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FlNITE EXPONENTIAL SERIES APPROXIMATION 

OF DATA CURVE 

Yoshio FUJII* 

~~ ~~ J~ ~~ 

When empmcal data correspond to a simple decay or growth process, or to a combination of 

these both processes, it is possible to approximate these data curve with a finite exponential 

senes by Prony's method. This paper describes the numerical treatment of the Endochronic 

constrtutrve theory for soils which is the hereditary integral in form, and the method of the 

representatron of finite exponential series of the integral kernel. Some examples of the approxima-

tion by finite exponential series for the error function and the normalized incomplete gamma 

functron are grven by means of Prony's method 

I INTRODUCTION 

The constitutive equation called the Endochronic theory in plasticity was introduced by 

Valanis in 1971, and has been received increasing attention as an alternate approach for 

describing the inelastic behavior of history-dependent materials. It is considered that the 

Endochronic theory in plasticity is divided into two types, that is, the integral form 

proposed by Valanis and the incremental form proposed by Bazant. The Endochronic 
approach differs substantially from classical plasticity and has many features which make 

attractive for modeling soil behavior 

This paper is devoted to the numerical treatment of the Endochronic theory for soils 

which introduces the concept of critical state soil mechanics. The constitutive equations 

have been expressed by the hereditary integral forms, therefore they are analytically complex 

and present serious difficulties from the numerical standpoint. The numerical treatment of 

the hereditary integral equations can be greatly simplifie,d, if the kernel functions are 

approximated by finite series of exponentials. Although the resulting approximate kernels 

are no longer strictly singular from the mathematical standpoint, they can be made 
sufficiently singular for computational purposes 

When empirical data correspond to a simple decay or growth process, or to a combination 

of these both processes, and an approximation is desired for a semi-infinite range of the 

independent variable, the real exponential functions are appropriate coordinate functions 

from the point of view of representing the general data function by Dirichlet series. So 

that, in order to consider the representation of finite exponential series of the integral 

kernel in the Endochronic theory, some examples of the approximation by finite exponential 

series for the error function and the normalized incomplete gamma function are shown by 

Prony ' s method 
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H PRONY S METHOD 

We suppose here that a function F(x) to be approximated is a data function, and in 

certain situation it is desired to determine an approximation of the form 

F(x) ~; Clealx + C2ea2x + . . . . + cnea*x (1) 
= Cl~lx+ C2 ~2"+ " " + cn~n (2) 

~h=eak(k=1, 2, . . . . , where n). (3) 

We assume that values of F(x) are specified on a set of N equally spaced points, and that 

a linear change of variables has been introduced in such a way that the data points are 

x=0, l, 2,. . . ., N-1, i. e., 

C1+C2+ " " + C~=Fo 
Cl ~l + C2 ~2+ " " + Cn ~~ =Fl 

Cl ~l2 + c2~)22 + . . . . + c^ ~~2 =F2 (4) 

Cl ~lN~1 + C2~2'v-1 + . . . . + c~ ~nN~1 = Fiv- I . 

. , ~n were known, this set of equations would build up N If the constants ~l' ~2,... 

Clz and could be solved exactly if N=n or linear equations in the n unknowns C1' C2'. . . . ' 

approximately by the least-squares method if N> n 

On the other hand, if the ~'s are also to be determined, at least 2n equations are needed 

and the difficulty that the equations are nonlinear in the ~'s arises. To minimize this 

. . . , ~n be the roots of the following algebraic equation difficulty, Iet ~l' ~2" 

~ +p ~n l+p ~n 2+ .. . .+pn-1~+pn=0 (5) 
In this case, the left hand side of Eq.(5) is identified with the product 

(~- ~1) (~ - ~2) ( ~- ~3)" "( ~- ~n)' 

In order to determine the coefficients pl' p2" ' ' " pn, we multiply the first equation in (4) 

by pn' the second equation by pn-1, the third equation by pn-2" ' . " the n-th equation by 

pl' and add the results. Using Eq.(5), the result is seen to be of the form 

Fn +Fn-1pl + Fn-2p2 + " " +Fopn=0. 

A set of N-n-1 additional equations is obtained in the same way by starting instead 

successively with the second, third, . . . . , (N-n) th equations. In this way, we obtain the 

N-n linear equations 

Fn+Fn-lpl+Fn-2p2 " ' +Fopn=0 + . 
Fn+1+Fnpl+Fr-1p2 " ' +Flpn=0 + . 
F12+9 + Fn+1 pl +F7sp2+ " 

･ . + F2pn =0 (6) 
FN_1+FJv-2pl+Fiv-3p2+ " " +FN n lp o 

Since the values Fh (k=0, l, 2, . . . . , N-1) are known, the set of these eduations generally 

can be solved directly for the n p's if N=2n, or solved approximately by the least-squares 

method if N>2n. 
After the n p's are determined, the n ~'s are found as the roots of Eq. (5). These roots 

may be real or imaginary. Then Eqs. (4) become linear equations in the n C's with known 

coefficients. The C's can be determined, finally from the first n of these equations, or 

preferably by applying the least-squares method to the whole equations. So that, the 

nonlinearity of the system of Eqs. (4) is reduced to the single algebraic equation (5) 
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III. REDUCTION OF THE ENDOCHRONIC SOIL MOl)EL TO DIFFERENTIAL 
EQUATIONS 

The broadest statement of the Endochronic theory in plasticity is that the state of stress 

of a material element in its present configuration is a function of the history of deformation 

of the element with respect to the intrinsic time (internal time). This idea was introduced 
2
)
 by Valanis, and was recently modified by Read for describing the nonlinear, inelastic 

behavior of soils. The constitutive equations which define the Endochronic soil model are 
as follows, 

a=H(v, vo)JzH lp(zH-z )d'~~z'dz' (7) d p p 

-= 

_ ZD 
6e p j

 
s=F(a, v) p(z;D-z') -,dz' (8) 

6z o
 

where cr = akk = hydrostatic stress, s = deviatoric stress tensor, 8p=8hkP = plastic volumetric 

strain, ep = plastic deviatoric strain tensor, ZH and ZD denote the hydrostatic intrinsic time 

and the deviatoric intrinsic time respectively, H is a function of the current specific volume 

v and the initial specific volume vo which describes the state on which the current hydro-

static state is located, and F is a function of a and v which describes the effect of the 

state of the material on the deviatoric stress 

However the above equations for the Endochronic soil model are analytically complex 

and involve difficulties in numerical treating due to the hereditary integral expression for 

a and s. 

If the kernel functions are approximated by finite exponential series, the numerical 
2
)
 treatment of the hereditary integrals can be simplified. It is indicated by Read that for soils 

an adequate representation can be achieved with several terms in a series, and that only 

three terms in a series are used in most cases. In this case, the hereditary integrals can be 

reduced to differential constitutive equations. We adopt the following finite exponential 

series of the kernel functions ip(2;) and p(z:), 

m 

c(z) = ~~ P. . e-p.z (9) r=1 

p(z) = ~R. . e-a.z ( 10) r=1 
which satisfy the conditions 

= 
i
o
 

ip(O) = Oo , ip(z:')dz' = I ( Il) 

p(O)=(~, j=p(~:1)dz'=1 (12) o
 

where P., ~,., R. and a. are positive constants. 

Now, when we use the forms of ip(z) and p(z), given by Eqs. (9) and (10), the hereditary 

integrals of Eqs. (7) and (8) can be reduced to the following differential equations 

a-H~S., dd~S_~+~.Sr P (13) _ .= . = d8P d ~H 
/1 

n d Q d e p s=F~ Q., J1-T."+a.Q.=R. - (14) d z 

~ r=1 - u~D ~ D In case of the deviatoric response, for example, Eq. (14) describes the mechanical model 

response of the parallel assembly model of endochronic elements shown in Fig. 1, when b, 
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)
 and R,. are constants. An endochronic element model, as shown in Fig. 1, can be 

constracted by connecting, in series, a linear elastic spring and a nonlinear endochronic slider 

In this figure, Rr and br denote the spring constant and the slider resistance respectively 

And also Q. denotes the stress of the r-th endochronic element. A similar mechanical model 

can be constructed for the hydrostatic component of response given by Eq. (13) 

_ SD R
 

1
 

r=1 

r=2 l R* 

F
 

r=n 
dq s =F~Q., Q.=b.dz*~" Q'=R'(e"-q.) 

~ '-*~ ~ " ~ ~ ~ ZD 
**=R*lb*, R.:spring constant, b*:shder resiStance o 

Fig. I A parallel assembly of endochronic Fig. 2 Normalized data curve from triaxial 

elements, compression tests for various confin-
mg pressures 

IV DETERM:INATION OF THE KERNEL FUNCTIONS 
To determine specific forms of the kernel functions, ip(z) and p(z), we consider a conven-

tional triaxial compression test, in which the axial stress and the axial strain can be denoted 

by crl and el respectively. In this case, a soil element experiences a loading in which the 

deviatoric stress tensor s and the deviatoric plastic strain tensor ep can be expressed as 

f ollows, 

_ _ J sl 3
 

= _ D J 3 
ep zD't, z = elp (16) 2

 
and t is a constant direction unit tensor which can be expressed in the following matrix 

f orm . 

2 O O 
L=/6 

O O -1 
We consider th.e deviatoric response especially, then Eq. (8) can be written in the form 

for monotonic loading by using Eq. (15) 

SD ZD J
o
 = p(zl)dzl = R(zD) (18) F 

And the integral function R(~;D) must satisfy the condition, 

lim R(zD) = l. (19) zD~ ~ 

The relation between SD and ZD is shown as a curve for various lateral stress or3 using 

the triaxial compression data, and all of these curves of sD/F vs ZD may be ideally rear-

ranged as a single curve having the general form shown in Fig. 2 by suitable choice of 

the form of the function F and approximate representation of the kernel function p(z). To 

obtain the approximate representation of p(z) by a finite exponential series, we use Eqs. (10) 

and (18), and obtain the following expression 
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n CZD n R R(zD) =~ R. ~ e-a.z' dz' = ~:_ "(1-e~a.zD) (20) 
r=1 o r=1 ar To satisfy the condition of Eq. (19), it is necessary to impose the condition, 

nR 1
 r=1 oc. 

From Eqs. (20) and (21), the exponential series representatron of R(z ) rs as follows 

nR R(zD) = I - ~ 'e-a.zD (22) r=1 ce. 

From Eq. (22), the representation of I -R(ZD) by a finite exponential series can be accom-

plished by Prony's method described in Section II 
2
)
 It was shown by Read that the function R(zD) can be well represented for soils by the 

normalized incomplete gamma function T(k zD, a), that is, 

l k-= i ~D R(zD) T(k zD, a) r(a) e~t.t"~1 dt (0<a<1) (23) 
o
 

where k and a are positive constants, r(a) denotes the complete gamma function. Once the 

constants k and a have been determined through the least-squares method by fitting to the 

normalized data such as given in Fig. 2, the normalized incomplete gamma function T(k zD, 

a) is approximated by a finite exponential series through Eq. (22). That means, since l-T 

(k zD, a) is a completely monotonic function of zD, Prony's method is guaranteed to yield 

positive decay exponents a. and positive coefficients R.. Because Prony's method consists of 

interpolation of the finite exponential series at equidistance points, the choice zD=0, as one 

of the interpolation points, guarantees that Eq. (21) will be satisfied 

And in much the same way as the deviatoric response, in case of the hydrostatic response, 
2) 

it was shown by Read that the following function P(zH) can be represented by the error 

function erf (/k zH). 

~ ZH = Io P(~;H) H= ip(z') dz' =erf(Vk zH) (24) 
The error function is then represented by a finite exponential series in the manner of using 

Eqs. (9) and (24), 

mp H) = >*'1J "e-P.zH 
r=1 ~). 

where the constants P. and ~. can be determined by Prony's method 

V EXAMPLES OF APPLICATION OF PRONY S METIIOD AND CONCLUSIONS 

By using Prony's method, we consider the following approximation by finite exponential 

series , 

nR l-T(k zD, a)=~ "e-a.zD (26) r=1c~. 

mp ~ ' e- p.zH 

l - erf (Vk zH) = (27) r=1 ~. ' 
that is, when the parameters k and a in the left hand side of Eqs. (26) and (27) are prescribed, 

let us determine positive constants R., ce,., P. and ~. in the right hand side of Eqs. (26) and(27) 

Now for example, we assume the functions given in the left hand side of Eqs. (26) and 

(27), with k=25 and a=0.3, and fit the functions to the three or fewer terms decaying 
exponential series of the forms of Eqs. (26) and (27) by Prony's method 

Firstly, in the case of the function given in the left hand side of Eq. (26), with k=25 
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and一α＝03，the　apProx1mat1on　by　f1n1te　exponent1a1ser1es1s　shown1n　F1g3for　var1ous

samp1mg　mterYa1s　of　equ1d．1atant　p01nts　And．the　va1ues　of　exponents　and－coe出c1ents　m　the

ser1es　obtamed，1n　each　case　are　shown1n　Tab1e1

　　Second1y，1n　the　case　of　the　funct1on　g1yen1n　the1eft　hand　s1de　of　Eq（27），w1th尾＝25，

the　apProx1mat1on　by　fm1te　exponent1a1ser1es1s　shown1n　F1g4　for　var1ous　samp1mg

1nterva1s　o壬equ1d1stant　p01nts　and．vanous　nu血bers　of　ter皿s　m　the　ser1es　Ana　the▽a1ues

of　exponents　and－coeff1c1ents　m　the　senes　obta1ned－m　each　case　are　shown1n　Tab1e2

　　The皿ajor　conc1us1ons　that　hav－e　come　out　of　the　present　study　are　as　fouows

（1）An　ad．equate　representat1on　can　be　ach1eyed－w1th　three　or　fewer　terlms1n　a　ser1es，and－m

most　cases，1t1s　suff1c1ent　to　use　on1y　three　terms　for　such　a　comp1ete1y　monoton1c　fmct1on

（2）W1th　regard　to　salmp11ng　mterya1forequ1d1stant　pomts　of　the　data　funct1on，1t　seems　t0

be　necessary　to　take　sma11samp11ng1nter∀a1for1nterpo1at1on　of　the　exponent1a1senes1n

the　range　of　the　steep　s1ope　of　the　fmct1on　Howe▽er，1t1s　not　a1ways　necessary　to　take

many　p01nts　of　e∀a1uat1on，and－1t1s　suff1c1ent　to　take　p01nts　about　tw1ce　as　many　as

the　nu皿ユber　of　tern＝1s　1n　the　ser1es

（3）The　va1ue　o壬fm1te　exponent1a1ser1es　shou1d1〕e　so　1arge　at　zero　p01nt　of1ntnns1c

t1me　that1t1s　effect1ve1y　s1ngu1ar
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F1g3F1ttmg　of　the　norma11zed　mcomp1ete
　　　ga皿ma　funct1on　to　fm1te　exponent1a1

　　　ser1es　by　Prony’s　method（〃　number

　　　of　terms　m　ser1es，ん　samp1mg　mterva1

　　　for　equld1stant　pomts，1V　number　of
　　　p01nts　of　eYa1uat1on，　　一・一…　　一　data

　　　funct1on，　一｛←一prony　ser1es）

；

0 ．02　　　　　．04　　　　　　．06　　　　　．08　　　　　　10

　　　　　　　　　　　　INTRINSIC　TIME
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Tab1e1Va1ues　of　exponentα。and．coeff1c1ent　Rパor　the　norma1lzed　mcomp1ete　gamma　functlon

Term（ブ）

1
2
3

刀＝3，ん＝O．05，1V＝10

Rγ

7．87×10
　6，97

　3，48

　　　　1z

αγ

1．13×102

4．04x10
2．69×10

〃＝3， ん：O．01 W：10
Rγ

2．02×102
1．95×10
　8．38

αγ

4．04×102
8．40x10
3．14×1O

κ＝3，ん＝O．005，1V＝10

Rγ

3．16×102
3．10×10
1．21×10

αγ

〃 number　of　terms saInp11ng1nterva1，！V number　of　p01nts　of　eYa1uat1on

7．51x102
1．31×102
3．54×10
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4 Fitting of the error function to finite 

exponential series by Prony's method 

(m : number of terms in series, 
h : sampling interval for equidistant 

points.N : number of points of evalua-

- - - data function, -EI-tion, - - -

Prony series) 
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(b) m 3 h 0.01, N=10 

Table 2 Values of exponent pr and coefficient P. for the error function 

Term (r) 

1
 2
 3
 4
 5
 

m =: 3, h = O . 05, N= 10 

Pr 

4 . 73 x lO 

9.41 
7 . 44 

~r 

9 . 97 x 10 

3 . 88 x lO 

2 . 63 x lO 

m=3, h=0 O1 1¥r 10 

Pr 

9 . 25 x 10 

l .99 x 10 
1 . 37 x lO 

~r 

3 .41 x 102 
7 . 63 x 10 

2 . 93 x 10 

m=5, h=0.01, N=10 

Pr 

1 . 08 x 102 

1 . 93 x lO 

l . 34 x 10 

l . 09 x 10 

9 . 56 

~r 

5 . 92 x 102 

2 . 05 x 102 

9 . 62 x lO 

4 . 68 x 10 

2 . 72 x lO 

m : number of terms, h : samplmg mterval 1¥ number of pomts of evaluatron 
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