Protection of Broad Bean against Chocolate or Red Spot by Several Pyricularia spp.

Sakae Arase*, Kazuyo Fujita* and Kazumi Kondo*

Effect of pre-inoculation with Pyricularia spp. on lesion formation of Botrytis fabae Sardina in broad bean was observed. When a spore suspension (10⁶ spores/ml) of Pyricularia oryzae Cavara was previously inoculated to broad bean plant, the size and number of lesions by B. fabae in the pre-inoculated leaves were significantly reduced as compared with those in the uninoculated leaves (control). Such phenomenon was observed in broad bean leaves previously inoculated with isolates of Pyricularia sp. from rice, crabgrass, Italian ryegrass or mioga plants. However, protection was not induced in broad bean, when spores of P. oryzae (isolate Hoku 1) which had been heated at 100°C for 60 hr were pre-inoculated. The fact that Pyricularia spp. can elicit highly effective protection against B. fabae, lead to the conclusion that Pyricularia spp. are useful tools for the practical control of plant diseases.

INTRODUCTION

It is well known that preliminary inoculation with non-pathogens, incompatible races of pathogens and pathogen induces systemic or local protection against pathogens1–13,16). This phenomenon was called "induced resistance" and was observed in many plant diseases. Particularly, many researches on induced resistance by Kuc and co-workers are well known2,3,4,5,7,8). They reported that infection of cucumber with Colletoricium lagenarium induced systemic protection against disease caused by subsequent inoculation with the pathogen. Elucidation of this phenomenon is useful to understand the defence mechanism of plants to the pathogens. On the other hand, much information on such induced resistance offered the possibility of establishment of new techniques for plant disease control. In fact, Ogawa et al.14,15) established a technique of the practical control against Fusarium wilt of sweet potato by utilizing a non-pathogenic isolate of Fusarium oxysporum as a inducer of systemic protection.

In this paper, we report the resistance to Botrytis fabae Sardina is induced by pre-inoculation of Pyricularia spp., which are non-pathogens, in leaves of broad bean plants.

MATERIALS AND METHODS

Plant. Seeds of broad bean plant (Vicia fabae L., cvs. Umami-nagazaya-soramame

* Course of Environmental Biology, Faculty of Agriculture, Shimane University, Matsue 690, Japan
and Taitou) were immersed in distilled water for 24 hr and then germinated on moist papers. Germinated seeds were planted in pots. Plants were grown in greenhouse.

Fungi and inoculation. Pyricularia grisea (Cooke) Sacc., P. oryzae Cavara (isolates Hoku 1 and Naga 87), and Pyricularia sp. from Italian ryegrass and rice plants were cultured on oatmeal medium at 26°C for about 14 days. After removal of aerial hyphae, cultured plates were kept under a BLB (FL 40 S, BLB 40 W, Toshiba) light irradiation for 2 days. Spores formed synchronously were used in this study. Botrytis fabae was cultured on V-8 juice medium at 15°C for about 10 days irradiating a BLB light. Spores were then harvested by blushing the mycelial surface and flushing with distilled water. The resultant suspension was then filtrated through 4 layers of tissue paper to collect only spores and eliminate mycelial fragments. Spore suspension was then centrifuged at 2000 rpm for 5 min. The sediments from Pyricularia spp. and B. fabae were re-suspended in distilled water to give a final concentration of 10^6 and 10^5 spores/ml, respectively.

Detached leaf of broad bean was cut in half at midrib, and one was inoculated with a spore suspension (10^6 spores/ml) of several Pyricularia spp. on the under surface and the other was sprayed with distilled water as control. Both the uninoculated and inoculated broad bean leaves were maintained in the moist chambers at 26°C for 24 hr, and then inoculated with a spore suspension (10^5 spores/ml) of B. fabae after the air-dryness of the leaf surface. Inoculated leaves were replaced in the moist chambers at 15°C for 24 hr in the dark and then transferred under light irradiation at 15°C. Lesion formation by B. fabae was observed 3 days after the secondary inoculation.

RESULTS AND DISCUSSION

There were large differences in the size and number of lesions between the pre-inoculated and uninoculated leaves. When the leaves of broad bean which had been sprayed with distilled water for 24 hr were infected by B. fabae, abundant necrotic spots were formed and about 50% of those were more 1.0 mm in diameter. However, when the leaves which had been inoculated with a spore suspension (10^6 spores/ml)

<table>
<thead>
<tr>
<th>Treatment or inoculation</th>
<th>Number of lesions per leaf$^{(bc)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water \rightarrow B. fabae</td>
<td>122.3</td>
</tr>
<tr>
<td>P. oryzae \rightarrow B. fabae</td>
<td>31.0</td>
</tr>
</tbody>
</table>

- a) Detached broad bean leaves were inoculated with a spore suspension (10^6 spores/ml) of P. oryzae or treated with distilled water and both the leaves were kept at 26°C in the moist chambers. After 24 hr, both the leaves were re-inoculated with B. fabae spores (10^5 spores/ml). The number of lesions (more 0.5 mm in diameter) was investigated 5 days after the secondary inoculation.
- b) Average of three replications.
Fig. 1. Effect of pre-inoculation with *P. oryzae* on lesion development by *B. fabae* on broad bean leaves. Detached broad bean leaves were inoculated with *P. oryzae* (■) or treated with distilled water (□). After 24 hr, both the infected and uninfected leaves were re-inoculated with *B. fabae*. Lesion size was investigated 5 days after the reinoculation.

Table 2. Effect of pre-inoculation with several *Pyricularia* spp. on lesion formation by *Botrytis fabae* in broad bean leaves

<table>
<thead>
<tr>
<th>Fungus (original host or isolate)</th>
<th>Number of lesions (spots/cm² leaf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. grisea (crabgrass)</td>
<td>19.2 ab*</td>
</tr>
<tr>
<td>P. oryzae (isolate Hoku 1)</td>
<td>12.3 a</td>
</tr>
<tr>
<td>(isolate Naga 87)</td>
<td>8.6 a</td>
</tr>
<tr>
<td>Pyricularia sp.</td>
<td></td>
</tr>
<tr>
<td>(mioga)</td>
<td>9.8 a</td>
</tr>
<tr>
<td>(Italian ryegrass)</td>
<td>10.2 a</td>
</tr>
<tr>
<td>(rice)</td>
<td>11.6 a</td>
</tr>
<tr>
<td>Control</td>
<td>30.1 b</td>
</tr>
</tbody>
</table>

Detached broad bean leaf was cut in half at midrib, and one was sprayed water (control) on the under surface and the other was inoculated with a spore suspension (10⁶ spores/ml) of several *Pyricularia* spp. Both the inoculated and control leaves were kept in the moist chambers at 26°C for 24 hr. Each leaf was inoculated with a spore suspension (10⁶ spores/ml) of *B. fabae* after air-dryness of bean surface. Inoculated leaves were re-kept in the moist chambers at 15°C in the dark and then transferred under light irradiation at 15°C. Lesion formation by *B. fabae* was observed 3 days after secondary inoculation.

* Asterisks indicate significant differences at p<0.05. Numbers followed by different letters are significantly different (p<0.05).
or chemical stimulation from the living pathogen are necessary for induction of protection.

It is well known that the resistance is induced when rice leaves or leaf-sheaths which had been preliminarily inoculated with the incompatible races of *P. oryzae* were re-inoculated with the compatible races\(^{17-20}\). Recently, Arase *et al.*\(^ {21}\) demonstrated that pre-inoculation with *P. grisea* induced resistance against *P. oryzae* in rice leaf-sheath cells. Our results and those of others suggest that all the fungi belonging to the *Pyricularia* species seems to possess resistance-inducing ability against not only host plants, but also non-host plants.

The fact that *Pyricularia* spp. can elicit highly effective protection against *B. fabae*, lead to the conclusion that *Pyricularia* spp. are useful tools available for protection of plant diseases.

Literature cited

要 言

ソラマメ葉における赤色斑点病菌（*Botrytis fabae*）の病斑形成に及ぼす *Pyricularia* spp. の前接種の影響を調査した。ソラマメ葉に病原性を示さないイネ型も病菌北1菌株の分生胞子を前接種しておくと、後接種した *B. fabae* による病斑の大きさ及び数が対照区に比べ著しく抑制された。この様な抵抗性の誘導現象は、前接種菌にメヒンバ、イタリアオウラグリス及びミョウガから分離したイネ病菌を用いても認められ、前接種菌葉では赤色斑点病斑の形成及び拡大は著しく抑制された。しかし、熟処理（60℃、1時間）分生胞子を前接種したソラマメ葉では *B. fabae* に対する抵抗性は誘導されなかった。各種イネ病菌がソラマメに *B. fabae* に対する効果的交叉防除を誘導した事実は、いも病菌が害防除の有用な材料になり得ることを示した。
Explanation of Plate I

Effect of pre-inoculation with several Pyricularia spp. on lesion formation of Botrytis fabae in broad bean. Broad bean leaves were inoculated with several Pyricularia spp. (left) or treated with distilled water (right). Both the inoculated and treated leaves were re-inoculated with B. fabae 24 hr after the primary inoculation or treatment. Lesion formation by B. fabae was observed 3 days after the secondary inoculation. 1: isolate Naga 87 of P. oryzae. 2: isolate Hoku 1 of P. oryzae. 3: P. grisea. 4-6: Pyriculara sp. from mioga, rice and Italian ryegrass, respectively.