A note on (α, p)-thinness of symmetric generalized Cantor sets

Dedicated to Professor M. Yamada on the ocassion of his 60th birthday

Kaoru Hatano*

1. Introduction. Let g_{α} be a Bessel kernel of order $\alpha, 0<\alpha<\infty$, on the n-dimensional Euclidean space $R^{n}(n \geqq 1)$, whose Fourier transform is $\left(1+\mid \xi^{2}\right)^{-\alpha / 2}$. The Bessel capacity $B_{\alpha, p}$ is defined as follows: For a set $A \subset R^{n}$,

$$
B_{\alpha, p}(A)=\inf \int f(x)^{p} d x
$$

where the infimum is taken over all functions $f \in L_{p}^{+}$such that

$$
g_{\alpha} * f(x) \geqq 1 \quad \text { for all } x \in A .
$$

We shall always assume that $1<p<\infty$ and $0<\alpha p \leqq n$. We say that a set A is (α, p)-thin at $x \in R^{n}$ (see, [5]) if

$$
\int_{0}^{1}\left\{r^{\alpha p-n} B_{\alpha, p}(A \cap B(x, r))\right\}^{1 /(p-1)} r^{-1} d r<\infty,
$$

where $B(x, r)$ denotes the open ball with center at x and radius r.
In [4; Theorem 2] Hedberg and Wolff have proved that the Kellogg property, i.e., $B_{\alpha, p}(A \cap e(A))=0$ for any set $A \subset R^{n}$, where $e(A)=\left\{x \in R^{n} ; A\right.$ is ($\left.\alpha, p\right)$-thin at $\left.x\right\}$, also holds in the non-linear potential theory. It is easily seen from this property that $B_{\alpha, p}(A)=$ 0 if and only if A is (α, p) -thin at all of its points. In this note in a special case where E is a symmetric generalized Cantor set (for the definition, see [3]), we prove the following

Theorem. Let E be the symmetric generalized Cantor set constructed by the system $\left[\left\{k_{j}\right\}_{j=1}^{\infty},\left\{\ell_{j}\right\}_{j=0}^{\infty}\right]$ with $\ell_{0}<1$. Then the following three assertions are mutually equivalent:
(a) $\quad B_{\alpha, p}(E)=0$;
(b) E is (α, p)-thin at some point $x \in E$;

[^0]$$
\text { (c) } \sum_{j=1}^{\infty} u_{j} v_{j}=\infty
$$
where $u_{j}=\left(k_{1} \cdots k_{j}\right)^{-n /(p-1)}$ and
\[

v_{j}=\left\{$$
\begin{array}{l}
\ell_{j}^{(\alpha p-n) /(p-1)} \text { if } \alpha p<n \\
\max \left\{-\log \ell_{j}, 1\right\} \quad \text { if } \alpha p=n
\end{array}
$$\right.
\]

2. Proof of the theorem. To prove the theorem we prepare two lemmas. We owe the proof of Lemma 1 to professor $F-Y$. Maeda.

Lemma 1. Let $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ be two sequences of positive numbers satisfying the following conditions:
(a) There is a positive number $\lambda<1$ such that $a_{i+1}<\lambda a_{i}$ for all i;
(b) $\left\{b_{i}\right\}$ is monotone increasing and $b_{i} \rightarrow \infty \quad(i \rightarrow \infty)$.

If $\Sigma a_{i} b_{i}<\infty$, then

$$
\sum_{i=2}^{\infty} a_{i}\left(b_{i}-b_{i-1}\right)\left(\Sigma_{j=i}^{\infty} a_{j} b_{j}\right)^{-1}=\infty
$$

Proof. (i) The case $\liminf _{i \rightarrow \infty} b_{i-1} b_{i}^{-1}<1$. In this case, we find a positive number μ <1 and a sequence of positive integers $\left\{n_{k}\right\}$ such that $n_{k} \rightarrow \infty(k \rightarrow \infty)$ and $b_{n_{k}-1}<\mu b_{n_{k}}$ for all k. Note that $b_{n_{k}-1}<\mu(1-\mu)^{-1}\left(b_{n_{k}}-b_{n_{k}-1}\right)$ for all k. Since

$$
\begin{aligned}
& \sum_{j=i}^{\infty} a_{j}\left(b_{j}-b_{j-1}\right)=\sum_{j=i}^{\infty} a_{j} b_{j}-\sum_{j=i-1}^{\infty} a_{j+1} b_{j} \\
& =\sum_{j=i}^{\infty}\left(a_{j}-a_{j+1}\right) b_{j}-a_{i} b_{i-1} \geqq(1-\lambda) \sum_{j=i}^{\infty} a_{j} b_{j}-a_{i} b_{i-1}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \Sigma_{j=n_{k}}^{\infty} a_{j} b_{j} \leqq(1-\lambda)^{-1}\left\{\Sigma_{j=n_{k}}^{\infty} a_{j}\left(b_{j}-b_{j-1}\right)+a_{n_{k}} b_{n_{k}-1}\right\} \\
& \leqq(1-\lambda)^{-1}\left\{\Sigma_{j=n_{k}}^{\infty} a_{j}\left(b_{j}-b_{j-1}\right)+\mu(1-\mu)^{-1} a_{n_{k}}\left(b_{n_{k}}-b_{n_{k}-1}\right)\right\} \\
& \leqq(1-\lambda)^{-1}(1-\mu)^{-1} \sum_{j=n_{k}}^{\infty} a_{j}\left(b_{j}-b_{j-1}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{i=n_{k}}^{\infty} a_{i}\left(b_{i}-b_{i-1}\right)\left(\sum_{j=i}^{\infty} a_{j} b_{j}\right)^{-1} \\
& \geqq \sum_{i=n_{k}}^{\infty} a_{i}\left(b_{i}-b_{i-1}\right)\left(\sum_{j=n_{k}}^{\infty} a_{j} b_{j}\right)^{-1} \geqq(1-\lambda)(1-\mu)>0
\end{aligned}
$$

for all k. Thus, we have the desired result.
(ii) The case $\lim _{i \rightarrow \infty} b_{i-1} b_{i}^{-1}=1$. In this case, there is i_{0} such that $b_{i-1} b_{i}^{-1}>\lambda^{1 / 2}$ for all $i \geqq i_{0}$.
Hence,

$$
\Sigma_{j=i}^{\infty} a_{j} b_{j} \leqq a_{i} b_{i} \Sigma_{m=0}^{\infty} \lambda^{m / 2}=M^{-1} a_{i} b_{i}
$$

for all $i \geqq i_{0}$, where $M=1-\lambda^{1 / 2}$. Therefore, for any $k \geqq i_{0}$,

$$
\begin{aligned}
& \Sigma_{i=k}^{\infty} a_{i}\left(b_{i}-b_{i-1}\right)\left(\Sigma_{j=i}^{\infty} a_{j} b_{j}\right)^{-1} \geqq M \Sigma_{i=k}^{\infty} a_{i}\left(b_{i}-b_{i-1}\right) a_{i}^{-1} b_{i}^{-1} \\
& \geqq M \lim _{m \rightarrow \infty} b_{m}^{-1} \Sigma_{i=k}^{m}\left(b_{i}-b_{i-1}\right)=M \lim _{m \rightarrow \infty} b_{m}^{-1}\left(b_{m}-b_{k-1}\right)=M,
\end{aligned}
$$

which implies the desired result.

Lemma 2 ([3; Theorem]). Let E be the symmetric generalized Cantor set in R^{n} constructed by the system $\left[\left\{k_{j}\right\}_{j=1}^{\infty},\left\{\ell_{j}\right\}_{j=0}^{\infty}\right]$ with $\ell_{0}<1$. Then there is a constant $C>1$ dependent only on n, p and α such that

$$
C^{-1}\left(v_{0}+\Sigma_{j=1}^{\infty} u_{j} v_{j}\right)^{1-p} \leqq B_{\alpha, p}(E) \leqq C\left(\Sigma_{j=1}^{\infty} u_{j} v_{j}\right)^{1-p} .
$$

Proof of the theorem. The implication (c) $=>$ (a) follows from Lemma 2 , and the implication $(\mathrm{a})=>(\mathrm{b})$ is trivial by the definition of the (α, p)-thinness.
(b) $=>$ (c): It suffices to show that if $\Sigma_{j=1}^{\infty} u_{j} v_{j}<\infty$, then

$$
\int_{0}^{1}\left\{r^{\alpha p-n} B_{\alpha, p}(E \cap B(x, r))\right\}^{1 /(p-1)} r^{-p} d r=\infty
$$

for any $x \in E$. Let i_{0} be an integer $\geqq 3$ such that $2^{i_{0}-1}>n^{1 / 2}$. Then $n^{1 / 2} \ell_{i-1}<1$ for i $\geqq i_{0}$. Also, note that $-\log \ell_{i}>1$ for $i \geqq 2$. Given $x \in E$, for each $i \geqq i_{0}, x$ is contained an n-dimensional cube $I_{n}^{(i)}$ of length ℓ_{i} which appears in the definition of the Cantor set E. Then $I_{n}^{(i)} \subset B\left(x, \ell_{i}^{\prime}\right)$, so that

$$
B_{\alpha, p}\left(E \cap I_{n}^{(i)}\right) \leqq B_{\alpha, p}\left(E \cap B\left(x, \ell_{i}^{\prime}\right)\right),
$$

where $\ell_{i}^{\prime}=n^{1 / 2} \ell_{i}$. Since $E \cap I_{n}^{(i)}$ is a symmetric generalized Cantor set constructed by the $\operatorname{system}\left[\left\{k_{i+j}\right\}_{j=1}^{\infty},\left\{\ell_{i+j}\right\}_{j=0}^{\infty}\right]$, by Lemma 2 we obtain

$$
\begin{aligned}
& B_{\alpha, p}\left(E \cap I_{n}^{(i)}\right) \geqq C^{-1}\left(v_{i}+\Sigma_{j=i+1}^{\infty} u_{j} u_{i}^{-1} v_{j}\right)^{1-p} \\
& =C^{-1} u_{i}^{p-1}\left(\Sigma_{j=i}^{\infty} u_{j} v_{j}\right)^{1-p} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \int_{0}^{1}\left\{r^{\alpha p-n} B_{\alpha, p}(E \cap B(x, r))\right\}^{1 /(p-1)} r^{-1} d r \\
& \geqq \Sigma_{i=i_{0}}^{\infty} \int_{\ell_{i}^{\prime}}^{\ell_{i-1}^{\prime}}\left\{r^{\alpha p-n} B_{\alpha, p}(E \cap B(x, r))\right\}^{1 /(p-1)} r^{-1} d r \\
& \geqq \Sigma_{i=i_{0}}^{\infty} B_{\alpha, p}\left(E \cap B\left(x, \ell_{i}^{\prime}\right)\right)^{1 /(p-1)} \int_{\ell_{i}^{\prime}}^{\ell_{i-1}^{\prime}} r^{(\alpha p-n) /(p-1)-1} d r \\
& \geqq C^{\prime} \Sigma_{i=i_{0}}^{\infty} u_{i}\left(v_{i}-v_{i-1}\right)\left(\Sigma_{j=i}^{\infty} u_{j} v_{j}\right)^{-1}
\end{aligned}
$$

with a positive constant C^{\prime}. If $\Sigma u_{j} v_{j}<\infty$, then Lemma 1 shows that the last expression in the above inequalities is ∞. Thus the implication $(\mathrm{b})=>(\mathrm{c})$ is proved.

Remark. The (α, p)-fine topology $\tau_{\alpha, p}$ is defined by the family
$\left\{H \subset R^{n} ; R^{n} \backslash H\right.$ is (α, p)-thin at every point of $\left.H\right\}$.
In [3], we constructed a symmetric generalized Cantor set E such that
(*) $\left(R^{n} \backslash E\right) \cup\left\{x^{0}\right\} \in \tau_{\beta, q} \backslash \tau_{\alpha, p}$ for $x^{0} \in E$,
in the following four cases: (i) $0<\beta q<\alpha p<n$, (ii) $0<\beta q<\alpha p=n$, (iii) $0<\beta q=\alpha p<$ n and $q>p$ and (iv) $0<\beta q=\alpha p=n$ and $q>p$. The above theorem shows that we can not obtain a symmetric generalized Cantor set E satifying $(*)$ in the remainder case, namely in case $0<\alpha p \leqq \beta q<n$ and $(n-\alpha p) /(p-1)<(n-\beta q) /(q-1)$ (cf. [1; Theorem B]). In fact, if there is such a set E, then E is (β, q)-thin at x^{0}, so that $B_{\beta, q}(E)=0$ by the theorem. But this implies that $B_{\alpha, p}(E)=0$, since $\alpha p<\beta q$ or $\alpha p=\beta q$ and $p>q$ (see, [2; Theorem 5.5]); and hence E is (α, p)-thin at x^{0}, which contradicts (*).

References

(1) D. R. Adams and L. I. Hedberg, Inclusion relations among fine topologies in non-linear potential theory, Indiana Univ. Math. J. 33 (1984), 117-126.
(2) D. R. Adams and N. G. Meyers, Bessel potentials. Inclusion relations among classes of exceptional sets, Indiana Univ. Math. J. 22 (1973), 873-905.
(3) K. Hatano, Bessel capacity of symmetric generalized Cantor sets, Hiroshima Math. J. 17 (1987), 149156.
(4) L. I. Hedberg and Th. H. Wolff, Thin sets in non linear potential theory, Ann. Inst. Fourier, Grenoble, 33-4 (1983), 161-187.
(5) N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166.

[^0]: * Department of Mathematics, Faculty of Education, Shimane University, Matsue, 690 Japan.

