締固めた凝灰岩と火山灰性粘土の混合土の 透水係数について

鳥 山 晄 司*

On Permeability of Compacted Soil Mixed with Tuff and Volcanic Clay Koushi Toriyama

Synopsis

The permeability tests were performed for the specimen cut from vertical (V) and parallel (H) by compacted plane with triaxial cell. The coefficient of permeability k were obtained from the consolidation tests with large consolidometer and triaxial cell.

From these experiments, the permeability of compacted mixed soil is isotropic for V and H specimen. The values of k obtained from c_v with large consolidometer are nearly equal to those obtained by permeability tests with triaxial cell. But, the values of k obtained by the consolidation with triaxial cell have not a tendency to those of permeability tests by triaxial cell.

1. まえがき

締固め土は室内締固め方法ではモールドに土を入れ, ランマーで水平面になるように突き固める.このため, 各層間が分離しやすい傾向にある.また,現場盛土にお いても,水平に土を撒き出した後,ローラーで転圧する ため,水平方向に層状をなす.これらの層をなす締固め 土には異方性の存在する可能性がある.これが設計上, 無視できる程度のものか,あるいは,設計に考慮すべき ものか検討せずに,現在のところでは,異方性はないも のとみなして設計諸数値を決定している.そこで,今ま でに単一材料の締固め供試体に各種方向の切断面をいれ て分離面とし,この剪断特性への影響を実験した.この 結果,切断面の方向 θ がすべり面の方向にほぼ一致す る場合,粘着力 c' はほぼ0に減少するが,内部摩擦角 ϕ' は θ に無関係であり,切断面のない供試体と同じ値 をとることを示した.

最近のフィルダムの遮水ゾーンの材料は不透水性の確 保と同時に剪断強度を大きくするため,砂質土と粘土を 混合して用いる場合が多くなっている.この場合,単一 土に比べて,砂質土と粘土の混合は完全ではないから, 締固め土に粘土の多い部分と少ない部分ができ,あるい は粘土塊が水平方向に転圧されて,異方性を生じる可能 性がある.そこで,砂質土と粘土を室内で混合し,締固 め面に垂直(V),水平(H),45°傾斜(D)方向から供試 体を切り出し,剪断特性への異方性の有無を実験した. この結果,剪断特性への異方性の影響は小さく,設計上, 無視しうるものであることを別報で示した.

ここでは同じ試料土を用いて,締固め面と垂直(V) と水平(H)供試体を切り出して透水試験を行い,透水 係数の異方性の有無を検討した.さらに大型圧密装置と 三軸セルで圧密実験を行い,圧密係数 coから求めた透 水係数,圧密後の定水頭透水試験よりの透水係数,さら に大型圧密装置で供試体底面の水圧を増減した場合の水 圧伝播特性からの透水係数を求め,これらの相互関係を 比較検討した.

2. 実験方法

実験に用いた試料土は農林水産省中国四国農政局管内 で建設中のNダムの遮水ゾーン用材料の角礫凝灰岩と火

* 農村工学講座

山灰性粘土である. これらを乾土重量比で7:3となる よう混合した. 試料土の調整方法と物理的性質は別報に (2) 示す.

透水試験は三軸セルを用いて行った. ここでは供試体 の異方性の有無を検討するため、V 供試体と H 供試 体を作製した. V 供試体は直径 5 cm, 高さ 12.5 cm のモールドで締固めたものをそのまま用いた. H 供試体 は直径 15 cm のモールドで試料土を締固め、これより 直径 5 cm, 高さ 10~12 cm の供試体を締固め面が供 試体軸方向となるように切り出した.この供試体を三軸 セルにセットし、周圧 $\sigma_3 = 1.0 \text{ kgf/cm}^2$ を加えた後, 約1日間,供試体底部から上向きに約 70 cm の水頭差 を与えて通水した後、透水試験を行った、締固め土の透 水係数は圧密圧力 σ_{3c} や背圧 ub によって変化する. そこで、透水試験は $u_b = 1.0 \text{ kgf/cm}^2$ を与えて、 $\sigma_{3c'}$ を1.0から 5.0 kgf/cm² (周圧 $\sigma_3 = 2.0 \sim 6.0 \text{ kgf/cm}^2$) に増減した場合および $\sigma_{3c'} = \sigma_3 - u_b = 1.0 \text{ kgf/cm}^2$ と なるよう σ₃ を 1.0~6.0 kgf/cm², u_b を0~5 kgf/cm² に増減した場合の透水試験を行った.この背圧 ub を作 用させる透水試験は全て変水頭透水試験である。

大型圧密での圧密係数 cv からの透水係数を求めるた めの圧密は供試体直径 30 cm, 高さ 10 cm の圧密装置 を用いた.
試料土の締固めは標準締固め仕事量と等しく なるよう3層180回とした.供試体を圧密装置にセット 後,非水浸供試体はそのまま非排水状態で p=5kgf/ cm² まで圧密圧力を増加した後, 排水コックを 開いて 圧密を行った.その後、 $p = 10 \text{ kgf/cm}^2$ まで非排水で 圧密圧力を増加した後,同様に圧密を行った.透水供試 体では供試体を圧密装置にセット後、供試体底面より水 頭差約 140 cm で透水を行った.この際,供試体と載荷 ピストンが水圧で持ち上げられるため、上部から反力と して $p \doteq 0.2 \text{ kgf/cm}^2$ を加えた. この状態で流出水中 に空気が含まれなくなると, 定水頭透水試験を行い, 透 水係数を求めた.透水試験の後, $p = 5 \text{ kgf/cm}^2$ まで 非排水で圧密圧力を増加した後、コックを開いて排水を 行い, 圧密を行った. 圧密を2日間以上行った後, 水頭 差約 140 cm の定水頭透水試験を行った. この後, p= 10 kgf/cm² に増加後, 圧密を行った. 圧密後, p = 10 kgf/cm² での透水試験を行った.透水試験後,供試体 底部に背圧作用のパイプを連結し、供試体底面の背圧 ub を瞬時に0から 5kgf/cm² に増圧し,供試体上面の間 隙圧の変化と圧縮量(この場合、有効応力が減少するた め膨張となる)を測定した.上面の間隙圧がほぼ ub に 等しくなると、底面の ub を瞬時に0に減圧し、上面の 間隙圧と圧縮量を測定した.これを3回繰返した.この

*u*_b の増減実験も圧密過程であるから, 圧密係数 *c*₀ が 求まり, これより透水係数 *k* が求まる.

三軸圧密は三軸セルを用いて直径 10 cm, 高さ約 10 cm の供試体で行った. 試料土は標準締固めで作製した後,三軸セルにセットする.大型圧密実験と同様に非水 浸供試体は周圧 $\sigma_3 = 5.0 \text{ kgf/cm}^2$ まで増圧後,排水コックを開いて圧密した.透水供試体では,供試体とゴムスリーブの密着を保つため, $\sigma_3 = 0.5 \text{ kgf/cm}^2$ を作用した後,水頭差約 70 cm で透水して空気を排除した後,変水頭透水試験を行った.その後, $\sigma_3 = 5.0 \text{ kgf/cm}^2$ まで非排水状態で増圧後,圧密を行った.圧密後,変水頭透水試験を行った.三軸セルは最大周圧 σ_3 が 8 kgf/cm²であるため,圧密は $\sigma_3 = 5.0 \text{ kgf/cm}^2$ のみとした.

大型圧密, 三軸圧密試験とも, 圧密中は間隙圧 и と 沈下量 s を測定した. このため, $u \sim \log t$, $s \sim \log t$ 曲線が得られた. そこで, 間隙圧 u は30, 50, 80%が 消散した場合の時間から、各圧密度に対する圧密係数を 求め、これより透水係数 ku30、 ku50、 ku80 を求めた. ま た $s \sim \log t$ 曲線は Casagrande の方法によって, 一 次圧密沈下量を求め、これから30、50、80%の圧密度の 時間を求め、圧縮ひずみ 6 に対しての圧密係数を求め、 これより透水係数 ke30, ke50, ke80 を求めた. 最適含水 比 wopt のやや湿潤側では、排水コックを開くと同時に 間隙圧 u = 0 となり、間隙圧からの圧密係数 c_{vu} と透 水係数 k_u は求まらない. しかし, $s \sim \log t$ 曲線は普 通の圧密曲線となり、一次、二次圧密が形式上分離でき、 これから圧縮ひずみについての圧密係数 Cve と透水係数 k。が求まった. この場合の沈下の一次圧密部分は即時 沈下の時間遅れによるもので、圧密とはいえないが、間 隙圧を測定しない場合,これは圧密とみなされる.そこ で、この場合の k_e も求め、間隙圧からの k_u 、透水試験 からの k と比較した.

なお,三軸セルでの供試体は多数のため,各グループ 4本の平均の供試体諸元を表-1に示す.また,大型圧 密と三軸圧密の供試体諸元を表-2,3に示す.

表-1:透水試験の供試体諸元平均値

	実 験 前			実験後		
供試体	w (%)	ρ_d (g/cm ³)	е	Sr (%)	w (%)	(g/cm^3)
NAP	21.85	1.437	0.860	66.9	30.00	1.453
NBP	29.60	1.403	0.903	87.5	30.75	1.425
NFP	27.25	1.386	0.925	78.5	32.68	1.416
NGP	32.24	1.403	0.903	95.5	29.39	1.467
NHP	33. 48	1.377	0. 939	96.1	28.60	1.503

表-2:大型圧密の供試体諸元

供試体		実 験	前		実	験後
番 号	w (%)	$(g/c m^3)$	е	Sr (%)	w (%)	(g/cm^3)
<i>NF-</i> 1	25.94	1.407	0.896	77.2	29.05	1.463
NF-2	28.29	1, 363	0.957	78.9	29.52	1.480
NG-1	31.44	1.389	0.921	91.1	27.14	1.498
NG-2	31.75	1.394	0.914	92.7	27.42	1.511
NH1	33.50	1.426	0.871	102.6	27.73	1.520
NH-2	34.08	1.372	0.945	96.2	26.57	1.555

表-3:三軸圧密の供試体諸元

供試体		実 験	前		実り	肏 後
番 号	w (%)	$\left \begin{array}{c} \rho_d \\ (g/cm^3) \end{array} \right $	е	$\overset{S_r}{(\%)}$	w (%)	(g/cm^3)
NATC-1 -2	19.72 20.64	$1.449 \\ 1.438$	0. 842 0. 855	$\begin{array}{c} 62.5 \\ 64.4 \end{array}$	23. 84 27. 15	$\begin{array}{c c} 1.458 \\ 1.467 \end{array}$
NBTC-1 -2	30.75 30.27	$\begin{array}{c} 1.400 \\ 1.438 \end{array}$	0. 905 0. 856	90.7 94.4	28. 44 25. 92	$\begin{array}{c} 1.452 \\ 1.531 \end{array}$
NCTC-1 -2	26.66 26.50	1.470 1.510	0. 815 0. 766	87.3 92.3	$26.34 \\ 23.81$	1.536 1.576
NDTC-1 -2	28, 36 28, 69	1.489 1.489	0. 793 0. 792	95.4 96.7	24. 79 25. 20	$1.584 \\ 1.575$
NETC-1 -2	26. 31 26. 44	1. 418 1. 435	0. 881 0. 859	79.7 82.1	27.40 28.23	$1.486 \\ 1.473$

図-1:透水係数の圧密圧力および背圧による変化

3. 透水試験結果について

三軸セルによる透水試験より得られた圧密圧力 σ_{3c} 'お よび背圧 u_b による透水係数の変化の一例を図-1に示 す. 図-1の実線は圧力の増加過程を、点線は減少過程 を示す. 図-1(a)の実験開始点は $u_b = 0$ であり、その 後、 $u_b = 1.0 \text{ kgf/cm}^2$ に増加すると、 σ_{3c} ' = 1.0 kgf/ cm² と一定であるが、k が増加している. これは図-1 (b)の $u_b = 0$ から 1.0 kgf/cm² へ増加した場合の k の 増加に対応している. $u_b = 1.0 \text{ kgf/cm}^2$ に保って σ_{3c} ' を増加すると、圧密により k は減少するが、 σ_{3c} 'を1.0 から 5.0 kgf/cm² に増加した場合の k は1/2~1/5程 度に減少している. その後、除荷すると k はわずかに 増加する. 最終点では $\sigma_{3c} = 1.0 \text{ kgf/cm}^2$, $u_b = 0$ と 実験開始と同一条件である. この実験初期と終期は圧力 条件は同一であるが、終期は $\sigma_{3c}' = 5.0 \text{ kgf/cm}^2$ での 過圧密履歴を有している. この履歴の透水係数への効果

図-3: 透水係数と締固め含水比の関係 ($\sigma_{3e}' = 5.0 \text{kgf/cm}^2$)

は小さく,終期の k は初期の k の平均0.7倍に減少し たのみである.また,図-1(b)は背圧 u_b を0から5.0 kgf/cm² まで増加し,さらに0まで減少した場合であ るが,この場合,平均すると終期の k は初期の k の 1.2倍で,背圧履歴の透水係数への影響は小さい.この ことから,透水試験では背圧 $u_b = 1.0$ kgf/cm² を作用 すればよい.

圧密圧力 $\sigma_{3c'} = 1.0 \text{ kgf/cm}^2$ の場合の透水係数 k と 締固め含水比 w の関係を図-2に示す. 図中, $u_b = 0$ $\iota \sigma_{3e}' = 1.0 \text{ kgf/cm}^2$ で背圧 $u_b = 0$ とした実験初期 の k を表す. また, $u_b = 1.0 \text{ kgf/cm}^2$ は $u_b = 0$ の実 験後, $\sigma_{ac}' = 1.0 \text{ kgf/cm}^2$ を保って $\sigma_{ac} = 2.0$, $u_b =$ 1.0 kgf/cm² に増圧した場合の k~w 関係である. ま さ土では $u_b = 1.0 \text{ kgf/cm}^2$ を加えると、k が数10倍 に増加する供試体があったが、本実験では ub = 1.0 kgf $/cm^2$ の作用により、k は2~3倍程度に増加する供試 体が多い. 高含水比の供試体で、 $u_b = 1.0 \text{ kgf/cm}^2$ の k の方が $u_b = 0$ の k よりやや小さい場合がある. こ れは u_b と σ_{3c} を徐々に増加したが、増加速度が大きす ぎ、供試体に一部、圧密が生じたことが原因として考え られる. 圧密圧力 $\sigma_{sc}' = 5.0 \text{ kgf/cm}^2$ の場合の $k \sim w$ 関係を図-3に示す、図-2、3より、V供試体に比 べて H 供試体の k の方が大きい場合も小さい場合も あり、その間に一定の傾向は認められない. このことか ら, V 供試体と H 供試体の透水係数 kにははっきり した異方性はなく、設計上、 V 供試体の透水試験より 得られた k を用いてよいと考えられる.

大型圧密試験よりの透水係数

大型圧密試験では p = 5, 10 kgf/cm² で圧密試験を

図-4:大型圧密での間隙圧よりの透水係数と 締固め含水比の関係

行い, $u \sim \log t$, $s \sim \log t$ を求め, これより圧密係数 c_{vu} , c_{ve} が得られ, さらに $k = \gamma_w m_v c_v$ より透水係数 k_u , k_e を求めた. この他, 反力として $p = 0.2 \text{ kgf/cm}^2$ を 加えた初期(これをp = 0 で表す)およびp = 5, 10 kgf/cm² で圧密後, 定水頭透水試験により直接, 透水 係数を求めた. 表-4にこの透水係数を示す. この表よ り, p = 0 から 5 kgf/cm² では k は1/10以下に減少 しているが, p = 5 から 10 kgf/cm² での k の減少は ほとんど生じない. さらに三軸セルでの透水試験より, $\sigma_{3e'} = 1.0$ から 5.0 kgf/cm² での k は1/2~1/5に減 少しているから, 締固め土においても $p = 1.0 \text{ kgf/cm}^2$ での圧密が透水係数の低下に効果の大きいこ とがわか る.

圧密過程での $u \sim \log t$ より得られた透水係数 k_u と 締固め含水比 w の関係を図-4に示す. 図中のサフィ ックス30, 50, 80は供試体底面の間隙圧の消 散 度 を 表 す.また,定水頭は表-4の p = 5, 10 kgf/cm² での

表-4:大型圧密での定水頭透水試験結果

供 試 体 番 号	∲ (kgf/cm²)	<i>k</i> (cm/s)
NF-2	0 5.0 10.0	$\begin{array}{c} 2.96 \times 10^{-5} \\ 2.56 \times 10^{-6} \\ 1.33 \times 10^{-6} \end{array}$
NG-2	0 5.0 10.0	2. 00×10^{-6} 2. 73×10^{-7} 2. 12×10^{-7}
NH-2	0 5.0 10.0 10.0	2.97×10^{-7} 1.07×10^{-7} 7.16×10^{-8} $7.66 \times 10^{-8*}$

*水圧増減繰返し後の k

透水係数である. k_u は w の増加とともに減少してお り、図-2、3の透水試験での $w \ge 26\%$ での $k \sim w$ 関 係と同じ傾向にある.

(I:増圧過程,D:減圧過程)

圧密過程での沈下量ー時間曲線より得られた透水係数 k_{e} と締固め含水比の関係を図-5に示す. k_{e} の w に よる減少割合が図-2,3や図-4に比べて小さく,特 に $p = 5 \text{ kgf/cm}^2$ の場合には k_e はほぼ一定に近い傾 向にある. これは $w = 26 \sim 28\%$ の k_e が図-2, 3の k や図-4の k_u に比べてかなり小さいためである. 締 固め含水比が最適含水比のやや湿潤側では、圧密圧力に より生じる間隙圧は小さく、 $p = 5 \text{kgf/cm}^2$ の場合、圧 密開始とともに間隙空気が排出されて間隙圧は0となっ たが、間隙空気は $p = 5 \text{ kgf/cm}^2$ でほぼ排出されたた めか、 $p = 10 \text{ kgf/cm}^2$ では小さな間隙圧を消散するの に時間を要した.このため, k_u が求まった.しかし, 沈下は間隙圧の消散に比べて遅れており、このため、k。 は k_u よりかなり小さくなっている. このように, w_{op} のやや湿潤側での沈下一時間曲線は間隙圧の消散による ものではなく、即時沈下の遅れによると考えられる場合 があり、この場合、沈下一時間曲線から求まる Cve, ke

図-7:水圧増減よりの透水係数と締固め 含水比の関係

はその物理的意味が不明確になっている. さらに図-5に示すように、定水頭透水試験よりの $k \ge k_e$ はあま り合っていない. このため、締固め土の圧密では間隙圧 の測定から圧密係数 c_{vu} 、透水係数 k_u を求める必要が ある.

E密圧力 $p = 10 \text{ kgf/cm}^2$ での圧密および定水頭透 水試験後,供試体底面の間隙圧 $u_b \ge 0$ から 5 kgf/cm^2 まで瞬時に増加あるいは減少した場合の上面の間隙圧, 沈下量と時間関係より求めた透水係数 k_u , k_e の水圧増 加と減少の繰返しでの変化を図-6に示す.増圧時の上 面の間隙圧の上昇は遅く,減圧時には急速に低下するた め, $k_{u_{00}}$, $k_{u_{00}}$, $k_{e_{00}}$ は増圧時 (I)と減圧時(D)で

図-8:三軸圧密試験よりの透水係数と締固め 含水比の関係

10倍程度の差が生じている.しかし, kugo, kego の増圧, 減圧時の差は小さい.減圧時の圧密度による k の変化 は10倍程度におよび,単純な圧密理論の仮定と大きく異 った現象が減圧時の水圧変化過程で生じていると考えら れる.

図-6より,第1回増圧時 (*I*-1)の k_u , k_e は第2, 3回の増圧時 (*I*-2, *I*-3)よりやや小さいが,減圧時の k_u , k_e は3回ともほぼ等しい. そこで増圧および減圧 時の各3回の透水係数の平均値 k_u , k_e を求め,締固め 含水比との関係を図-7に示す.また,図中にはp = 10kgf/cm² での定水頭透水試験よりの透水係数を (□) で示すが,増圧時の \bar{k}_u , \bar{k}_e および減圧時の80%圧密度 の \bar{k}_{u80} , \bar{k}_{e80} は定水頭の k の1/20以下である.これに 対して,減圧時の圧密度30,50%での \bar{k}_u , \bar{k}_e は定水頭 の k よりやや小さい程度である.このことは、フィル ダムの貯水位の変動による堤内間隙水圧の解析におい て,標準的な透水試験で求めた透水係数を用いることに 問題があり,さらに貯水位の上昇と下降時の透水係数を 鳥山:締固めた凝灰岩と火山灰性粘土の混合土の透水係数について

<u> </u>					
供 試 体 番 号	$\sigma_{3c}' \ (\mathrm{kgf/cm^2})$	k (cm/s)			
NATC-2	0.5 5.0	$\begin{array}{c} 1.\ 40\!\times\!10^{-3} \\ 4.\ 52\!\times\!10^{-5} \end{array}$			
NBTC-2	0.5 5.0	$ \begin{array}{c} 3.22 \times 10^{-5} \\ 1.28 \times 10^{-7} \end{array} $			
NCTC-2	0.5 5.0	$5.75 \times 10^{-5} \\ 7.48 \times 10^{-8}$			
NDTC-2	0.5 5.0	5.08×10 ⁻⁶ 3.73×10 ⁻⁸			
NETC-2	0.5 5.0	$7.27 \times 10^{-4} \\ 3.03 \times 10^{-7}$			

表5:三軸圧密での変水頭透水試験結果

等しくとることにも問題があることを意味しており、今 後の問題点である.

5.三軸圧密試験よりの透水係数

三軸圧密試験での $u \sim \log t$ と $s \sim \log t$ 曲線からの 圧密係数 c_{0u} , c_{0e} から求めた透水係数 k_u , k_e を図-8 に示す.三軸圧密での k_u , k_e と w の関係は透水試験, 大型圧密試験の結果と大きく異っている.これは w = $26 \sim 29\%$ の k_u , k_e が三軸圧密では他に比べて小さいた めである.三軸圧密試験は大型圧密試験に比べてかなり 容易に実験できるため,大型圧密試験の代用となれば便 利であるが,今回の実験結果では問題があり,今後さら に実験を重ねる必要がある.

6. 実験結果の考察

標準締固め仕事量で締固めた試料土に各種透水試験と 圧密試験を行い,透水係数を求めた.透水試験からの透 水係数は Darcy の法則を仮定すれば他に大きな仮定は なく成り立つ.しかし,圧密試験から求めた透水係数は Terzaghi の圧密理論に基づいて求めている.締固め土

〔記号:(1)透水試験の平均,(2)大型圧密k。(非水浸)
(3)大型圧密k。(透水),(4)大型圧密ku(非水浸)
(5)大型圧密ku(透水),(6)大型圧密k(定水頭)
(7)三軸圧密ku(非水浸),(8)三軸圧密k。(透水)
(9)三軸圧密k。(非水浸),(10三軸圧密ku(透水)
(11)三軸圧密k(変水頭)〕

は不飽和であり, Barden, ⁽⁶⁾鳥山・沢田, その他が不飽 和土の圧密方程式を与えているが, いずれも非線形であ る. しかし基本的な係数はいずれも $c_v = k/\gamma_w m_v$ であ るから, 近似的に Terzaghi の圧密方程式が適用でき, 透水係数の概略値は適当な値と思われる.

実験で求めた圧密圧力 p, $\sigma_{ac}' = 5 \text{ kgf/cm}^2$ での各 種透水係数の分布を図-9にまとめて示す.ただし,圧 密実験からの透水係数は $k_{u_{50}}$, $k_{\varepsilon_{50}}$ である. 図-9の 山形実線は三軸セルでの V, H 供試体の k の平均的 分布形である. これに近い値は大型圧密での定水頭試験 よりの $k \ge u \sim \log t$ 曲線よりの k_u である. $w \le 28\%$ での k。は小さすぎる. この原因は前述したように即時 沈下の遅れにより求まったみかけ上の値で透水係数とは いえないものと考えられる. 大型圧密と三軸セルでの透 水試験よりの透水係数は実験のばらつきを考慮するとほ ぼ等しいといえる. 三軸圧密より求めた透水係数は透水 試験よりの値に比べて小さく、また今までの実験結果の ように, w の増加とともに k が減少するという傾向も 示していない. 透水試験に比べて三軸圧密試験の透水係 数が小さい1つの原因としては供試体密度が透水試験よ り三軸圧密の方が大きいことが考えられる. しかし両実 験の含水比が共通の w = 22~32%の範囲では、平均乾 燥密度は透水試験が1.407g/cm³, 三軸圧密が 1.456g /cm³ で差は 0.049 g/cm³ である. したがって, 乾燥

— 197 —

密度の差が大きな原因とは考えられない. 試料土の混合 は十分に行ったが,透水試験の供試体1本の乾燥質量は 350g以下,三軸圧密供試体で1200g以下である. こ れらが全て均一に混合されているとは考えられず,混合 のわずかなばらつきが,図-9の透水試験と三軸圧密よ りの透水係数の大きな差の原因と思われる.

試料土を風乾して 5 mm ふるい通過分のみを混合し た後、水を加えて含水比を調整すれば、より均一な混合 土が得られる.しかし、火山灰性の土を風乾すると土性 が大きく変化するため、設計値を得ることを目的とした 実験には不適当である.

前報での三軸セルでの透水試験と大型圧密実験での透 水係数ではこのような大きな差はなかった.前報では砂 質土と粘土の混合割合が5:5であったが,今図は7: 3となっている.わずかの粘土の混合むらが透水係数に 大きく影響するようになったものと考えられる.室内実 験でのより均一な混合方法を検討する必要がある.

7. あとがき

角礫凝灰岩よりの砂質土と火山灰性粘土の乾燥重量比 で7:3の混合土について各種の方法で透水係数を求め た.この結果,

- 室内締固め土では、透水係数は等方性とみなしてよい。
- (2) 大型圧密での ku は透水試験からの k とほぼ等しいが、含水比が Wopt のやや湿潤側では ke は小さく、また実際の透水係数とは考えられない.
- (3) 水圧増減実験での ku, k。はともに透水試験からの

k よりかなり小さく,特に増圧時の ku, ke は小さい.また減圧時には Terzaghi 圧密よりかなり複 雑な圧密過程となる.

(4) 三軸圧密は大型圧密に比べて透水係数が小さく、大型圧密の代用となるか、さらに実験による検討を必要とする.

透水係数は実験方法により,また時間的に変化するこ とがある.このため,室内実験ではオーダーの程度で考 えることが多いが,現場においては透水係数が2倍にな れば,漏水量が2倍になり,維持管理上,重大な問題に なる.より信頼性の高い透水係数の求め方を検討する必 要がある.

なお,本実験を行うにあたっては,平成元年度の農業 施設工学研究室専攻生の飯塚知治君,谷尻孝雄君,米山 英樹君に多大のご協力を賜わりました.ここに深く感謝 の意を表します.

参考文献

- (1) 鳥山晄司:島根大農研報, 21:88-95, 1987.
- (2) 鳥山晄司:島根大農研報, 24:投稿中, 1990.
- (3) 鳥山晄司:農土論集, 113:51-56, 1984.
- (4) 鳥山晄司:島根大農研報, 23:132-137, 1989.
- (5) 鳥山晄司:島根大農研報, 19:110-117, 1985.
- (6) Barden, L.: Geotechnique, 15: 267-286, 1965.
- (7) 鳥山晄司・沢田敏男: Soils and Foundations, 8-3:63-86, 1968.
- (8) 鳥山晄司:農土論集, 147:45-52, 1990.