均等粒度の砂礫の剪断特性について

鳥山 晄司

Shearing Properties of Uniformly Graded Gravels

Koushi TORIYAMA

Abstract The drained triaxial compression tests were performed on uniformly graded gravels. The applicabilies of Mohr-coulomb, non-linear and internal friction angle equations are examined and the relations among each coefficients in the equations are considered. The following results are obtained. 1) Mohr-Coulomb equation is accord with experiments in the range of $\sigma_3 =$

- 1.0-4.0 kgf/cm² but overestimates shear strength in comparison with experiments in $\sigma_3 \leq 0.5$ kgf/cm² and $\sigma_3 \geq 6.0$ kgf/cm².
- 2) The non-linear and internal friction angle equations are in accord with experiments in $\sigma_3 = 0.5$ -6.0 kgf/cm².
- 3) There are no good correlation between dry density of gravels and the coefficients of the equations.
- 4) The good correlations are obtained among basic shear strength τ_0 and the coefficients of non-linear and internal friction angle equations.
- The coefficients of non-linear equation A and b have good correlation with that of internal friction angle equation φ_m and a. Key words: Shearing properties; graded gravels.

まえがき

建設省によるフィルダムの耐震設計指針(案)¹⁾での修 正震度法の導入の提示により、現在の震度法による地震 力に比べて大きな地震力を設計に用いる必要がでてき た。このため、現在のフィルダム設計において用いられ ている、堤体材料の剪断強度をモール・クーロン式で求 めて、この内の粘着力c=0とおいて、内部摩擦角↓のみ を用いる方法では経済的な堤体設計が不可能となる。そ こで、指針(案)ではde Mello²⁾が垂直応力 oが 50kgf/cm² までの強度式として与えた非線形式とσの増加とともに 内部摩擦角 6 は減少することから、 6 を 6 の 関数として 表す内部摩擦角式の使用を提示している。非線形式を ロック材に用いた場合の強度定数の求め方とロック材で の非線形式の強度定数とモール・クーロン式の強度定数 の比較については松本,渡辺³⁾が行なっている。また,松 本,安田,正国⁴⁾は非線形式を用いた場合と現在のc=0, 解析し、現在の方法では表面すべりが安全率最小となる のに対して、非線形式では表面すべりは生ぜず、ある深 さで安全率最小となることを示している。

内部摩擦角式については土質工学会のロックフィル材 料の試験と設計強度⁵⁾で、フィルダム材料では垂直応力σ の増加とともに内部摩擦角ゆが減少する実験データが 示されているが,指針(案)¹⁾に示された �o~log oの直線 関係は検討されておらず、したがって、内部摩擦角式の 係数もまったく与えられていない。モール・クーロン式, 非線形式、内部摩擦角式の検討については締固めた凝灰 岩と河床砂礫について鳥山のが行なっている。この結果, 同一材料では各強度定数と乾燥密度pdの間に直線関係が 成り立つ場合が多いが、材料が異なるとその関係も異な ること,各強度定数相互の関係についても検討した。 こ の実験に用いた材料は締固め供試体が自立する程度に細 粒分を含んでおり、フィルダムのランダム材的性質の材 料である。フィルダムのロック材では剪断強度への細粒 分の影響はほとんどない。そこで今回は細粒分と砂分の 影響を除くため、2.00~9.50mmの砂礫材を用いて、三軸 圧縮試験を行い、剪断強度式の諸係数の特性について検 討した。

剪断強度式について

建設省のフィルダム耐震設計指針(案)¹⁾では材料の剪 断強度式として次の3式を与えている。

モール・クーロン式	
$\tau = c + \sigma tan \phi$	(1)
非線形式	

$$\tau = A(\sigma / \sigma_{01})^{b}$$
 (2)
内部摩擦角式

$\tau = \sigma \tan \phi_0 \tag{3}$

ここに

$$\phi_0 = \phi_{\max} - \operatorname{alog}(\sigma/\sigma_{01}) \qquad (\sigma > \sigma_{01}) \qquad (4-a)$$

$$\phi_0 = \phi_{\max} \qquad (\sigma \le \sigma_{01}) \qquad (4-b)$$

これら(1),2)式はいずれも σ の小さな範囲で過大な剪断 強度を与え、(3)、(4)式では $\sigma_0 \ge \phi_{max}$ の規定が困難であ る。そこで(1)~(4)式を修正した次式の方が設計上、安 全側にあることを示した。 $^{\circ}$

モール・クーロン式

$\tau = \tau_0 + \sigma \tan \phi$	$(\sigma \geq \sigma_0)$	(5-a)
$\tau = \sigma \tan \phi_1$	$(\sigma \leq \sigma_0)$	(5-b)

ここに ₇₀:モール・クーロン式における粘着力cに等し いが,砂礫材には粘着力はないため,これを₇₀とおき,基 本剪断強度と呼んでいる。

 $\phi_1:\sigma_3=1.0$ kgf/cm 2 の三軸圧縮試験より求めた内部摩擦 角

 $\phi_1 = \sin^{-1} \frac{(\sigma_1 - \sigma_3)_f}{(\sigma_1 + \sigma_3)_f} \qquad (\sigma_3 = 1.0 \text{kgf/cm}^2)$

非線形式

$\tau = A(\sigma/\sigma_{01})^{b}$	$(\sigma > \sigma_0)$	(6-a)
$\tau = \sigma an \phi_{\scriptscriptstyle \mathrm{M}}$	$(\sigma \leq \sigma_0)$	(6-b)

ここに σ₀₁:基準応力でσ₀₁=1.0kgf/cm²ととる.σ₀: (6-a), (6-b) 式の交点の応力

 $\phi_{M}:\sigma$ が小さい範囲の内部摩擦角で $\sigma_{3}=0.5$ kgf/cm²で の三軸圧縮試験より求めた内部摩擦角 $\phi_{0.5}$ あるいは (6-a) 式で $\sigma = \sigma_{01} = 1.0$ kgf/cm² とおいて,

$$\phi_{\rm M} = \phi_{\rm M1} = \tan^{-1}(\tau/\sigma_0) = \tan^{-1}A \tag{7}$$

として求めることができる。

内部摩擦角式 $\tau = \sigma \tan \phi_0$

$$\phi_0 = \phi_m - \operatorname{alog}(\sigma/\sigma_{01}) \qquad (\sigma > \sigma_0) \quad (8-a)$$

$$\phi_0 = \phi_M \qquad (\sigma \le \sigma_0) \quad (8-b)$$

ここに
$$\sigma_{01}$$
:基準応力で $\sigma_{01} = 1.0 \text{kgf/cm}^2$
 $\sigma_0:(8-a), (8-b) 式の交点の応力 $\phi_m:\sigma = \sigma_{01}$ での内部摩擦角$

φ_M:(6-b) 式の内部摩擦角に等しい。

(8-a),(8-b) 式を用いる場合の ϕ_{M} は $\sigma_{3}=0.5$ kgf/cm² での三軸圧縮試験結果より求めた内部摩擦角 $\phi_{0.5}$ あるい は(8-a) 式で $\sigma = \sigma_{01} = 1.0$ kgf/cm² とおいて

$$\boldsymbol{\phi}_{\mathrm{M}} = \boldsymbol{\phi}_{\mathrm{M2}} = \boldsymbol{\phi}_{\mathrm{m}} \tag{9}$$

としてもよい。さらに(5-a) 式において $\sigma = \sigma_{01} = 1.0 \text{kgf}/\text{cm}^2$ とおいて

$$\phi_{M} = \phi_{M3} = 0.9 \cdot \tan^{-1}(\tau/\sigma_{01})$$
(10)
= 0.9 \cdot tan^{-1}(\tau_{0}/\sigma_{01} + \tan\phi) (1)

とおくこともできる。

これらの剪断強度式の諸係数の特性を求めるために均 等粒度の砂礫を用いて,三軸圧縮試験を行なった。

実験材料について

実験材料は市販の小礫3種と別報⁶に用いた河床砂礫 と凝灰岩材料をふるい分けたものである。

三軸圧縮試験の供試体は直径5.0 cmであるため, 礫の 最大径D_{max}はその1/5以下とし、9.50mmとした。また 均等粒度とするため、2.00mmふるいで水洗して砂分以 下をできる限り、洗い流した。しかし、河床砂礫と凝灰 岩材料では完全に砂分以下を洗い流すことができず、幾 分か残っている。

材料Aは市販では「マサ」と呼ばれ,まさ土の9.50mm ふるいを通過し,2.00mmふるいに残留する小礫である。 粒子はやや角ばっており,表面は粗である。

材料Bは市販の河床砂礫でほぼ球形に近く,丸みをお びているが,粒子表面は粗く,9.50mmふるいを通過し, 2.00mmふるいに残留する小礫である。

材料Cは市販では「ねずみ石」と呼ばれる砕石である。 やや扁平な直方体ないし三角錘のような形状をしてい る。他の材料と異なり、表面が非常に滑らかで光沢を有 している。9.50mmふるいを通過し、2.00mmふるいに残 留する小礫である。

材料Dは材料Aの粒度分布の影響をみるため、材料Aの うちの4.75mmふるいを通過し、2.00mmふるいに残留す る小礫である。

材料Eは別報⁶⁾の船上山ダム凝灰角礫岩材料の9.50 mmふるいを通過し,2.00mmふるいに残留する小礫であ る。原材料の礫分は13%程度で、細粒分を21%含んでい るため、水洗しても完全に2.00mm以下を洗い流すこと ができず、6%の砂分以下が残っている。材料は丸みを おびた粒子で表面は粗い。

材料Fは別報¹⁾の船上山ダムの河床砂礫の9.50mmふ

るいを通過し、2.00mmふるいに残留分である。この原材 料も砂分以下が56%、細粒分を6%含んでいるため、水 洗後も2.00mm以下が4.2%残っている。材料は丸みをお びた粒子で表面は粗く、見掛け上は材料EとFの区別は困 難である。

これら材料の絶乾比重G_s、粒度分布,吸水率w_a、最大 間隙比e_{max},最小間隙比e_{min}を表1に示す。e_{max},e_{min}の 測定法としては土質工学会の砂のe_{max},e_{min}測定法とコ ンクリート材料の粗骨材のe_{max},e_{min}を測定する方法が あるが、ここでは土質工学会の方法を準用して測定した。 モールドは標準締固め用の1000cm³のモールドを用い、 最大間隙比はロートを用いて材料をモールド内に入れる よりも、材料を袋から静かにモールドに流し込んだ方が、 バラツキが小さく、e_{max}が大きな値となるため、後者の方 法を用いた。e_{min}は土質工学会の方法にしたがって、10回 に分けて材-をモールドに入れ、各回ごとに100回ずつ モールド側面を木槌で叩いて締固めた。e_{max}は5回以上、 e_{min}は3回以上測定し、その平均値をe_{max},e_{min}とした。

吸水率から各粒子の内部間隙比eiを

 $e_i = G_s \cdot W_a$

とすると,表1のようになる.凝灰岩系のE,Fは粒子内 間隙比が大きいことが特徴である。また,表面乾燥飽和 状態の粒子比重G_{sa}を

$$G_{sa} = \frac{G_s}{1 + e_i} + \frac{e_i}{1 + e_i}$$

として求めた場合の値も表1に示す。また、乾燥状態での内部間隙を含む礫の比重G_{sd}は

$$G_{sd} = \frac{G_s}{1 + e_i}$$

として求めた値も表1に示す.

実験方法について

実験材料はまったく粘着力がないため、供試体は三軸

装置の試料台にゴムスリーブを固定後, 2 つ割りモール ドを置き, この中で供試体を作製した.

供試体の締固めは先端にゴム製キャップの付いた突き 棒で、ゆる詰め供試体は5層10回、密締め供試体は8層 50回、手で突き固めた。実験は全て水浸状態で行なった ため、あらかじめ、材料を1週間以上水浸して、十分に 吸水させた材料を用いた。

三軸圧縮試験は試料台で供試体を作製後、 $0.2\sim 0.3 \text{kgf}/\text{cm}^2$ の真空を加えて供試体を直立させて、2つ割りモー ルドを取り外した後、供試体の直径と高さを測り、三軸 セルを組み立てた。実験の礫が砂分以下を含まないた め、供試体の凹凸が激しく、ノギスで直径を測る際のノ ギスの位置によって、測定値の変動が大きくなった。こ のため、供試体諸元は細粒分を含む砂礫材の諸元に比べ てばらつきが大きくなった。各材料の平均供試体諸元を 表 2 に示す。表 2 のeは全間隙比で、礫の絶乾比重G_sを用 いて

$$e = \frac{G_s}{\rho_d} - 1$$

として求めた値,またe_pは粒子間間隙比のみを求めるため

$$e_{p} = \frac{G_{sd}}{\rho_{d}} - 1$$

として求めた値である。

実験は供試体を三軸セルにセットし、側圧 σ_3 を加えた 状態で20分間、動水勾配 i= 5~6 で透水後、圧密排水条 件で行なった。材料の透水係数は大きいため、透水中の 抵抗は主として上下のポーラス・ストーンによるものと 思われる。粗くかつ角ばっている礫もあるため、厚さ0.5 mmのゴムスリーブを用いたにもかかわらず、実験中に ゴムスリーブに孔があいて、漏水する供試体が多く生じ た。このため、 σ_3 =4.0、 6.0kgf/cm²の供試体にはゴム スリーブを2枚重ねて実験した。なお、ゴムスリーブの 影響は考慮していない。

```
実験は側圧 \sigma_3 = 0.5, 1.0, 2.0, 3.0, 4.0, 6.0 kgf/cm<sup>2</sup>
```

材料名	Gs	粒	度分	布	吸水率	e _{max}	e _{min}	ei	G _{sa}	G_{sd}
		4.75mm %	2.00mm %	2mm以下 %	%					
Α	2.571	72.5	27.3	0.2	1.51	0.859	0.616	0.039	2.512	2.475
В	2.553	94.5	5.5	0.0	4.51	0.900	0.703	0.115	2.393	2.289
С	2.727	89.5	10.5	0.0	0.35	0.988	0.656	0.001	2.711	2.701
D	2.583	-	98.5	1.5	3.35	0.918	0.658	0.087	2.457	2.377
E	2.654	42.0	52.0	6.0	14.46	1.326	0.915	0.384	2.195	1.918
F	2.624	43.5	52.8	4.2	10.08	1.132	0.760	0.265	2.284	2.075

表1 材料の物理的性質

No	ρ _d g/cm³	е	w %	$ ho_{ m t}$ g/cm ³	${ m D_r} \%$	ep
A 1	1.467	0.753	29.3	1.896	43.5	0.688
A 2	1.525	0.688	26.8	1.932	70.4	0.625
B 1	1.415	0.808	31.7	1.859	46.5	0.621
B 2	1.492	0.713	27.9	1.907	95.2	0.535
C 1	1.492	0.829	30.0	1.945	49.5	0.812
C 2	1.608	0.697	25.6	2.018	87.6	0.681
D 1	1.445	0.788	30.5	1.886	49.9	0.645
D 2	1.504	0.705	27.3	1.925	82.0	0.569
E 1	1.170	1.268	47.8	1.729	14.0	0.639
E 2	1.304	1.037	39.1	1.813	70.4	0.472
F1	1.308	1.007	38.4	1.809	33.6	0.587
F 2	1.417	0.853	32.5	1.877	75.0	0.465

表2 礫の供試体平均諸元

を用いた. $\sigma_3 = 0.5 \text{kgf/cm}^2 \text{は別報}^{1)}$ で示したように低側 圧 $\sigma_3 = 0.5 \text{kgf/cm}^2$ での内部摩擦角 $\phi_{0.5}$ を求めた方が,新 しい耐震設計指針(案)¹⁾を適用する場合,より合理的な 断面設計が可能となるために,追加することが望ましい ものである。また、 $\sigma_3 = 4.0 \text{kgf/cm}^2 \text{は農業土木で多く建}$ 設される50~60m程度のフィルダムで生じる応力を十分 にカバーする圧力であり⁶⁾、 $\sigma_3 = 6.0 \text{kgf/cm}^2 \text{はこれ以上}$ での傾向を見るために追加したものである。

実験結果

圧縮強度 $(\sigma_1 - \sigma_3)_t$ は偏差応力 $\sigma_1 - \sigma_3$ の最大値とした. ただし、軸ひずみ ϵ が10%以上になっても $\sigma_1 - \sigma_3$ が最大 値を生じない場合には $\epsilon = 10\%$ での $\sigma_1 - \sigma_3$ を圧縮強度と した.

モール・クーロン式の適用性について最も非線形性の 強いC1, C2の例を図1に示す.この例を含め,全ての 実験結果で, $\sigma_3 = 0.5 \text{kgf/cm}^2 \sigma O(\sigma_1 - \sigma_3)_f/2$ は最小二 乗法で求めた直線より下にあり,均等粒度の砂礫材でも, $\sigma_3 = 0.5 \text{kgf/cm}^2 \sigma O$ 剪断強度にモール・クーロン式をそ のまま適用すると,過大な値を与えることになり,(5-a) 式のモール・クーロン式は $\sigma_3 \ge 1.0 \text{kgf/cm}^2$ に対して適用 すべきであり, $\sigma_3 \le 1.0 \text{kgf/cm}^2$ では,図1の原点を通る 直線で与えられる(5-b)式を用いる方が合理的である. モール・クーロン式は $\sigma_3 = 1.0 \sim 4.0 \text{ kgf/cm}^2$ の範囲では 実験結果をよく近似している.しかし, $\sigma_3 = 6.0 \text{kgf/cm}^2$ ではA1,C1点はほぼモール・クーロン式での直線上に あるが,他の10点は直線の下にある.このことから,均 等粒度の砂礫の場合にも, $\sigma_3 = 6.0 \text{kgf/cm}^2$ まではモー ル・クーロン式が成り立つとは限らず、モール・クーロ ン式の(5-a)式の適用範囲は σ_3 =1.0から4.0~5.0kgf/ cm²の範囲である。50~60m程度のフィルダムではすべ り面上の垂直応力は6~7kgf/cm²程度以下であり、 σ_3 =4.0kgf/cm²では剪断面上の垂直応力は6~7kgf/ cm²であるから、(5-a)式が適用できるが、これ以上の高 いフィルダムでは $\sigma_3 \ge 4.0$ ~6.0kgf/cm²に対して、さら に別の剪断強度定数 τ_0 、 ϕ を適用しないと、モール・クー ロン式は危険側の剪断強度を与えることになる。

非線形式 (6-a) の両辺の対数をとると $\log \tau = \log A + b \log (\sigma / \sigma_{01})$

実験結果を両対数目盛りでプロットしたC1,C2の例を 図2に示す.いずれの材料でも $\sigma_3 = 0.5 \sim 6.0 \text{kgf/cm}^2$ の 範囲で実験結果はほぼ直線上にあり、 $\sigma_3 \ge 0.5 \text{kgf/cm}^2$ あ るいは $\sigma \ge 0.9 \sim 1.0 \text{kgf/cm}^2$ では非線形式が成り立って いる.しかし、 σ が小さい場合には非線形式では内部摩擦 角 ϕ が90°に近ずくから,過大な剪断強度を与える.この ため、 $\sigma_3 \leq 0.5 \text{kgf/cm}^2$ あるいは $\sigma \leq 0.9 \sim 1.0 \text{kgf/cm}^2$ で は原点を通る直線式(6-b)を用いた方が設計上,合理的 である.非線形式では係数bが小さいほど,直線からのず れが大きくなる.また,(σ , τ)面上にC1,C2をプロッ トした結果を図3に示す.図1のモール・クーロン式に 比べて広い応力の範囲でよい適合性を示している.図よ り非線形式の原点近くでの立ち上がりが大きい.そこで $\phi_{M} = \phi_{0.5}$ とした場合の(6-b)式 $\tau = \sigma \tan \phi_{M}$ を図3に示 す.内部摩擦角式での ϕ_0 と σ の関係を図4に示す. $\sigma_3 =$ 0.5 kgf/cm² での強度が小さくなりすぎたA1を除いて, いずれも σ_3 が0.5 kgf/cm²までは ϕ_0 の最大値は求めらな い。

全試料の $\sigma_3 = 0.5 \sim 6.0 \text{kgf/cm}^2$ で求めた強度定数 τ_0 , ϕ , A, b, ϕ_m , aを表3に示す。また, (5-b) 式の ϕ_M の 値として $\phi_{0.5}$ および ϕ_{M1} , $\phi_{M2} = \phi_m$, ϕ_{M3} も表3に示す。表 3より $\phi_{0.5}$ と ϕ_{M1} , ϕ_{M2} , ϕ_{M3} の差はB2を除いてほとんど 1°以内であり, 12試料の平均値の差は($\phi_{0.5} - \phi_{M1}$)_{ave} = 0.53°, ($\phi_{0.5} - \phi_{M2}$)_{ave} = 0.70°, ($\phi_{0.5} - \phi_{M3}$)_{ave} = 0.20°とな り, (6-b), (8-b) 式の ϕ_M としては $\phi_{0.5}$, ϕ_{M1} , $\phi_{M2} = \phi_m$, ϕ_{M3} のいずれを用いてもよい。

図3 実験結果と非線形式の比較

剪断強度式の諸係数について

実験に用いた砂礫材の乾燥密度ρ_dと剪断強度式の諸係 数の関係を図5~7に示す。各係数とρ_dの関係を最小二 乗法で求めると

$\phi = 8.68 \pm 13.45 ho_{d}$	(r=0.655)
$\tau_0 = -0.220 + 0.653 ho_d$	(r=0.355)
$A = 0.004 + 0.719 \rho_d$	(r=0.625)
$b = 0.699 + 0.0482 \rho_d$	(r=0.075)
$\phi_{\rm m} = 16.68 \pm 20.17 \rho_{\rm d}$	(r=0.677)
$a = 14.63 \pm 0.209 \rho_d$	(r=0.006)

となり、ばらつきが大きく、ほとんど相関性は認められ ない。さらに各係数と相対密度Dr、間隙比e、粒子間間隙

図5 乾燥密度 ρ_{d} とモール・クーロン式の ϕ , τ_{0} の関係

表3 砂礫材の剪断強度式の諸係数

No	φ	$ au_{ m 0} m kg/cm^2$	A kg/cm²	b	$\phi_{\rm m} = \phi_{\rm M2}$	а	ϕ_1	$\phi_{\scriptscriptstyle 0.5}$	$\phi_{\scriptscriptstyle{\mathrm{M1}}}$	$\phi_{\scriptscriptstyle{ m M3}}$
A 1	31.17	0.462	0.917	0.847	42.73	10.26	44.30	*41.61	42.53	42.17
A 2	32.40	0.548	0.982	0.846	44.52	10.15	42.27	44.52	44.48	44.80
B 1	30.94	0.679	1.056	0.795	46.51	13.48	42.93	47.38	46.56	46.77
B2	34.52	0.583	1.026	0.864	46.46	10.17	*38.15	49.69	45.74	46.62
C 1	22.71	1.006	1.186	0.617	48.74	23.61	43.21	50.66	49.86	49.44
C 2	26.72	1.178	1.309	0.667	51.92	21.31	47.25	52.52	52.62	53.33
D 1	29.54	0.528	0.943	0.808	43.26	12.37	40.45	44.04	43.32	42.83
D 2	29.16	0.704	0.997	0.801	44.91	13.00	42.67	44.67	44.91	46.45
E 1	21.58	0.539	0.796	0.736	38.24	15.44	35.07	39.52	38.52	38.76
E 2	24.98	0.858	1.064	0.705	46.32	18.63	42.47	47.01	46.78	47.64
F1	27.13	0.627	0.950	0.773	43.41	14.47	40.85	43.71	43.53	43.85
F 2	30.03	0.849	1.154	0.752	48.91	16.27	46.18	48.98	49.09	49.48

*前後のの。でのゆの値と比較して過小な値と考えられる。

図6 乾燥密度paと非線形式の係数A, bの関係

図7 乾燥密度paと内部摩擦角式の係数 pm, aの関係

比e, との関係もばらつきが大きく,相関係数は小さく, 各係数と砂礫材の基本的な物理的性質との関係は求まら ない.この原因の1つに材料Cが他と大きく異なった特 性を示すことが考えられる。材料Cは前述のように角 ばっているが表面は滑らかである。このため,締固めに より,粒子間の嚙み合わせはよくなり,基本剪断強度では 大きくなる。しかし,粒子が滑りやすいため,内部摩擦 角 ϕ が小さい。この結果,非線形式では係数Aが大きく, かつ非線形性が増して係数bが小さくなっている。また, 内部摩擦角式では ϕ_m , aが大きくなっている。そこでC 1, C2を除く10試料での各係数と ρ_i の関係を求めると

$\phi = -13.68 + 30.49 ho_{d}$	(r=0.909)
$\tau_0 = 0.879 - 0.172 ho_d$	(r = -0.143)
$A = 0.475 + 0.66 ho_{d}$	(r=0.421)
$b = 0.279 + 0.365 \rho_d$	(r=0.788)
$\phi_{\rm m} = 25.51 + 13.40 ho_{\rm d}$	(r=0.521)
$a = 36.97 - 14.44 \rho_d$	(r = -0.139)

となり、 ϕ とbの相関係数rは大きくなっているがA、 ϕ_m の rは小さくなり、 τ_0 、aは ρ_d との相関性がほとんどない。こ れらの結果より、均等粒度の砂礫でも各係数への砂礫の 特性の影響が大きく、材料の物理的性質である ρ_d 、e、Dr 等から剪断強度式の係数を推定することはできないこと が明らかとなった。剪断強度式の各係数の関係について 相関係数 $|\mathbf{r}|$ が0.70以上のものは次のようになる。

$b = 0.311 + 0.161\phi$	(r=0.827)
$a = 39.19 - 0.854 \phi$	(r = -0.759)
$A = 0.624 + 0.572 \tau_0$	(r=0.910)
$b = 0.974 - 0.290 \tau_0$	(r = -0.832)
$\phi_{\rm m} = 35.82 \pm 13.56 \tau_0$	(r=0.837)

$a=2.217+17.82\tau_0$	(r=0.885)
$\phi_{\rm m} = 19.18 + 25.51 {\rm A}$	(r=0.985)
a=59.02-57.44b	(r = -0.993)

この結果より、基本剪断強度 c_a と非線形式のA,b,内部 摩擦角式の ϕ_m ,aとの相関性がよい。また、非線形式と内 部摩擦角式は(σ , τ)関係の非線形性の表示方法が異 なっているだけであり、係数のAと ϕ_m が基本的な大きさ を、bとaが非線形性を表す係数である。このため、Aと ϕ_m ,bとaの相関性は非常によい。

各剪断強度式の2つの係数相互の関係は

$\tau_0 = 1.373 - 0.0232 \phi$	(r = -0.416)
b=1.099-0.322A	(r = -0.578)
$a = -15.75 \pm 0.6743 \phi_m$	(r=0.543)
となり,相関性はよくない.	

あとがき

締固めた均等粒度の砂礫材の三軸圧縮試験を行い,剪 断強度式の適用性と強度式の諸係数について検討した. この結果。

- 1. モール・クーロン式は σ_3 =1.0~4.0kgf/cm²ではよく 合うが、 σ_3 =0.5kgf/cm²では過大な剪断強度を与え、 σ_3 =6.0kgf/cm²でも過大な剪断強度を与えることが 多い。
- 2. 非線形式は $\sigma_3 = 0.5 \sim 6.0 \text{ kgf/cm}^2$ の範囲で実験結果 とよく一致する.しかし、 $\sigma_3 < 0.5 \text{kgf/cm}^2$ では過大な 剪断強度を与えるものと考えられる.
- 3. 非線形式と内部摩擦角式は (σ, τ) 関係を異なった 非線形の方程式で表したものであるから, それぞれの 係数Aとφ_m, bとaの相関性はよい。
- 4. 均等粒度でも砂礫の材質が異なると各強度定数と乾燥密度paの相関性は悪く、利用できる式は得られなかった。

5. 内部摩擦角 ϕ と他の強度定数A, b, ϕ_m , aの相関性 はあまりよくないが、基本剪断強度 π とA, b, ϕ_m , a の相関性はよい。これは細粒分を含む凝灰岩や河床砂 礫と同じ傾向を示している。

砂礫材の盛立ての施工管理は乾燥密度を中心に行なわ れる。現場では材料の採取場所によって粒度分布がかな り変動する。この粒度分布の変動の強度定数への影響あ るいはどの程度の変動までは強度定数と乾燥密度の関係 を1つの式で与えられるかを明らかにすることが望まし い。この点については今後、実験を行なう予定である。

なお,本実験を行なうにあたりましては平成5年度島 根大学農学部農村工学講座の専攻生の鵜野晴延君,沖田 真紀君,田中 緒君に多大のご協力を賜りました。ここ に記して厚く感謝の意を表します。

参考文献

- 建設省河川局開発課,フィルダムの耐震設計指針(案)。 国土開発技術センター,東京,95 pp.,1991.
- DE MELLO, Reflection on design decisions of practical significance to embankment dams. Geotechnique, 27: 279–355, 1977.
- 3) 松本徳久・渡辺和夫, ロック材料のせん断強度. 土と基礎, 35: 49-54, 1987.
- 4) 松本徳久・安田安夫・正国之弘、フィルダムのすべりに対 する安定計算.土木技術資料,32:41-46,1987.
- 5) 土質工学会, ロックフィル材料の試験と設計強度. 土質工 学会, 東京, 287 pp., 1982.
- 6)鳥山晄司,非粘着性材料の剪断強度式について-凝灰岩 と砂礫での事例-農土論集,167:109-115,1993.