	18	7	142	53	25
PT6	42	19	16	142	53	57
PT7	42	19	18	142	53	56
PT8	42	19	8	142	54	5
PT9	42	19	7	142	54	5
PT10	42	18	33	142	53	49
PT11	42	18	28	142	53	44
PT12	42	17	38	142	54	40
PT13	42	15	52	142	56	53
PT14	42	16	0	142	56	56
PT15	42	16	З	142	56	58
PT16	42	16	2	142	56	59
PT17	42	16	2	142	56	59
TU1	42	16	39	142	59	49
TU2	42	16	38	142	59	47
TU3	42	16	37	142	59	47
TU4	42	16	37	142	59	47
TU5	42	16	37	142	59	49
TU6	42	16	28	142	59	52
TU7	42	16	28	142	59	51
TU8	42	16	23	142	59	53
TU9	42	16	22	142	59	53
TU10	42	16	15	142	59	56
TU11	42	16	18	142	59	53
1012	42	16	20	142	59	53

0	1-4.61			long			
Sample No.	deg	min	sec	deg	min	sec	Unit*
LY1	42	18	47	142	47	33	L1
LY2	42	18	47	142	47	33	L1
LY3	42	18	47	142	47	32	L1
LY4	42	18	47	142	47	34	L1
LY5	42	18	58	142	47	26	L1
LY6	42	18	58	142	47	26	L1
LY7	42	17	17	142	48	58	L1
LY8	42	17	15	142	48	56	L1
LY9	42	17	10	142	48	48	L1
LY10	42	17	10	142	48	48	L1
LY11	42	18	50	142	47	43	L1
LY12	42	18	50	142	47	43	L1
LY13	42	18	50	142	47	43	L1
LY14	42	18	50	142	47	43	L1
LY15	42	18	47	142	47	52	L1
UY1	42	10	12	142	49	35	U5a
UY2	42	10	13	142	49	37	U5a
UY3	42	10	14	142	49	37	U4b
UY4	42	10	17	142	49	41	U4b
UY5	42	10	19	142	49	42	U4b
UY6	42	10	21	142	49	43	U4a
UY7	42	10	22	142	49	45	U4a
UY8	42	10	12	142	49	35	U5b
UY9	42	10	10	142	49	34	U5b
UY10	42	10	13	142	49	9	U5b
UY11	42	10	14	142	49	11	U5b
UY12	42	10	16	142	49	10	U5b
UY13	42	10	11	142	49	12	U4b
UY14	42	10	22	142	49	15	U4b
UY15	42	10	24	142	49	17	U4b

* Units are the horizons of Sakai & Kanie (1986)