# 大型圧密装置による締固め不飽和土の圧密実験

鳥 山 晄 司\*

Experimental Study of Consolidation of Compacted Partially Saturated Soils Using Large Consolidometer Koushi TORIYAMA

The one dimensional compression tests of compacted soils under undrained and drained conditions were carried out using large consolidometer. The size of specimen is 30 cm diameter and 10 cm height. The soils used in the experiment are a clayey soil and mixed soils of the clayey soil and gravel which maximum diameter is 10 mm.

From this experiment, the following results are obtained.

(1) Under undrained condition, the pore pressure built up by compressive stress in clayey soil is little in dry side of optimum moisture content  $w_{opt}$  and large in wet side of  $w_{opt}$ . When compressive stress is again applied after consolidation of clayey soil, the pore pressure built up under undrained condition is increased in dry side of  $w_{opt}$  and decreased in wet side of  $w_{opt}$  in comparison with the pore pressure at first time.

(2) The coefficient of consolidation  $c_v$  is obtained from compressive strain  $\varepsilon$ , pore water pressure  $u_w$  and pore air pressure  $u_a$ . The value of  $c_v$  for  $\varepsilon$ ,  $u_w$  and  $u_a$  are mutually different and the values of  $c_v$  for  $u_w$  and  $u_a$  are greater than that for  $\varepsilon$ .

(3) The rate of secondary consolidation  $d\varepsilon/d \log t$  is about  $1 \times 10^{-3} \sim 3 \times 10^{-3}$  and this is equal to the value obtained by other many compacted soils with standard oedometer. (4) The great pore pressure is remained after the completion of primary consolidation of compressive strain  $\varepsilon$ .

(5) The mixture of gravel in clayey soil has effects on the decrease of void ratio and the increase of coefficient of consolidation.

# 1. まえがき

前報において締固め不飽和土の圧密実験の結果を報告 した.これにより最適合水比 wopt の乾燥側では間隙圧 はほとんど生じないが,湿潤側では大きな間隙圧を生じ ること,間隙圧の消散過程は Terzaghi の理論曲線に似 ているが理論値より遅れること,間隙圧の Hilf の式は 実測値に比べて 過大な値を 与えることが 明らかに なっ た. これらの実験は標準 締固めをした 直径 10cm, 高さ 12.7cm の供試体の等方圧密によるものである。締固め 土の圧密が問題となるフィルダム,大規模盛土等では圧 密はほぼ一次元的に生じると考えられる。また標準圧密 試験との対比の点からも,締固め土を一次元圧密実験す ることが望ましい。そこで大型圧密装置を試作し,これ を用いて圧密実験を行った。本装置は礫を含むフィルダ ム遮水材料の 圧密特性の研究を 目的と したもので ある が,今回は締固め土の一次元圧密の基本的性質を調べる ため,粘性土(藤ノ森粘土)のみの圧密特性への締固め

<sup>\*</sup> 農業施設工学研究室



含水比の影響を実験し,さらに礫を含む粘性土の圧密特 性についても実験した.

#### 2. 大型圧密装置と実験方法

本実験で用いた圧密装置は供試体直径 30cm, 高さ 10cm であり、供試体高さは 15cm まで増加することが できる. 第1,2報での締固め土の圧密実験は二重セル を用いて行った。この方法では供試体直径 10cm, 高さ 12.7cm であり,等方圧密と異方圧密が可能であるが,完 全な一次元圧密はできない. このため,標準圧密試験と の比較ができない. そこで,標準圧密試験でのリングを 大型化した直径 D=30cm, 高さ H=10cm で D/H=3 の圧密容器とした、本圧密装置の概略を図-1に示す。 **圧密リングはステンレス鋼製であり、底盤には間隙水圧** 測定のためのポーラス・セラミックと間隙空気圧測定用 の粗いポーラス・ストーンが取り付けられている。 圧密 応力は 最高 20kgf/cm<sup>2</sup> とした。 これは高さ 100 m の フィルダムの基礎近くの圧力である. これは農業土木で 建設される最大級のフィルダムの圧力に相当する. 圧密 応力はコンプレッサーでの空気圧を増圧装置によって増 加し、油圧として圧密装置の上部のピストンに加えた。 増圧装置はベロフラムシリンダーを使用したもので摩擦 はほぼ無視できるが,実験中,0.3%程度の圧力変動が 認められた.

実験に用いた試料土は藤/森粘土である. この物理的 性質を表-1に示す. さらに礫の圧密特性への影響を調 べるために 2~5mm と 5~10mm 径の礫を等量ずつ藤 ノ森粘土に混入した. 試料土の粒径加積曲線を図-2に 示す. 図でF100は藤/森粘土のみ, F80, F60, F40, F20は藤/森粘土が80,60, 40,20%で残りが礫である. したがって, 礫率はそれぞれ20, 40, 60, 80%となる.

F100試料土では非排水状態での間隙圧の発生,圧縮



表-1 藤ノ森粘土の物理的性質

| 45.1  |
|-------|
| 25.3  |
| 19.8  |
| 2.701 |
| 24.5  |
| 1.559 |
|       |

11. 34

111.

|         | 実験前                                                         |            |       | 実                                                           | 験                               | 後     |  |
|---------|-------------------------------------------------------------|------------|-------|-------------------------------------------------------------|---------------------------------|-------|--|
| 供試体 番 号 | w<br>(%)                                                    | $(g/cm^3)$ | е     | w<br>(%)                                                    | $\gamma_d$ (g/cm <sup>3</sup> ) | е     |  |
| F100-1  | 28.9                                                        | 1.436      | 0.881 | 21.7                                                        | 1.843                           | 0.466 |  |
| F100-3  | 26.7                                                        | 1.496      | 0.805 | 23.0                                                        | 1.693                           | 0.595 |  |
| F 100-4 | 23.7                                                        | 1.528      | 0.768 | 22.2                                                        | 1.817                           | 0.487 |  |
| F 100-5 | 25.9                                                        | 1.499      | 0.802 | 22.3                                                        | 1.678                           | 0.610 |  |
| F 100-6 | 27.3                                                        | 1.556      | 0.736 | 22.0                                                        | 1.800                           | 0.501 |  |
| F 100-7 | 29.5                                                        | 1.457      | 0.854 | 20.3                                                        | 1.811                           | 0.491 |  |
| F 100-8 | 30.1                                                        | 1.435      | 0.882 | 22.3                                                        | 1.766                           | 0.529 |  |
| F80     | 22.8 $(27.2)$                                               | 1.669      | 0.614 | 17.3<br>(20.5)                                              | 1.921                           | 0.402 |  |
| F60     | 23.4<br>(28.3)                                              | 1.652      | 0.627 | $   \begin{array}{c}     16.2 \\     (20.5)   \end{array} $ | 1.927                           | 0.394 |  |
| F40     | $   \begin{array}{c}     16.7 \\     (23.6)   \end{array} $ | 1.750      | 0.531 | 15.1<br>(21.0)                                              | 2.017                           | 0.328 |  |
| F 20    | 13.1<br>(26.5)                                              | 1.853      | 0.442 | 11.9<br>(14.6)                                              | 1.991                           | 0.342 |  |

〔注〕 カツコ内の数字は 2mm 以下の含水比

量,排水時の圧密特性への締固め含水比の影響の検討の ため,最適含水比 wopt の乾燥側から湿潤側まで7含水 比の試料土を用いた. 礫の圧密への影響は概要を調べる ために藤ノ森粘土の含水比をほぼ一定にして行う予定で あったが,F40の含水比が予定より大きく乾燥側にずれ た.実験前後の供試体諸元を表-2に示す. 供試体は圧密リング内に標準締固め用のランマー(重 量 2.5 kgf, 落下高さ 30cm)で3 層 180回で締固めた. この締固めエネルギーは 5.73 kgf-cm/cm<sup>3</sup>で, 標準締 固めエネルギーより2%だけ多い.

締固め後の 圧密リングと 供試体を 圧密装置に セット し、上部を組立てた後,約20時間放置した。その後,非排 水状態で圧縮応力を 加えた。 標準圧密装置では 0.05~ 12.8 kgf/cm<sup>2</sup> の応力 範囲で応力増加比  $\Delta p/p=1.0$  で 圧密応力を増加させるが,締固め土では突固めによって 先行圧密と同様の状態となっているため,圧密応力は一 定量  $\Delta p$  ずつ段階的に加えた方が現場施工との対応から も合理的である。そこで圧密応力は約 1.0 kgf/cm<sup>2</sup> の 段階きざみに増加した。

本圧密装置は供試体上面からのみ排水可能である. 排 水,非排水は供試体上部からの排水用コックの開閉で行 える.実験は圧密応力  $p=10 \text{ kgf/cm}^2$  までは非排水状 態で約30分間隔に応力を増加し,  $p=10 \text{ kgf/cm}^2$  となっ た状態で約20時間非排水状態におく.その後,排水コッ クを開いて圧密を行った.一次圧密終了後,排水コック を閉じて再度,非排水状態で圧縮応力を 1 kgf/cm<sup>2</sup> ず つ増加して,  $p=20 \text{ kgf/cm}^2$  とし,約20時間おいた後, 圧密を行った.



実験終了後, 圧密装置を分解し, 圧密リングと供試体 重量を測定後, 試料土の含水比を測定した. 実験終了後 の供試体諸元も表-2に示す.

## 3. 非排水圧縮特性

圧縮応力は非排水状態で  $1.0 \text{ kgf/cm}^2$  ずつ30分間隔 に増加し、 $p=10 \text{ kgf/cm}^2$  となると圧密をした。圧密終 了後、非排水状態で  $p=20 \text{ kgf/cm}^2$  まで再度、圧力を 増加した。不飽和土では間隙水圧  $u_w$  と間隙空気圧  $u_a$ がある。今回の実験でも前報と同様に大きな負の間隙水 圧、即ち、サクション は測定されなかった。 ただし、  $p=10, 20 \text{ kgf/cm}^2$  で圧密した場合、圧縮 ひずみ  $e \sim$ 



log tの関係から,一次圧密の終了が確認された後も大き な間隙水圧が残留したり,一度消散した間隙水圧が,再 度増加し,その後ほぼ一定値をとるという今までに無い 傾向が得られた。

非排水過程での圧縮応力 p と間隙水圧 uw, 間隙空気 圧  $u_a$  の関係への締固め含水比の影響を図-3に, 礫分 含有率の影響を図-4に示す. p=10 kgf/cm<sup>2</sup> で圧密に よって uw,  $u_a$  が低下している.しかし前述のように残 留間隙圧 uwr, uar が存在したため, uw, ua とも0とな っていない. F100 試料土では締固め含水比の低下とと もに発生する uw, ua は小さくなっている.図-3での 特徴は圧縮応力 p が 0 から 10 kgf/cm<sup>2</sup> の範囲 では  $ua \ge uw$  となり, これは従来からの  $ua \ge uw$  となるとの 考え方および不飽和土でのサクションの測定結果と同じ 傾向である.しかし, p が 10 から 20 kgf/cm<sup>2</sup> の範囲 では  $uw \ge ua$  となり, 従来と全く異なった結果となって いる.さらに締固め不飽和土では載荷過程で圧密をし, uw, ua を消散させると, それ以後の非排水過程で生じ る uw, ua は低下するとされている.図-3より, 含水



比の高い F100-6,8 では 圧密後の  $p=10\sim 20 \text{ kgf/cm}^2$ での再圧縮過程での  $u_w$ ,  $u_a$  は $p=0\sim 10 \text{ kgf/cm}^2$  での  $u_w$ ,  $u_a$  に比べて小さい.しかし最適含水比 よりかなり 乾燥側では 圧密後の  $u_w$ ,  $u_a$  の方が大きな値となってい る.

図-5に  $u_w/p$ ,  $u_a/p$  と締固め含水比 w の関係を示 す.最適含水比  $w_{opt}$  およびその湿潤側では圧密中,間 隙水と空気が排出され飽和度はあまり変わらないが,体 積圧縮係数  $m_v$  が小さくなる. このため,再圧縮後に生 じる間隙圧  $u_w$ ,  $u_a$  は小さくなる. しかし,  $w_{opt}$  の乾 燥側では圧密によって間隙空気のみが排出され,飽和度 が増加する. このため,再圧縮時の  $u_w$ ,  $u_a$  は初期に比 べて大きくなったものと考えられる. ただし,  $w_{opt}$  の 乾燥側で生じる間隙圧は圧縮応力の20~30%以下である から,フィルダムの安定上,大きな問題にはならない.

不飽和土の有効応力  $\sigma'$  は Bishopにより

#### $\sigma' \!=\! \sigma \!-\! u_a \!+\! \chi(u_a \!-\! u_w)$

で与えられている.この式は不飽和土の剪断強度に対す る有効応力としては適用できるが,体積変化に対しては 適用できない.現在までのところ締固め不飽和土の体積 変化に対する有効応力式は与えられていない.これは不 飽和土を水浸するとサクションの消失によって有効応力 が減少するにもかかわらず,体積を減少する土やモンモ リロナイトを多く含む土では土粒子間に多量の水を吸着 して体積膨張する土が存在するためである.そこで,こ こでは締固め土の体積変化に対する有効応力  $\sigma'$ を

$$\sigma' = p - \frac{1}{2}(u_w + u_a)$$

と仮定して,非排水過程と圧密過程での有効応力 $\sigma'$ と 間隙比 e の関係を求めた. この結果を図-6に示す. 図中の点線部分は非排水で20時間置いた部分, 圧密部分 および圧密終了後の第1回載荷の部分を示す. 初期間隙 比に大きな差があるが, (i) F100の $w_{opt}$ の湿潤側 (F100-1, 6, 7, 8), (ii)  $w_{opt}$ の乾燥側(F100-3, 4, 5), (iii) 礫率の小さな土(F80, F60), (iv) 礫率の大きな土(F40, F20)に大別される. こ のうち, (i)の $w_{opt}$ の湿潤側は圧縮性が大きいこと が, (ii), (iv) は初期間隙比が $e\sim\sigma'$ 関係に影 響している.

間隙比  $e \sim \sigma'$  関係から求めた体積圧縮係数  $m_v \ge \sigma'$ の関係を図-7,8に示す。図中の点線は図-6と同様 に  $p=10,20 \text{ kgf/cm}^2$  での20時間放置後と 圧密過程で の  $m_v を表わす。 <math>p=10, 20 \text{ kgf/cm}^2$  で20時間放置した 場合, $u_a, u_w$  はやや増加または減少し、体積圧縮が進 行する。このため、放置の段階で  $m_v$  が増加している。 圧密は 3 ~ 7 日間行ったが、この間の有効応力の増加量

も大きいため, F100供試体では mo は一定ないしやや 増加傾向を, 礫混り土(F80~F20)では mv はやや減 少傾向を示した。 $p=10 \text{ kgf/cm}^2$ での圧密終了の  $e \sim \sigma'$ 関係をみると、 この部分の e の減少量がその 前後に比 べて小さい. この結果, この部分で mo が非常に小さ な値となっている、これは図-7, 8 での p=10 から 11kgf/cm<sup>2</sup> への移行部の mv がその前後の ½~½ 程度 であることに顕著に現われている.正規圧密粘土を長期 間二次圧密すると、疑似先行圧密が生じて e~log p 曲線 が過圧密を受けた様な形状となる。締固め土は正規圧密 粘土ではないが、圧密によって正規圧密粘土と同様の二 次圧密効果が 生じたものと 考えられる。 前報では 藤ノ 森粘土F100の直径 10cm, 高さ 12.7cm の供試体を等 方圧縮した 場合の  $m_v \sim \sigma'$  関係を 求めたが、  $\sigma' = 1 \sim$ 6 kgf/cm<sup>2</sup> に対して wopt の乾燥側で mv÷ 1×10-2  $\mathrm{cm^2/kgf}$ ,  $w_{opt}$  の湿潤側で  $m_v$  $\div 2 imes 10^{-2}$   $\mathrm{cm^2/kgf}$  とな った. これに対して大型圧密では σ'≦3 kgf/cm<sup>2</sup> では  $m_v$ は  $\sigma'$ の増加とともに減少し、 $\sigma' \ge 3 \text{ kgf/cm}^2$ では ほぼ一定値となり, mv=5~7×10-3 cm<sup>2</sup>/kgf である. これは等方圧密の約%の大きさである。この原因として は等方圧縮と一次元圧縮での応力状態の差、一次元圧縮 では圧密リングの壁面摩擦による圧縮応力の減少が考え られるが、これらの要因のみでは mo が兆になるとは考 えられず,供試体の大きさの影響も考えられる.即ち, 供試体作製のためには試料土をモールドやリング内に突 き固 めるが, これらは壁面近くでは締固め不十分とな る。さらに上下面は供試体整形のため、ストレートエッ ジで削るが、この部分がゆるむことも考えられる。これ



らのゆるい部分の割合は供試体体積が大きくなるほど小 さくなる. このゆるみは  $m_v$ を大きくする要因であり, これも等方圧密と大型圧密での  $m_v$ の差の一因と考えら れる.

## 4. 圧 密 過 程

圧縮応力  $p=10 \text{ kgf/cm}^2 \ge 20 \text{ kgf/cm}^2$ で排水・排 気を行い,圧密中の沈下量,間隙水圧  $u_w$ ,間隙空気 圧  $u_a$ を測定した.沈下量からひずみ e e,  $u_w$ ,  $u_a$  か らは間隙水圧と間隙空気圧の消散度  $U_w$ ,  $U_a$ を求めた.

$$U_w = \left(1 - \frac{u_w}{u_{wo}}\right) \times 100 \qquad (\%)$$
$$U_a = \left(1 - \frac{u_a}{u_{ao}}\right) \times 100 \qquad (\%)$$

ここに  $u_{w_0}$ ,  $u_{a_0}$  は圧密開始前の間隙水圧, 間隙空気圧 である。圧密時間  $t \ge \epsilon$ ,  $U_w$ ,  $U_a$  の例としてF100-7 とF60を図-9(a), (b)に示す。いずれの供試体でも $\epsilon \sim$ log t 関係は飽和土の圧密曲線と類似した形をしており, Casagrande の方法によって一次圧密部分の直線と二次 圧密部分の直線を引き,一次圧密終了点を求めることが できる。しかし,  $u_w$ ,  $u_a$  は図-9に 示すように一次圧 密終了後,急激に増加し, 圧密開始約1日以後は沈下は



進むが, uw, uaはほぼ一定値を保ったままであり,7日 間程度では全く消散の傾向が認められない.図-10(a), (b)に圧密終了時(圧密開始3~7日後)の残留間隙水圧

|         | ·     |       |
|---------|-------|-------|
| No.     | p=10  | p=20  |
| F 100-1 | 1.91  | 0.233 |
| F 100-3 | 0.106 | 0.099 |
| F 100-4 | 0.039 | 0.080 |
| F 100-5 | 0.194 | 0.125 |
| F 100-6 | 0.561 | 0.142 |
| F 100-7 | 2.00  | 0.318 |
| F 100-8 | 2.68  | 0.315 |
| F80     | 0.707 | 0.088 |
| F60     | 0.592 | 0.100 |
| F 40    | 0.408 |       |
| F20     | 0.115 |       |
|         |       |       |

表-3 圧密中の応力増加比 Δσ'/σ₀'









図-11(c) 圧密係数と締固め含水比の関係

uwr, 間隙空気圧uar と締固め含水 比および 礫含 有率 との関係を示す。ほとんどの供試体で  $p=10 \text{ kgf/cm}^2$ に比べて  $p=20 \text{ kgf/cm}^2$  の場合の uwr, uar の方が大き く,かつ,締固め含水比とともに、また磔率の減少とと もに uwr, uarが増加している。

一次圧密終了後に間隙圧が増加したり、大きな残留間 1),2) 隙圧が存在することは等方圧密実験の場合には生じなか った.この原因を圧密装置に求めることはできない.な ぜならば、排水パイプが詰ったものと仮定すれば、排 水、排気が生じないから二次圧密が継続しないはずであ るが実際には生じていること、間隙圧測定装置は0点法 で水銀マノメータで測定しており、測定用銅パイプは実 験後、毎回、脱気水で洗っており、その際、パイプの目 詰りは生じていないこと、圧密中の荷重変動幅は0.5% 以下であり、供試体底面での土圧の変動幅も0.5% 以下





であったこと,実験は20℃の恒温室内で行い,温度変化 は1℃以下であったことなどである.この残留間隙圧に ついては今後,実験材料を変えて,その有無を調べる必 要があろう.

圧密係数  $c_v$  を  $e, U_w, U_a \sim \log t$  関係から求めた。  $\epsilon \sim \log t$  関係からは一次圧密でのひずみ  $\epsilon_{100}$  の 30, 50, 80%の時間に対しての  $c_v$  を,  $U_w$ ,  $U_a \sim \log t$  関係から は Uw, Ua が30, 50, 80%の時間に対しての cv を求め た。 圧縮ひずみ ε に対する圧密係数を cve, 間隙水圧と 間隙空気圧に対する 圧密係数を cvw, cva とし, 圧密度 30, 50, 80%はそれぞれにサフィックスの 30, 50, 80 を付して表わす。図-11に cvu, cvu, cva と締固め含水比 wの関係を示す. cve は圧密度の増加とともにやや大き くなる。また、締固め含水比 w の増加とともにやや大 きくなっている。 これに対して、 cvw, cva は圧 密度の 増加とともに減少しており、かつ、締固め含水比に対し てほぼ一定値をとっている。 等方圧密で Uw から求め た  $c_{vw}$  は 2~6×10<sup>-3</sup> cm<sup>2</sup>/sec であったが, 一次元圧 密での  $c_{vw}=4\sim10\times10^{-2}$  cm<sup>2</sup>/min=0.7~1.7 × 10<sup>-3</sup> cm<sup>2</sup>/sec であって, 等方圧密の値の約3%である. また 図-10の cve, cvw, cva の比較より, ひずみから 求めた cviが間隙圧より求めた cvw, cva に比べて小さい。 そこ で圧密度50%での cvw/cve, cva/cve と締固め 含水比の関 係をプロットすると 図-12となる. w の増加とともに 両者の比は 1.0 に近づいているが, p=10kgf/cm<sup>2</sup> の場 合に比べて p=20 kgf/cm<sup>2</sup> の場合の方が大きな値と なっている。図より w≤26.7% の含水比の 供試 体の  $c_{vw}/c_{ve}$ ,  $c_{va}/c_{ve}$  は 2.0 以上であり,  $w \ge 27.3\%$  の含水 比の供試体では p=10 kgf/cm<sup>2</sup> の場合, ほぼ 1.0に近 く,  $p=20 \text{ kgf/cm}^2$  の場合は 2.0 以上と なっている. この比が2.0以上となっている場合の一次圧密100%で のひずみ  $\epsilon_{100}$  は p=20 kgf/cm<sup>2</sup> の w=29.5, 30.1% の場合には1.35%, 1.64% であるが, 他は1.0% 以下 である. これに対して cvw/cvu, cva/cvu が 1.0 に近い場 合の ε100 は最小で 2.35%,他は 3.5% 以上の 大きなひ ずみが生じている。 これらの 大きな *ε*100 を生じる圧密 では排水開始後、すぐに沈下が始まり、間隙水の排出も 生じる.また飽和度も高いため, 圧密は Terzaghi の一 次圧密に近い形で進み、したがって、cve と cow, cva が ほぼ等しい値となる.しかし、E100 が小さい場合, 圧密 開始と同時に間隙水圧,間隙空気圧の減少が始まるが, 圧密沈下はほとんど進まず,50分程度の経過後から圧密 沈下が進みはじめ、間隙水圧や空気圧の消散に対して沈 下の遅れが顕著となる. これが cvw, cva に比べて cv.の 小さくなる原因である。各供試体の圧密応力が10,20  $kgf/cm^2$ の場合の圧密前後の有効応力の差  $\Delta\sigma'$ と圧密 開始前の有効応力  $\sigma_0'$  の比  $\Delta\sigma'/\sigma_0'$  を圧密中の 応力増 加比 とすると、 この値は 表-3となる。 表-3より、  $c_{ve} \div c_{vw} \div c_{va}$  となる場合の  $\Delta\sigma'/\sigma_0'$  は0.56以上であり、  $c_{vw}$ 、 $c_{va}$  が  $c_{ve}$ の2倍以上となる場合は  $\Delta\sigma'/\sigma_0'$ が0.32 以下である。締固め土を標準圧密装置で圧密した場合、 応力増加比  $\Delta p/p$  が小さくなると  $e \sim \log t$  曲線が変化 して、一次圧密と二次圧密の区別がつきにくくなるが、 この場合も  $\Delta\sigma'/\sigma_0'$ が小さい場合に同様の状態になった ものといえよう。

礫混入の場合の  $c_{vt}$  と礫率の関係を 図-13に示す. F20, F40では p=20 kgf/cm<sup>2</sup> での圧密を行わなかっ たが, F60, F80, F100に比べてF20, F40の  $c_{vt}$  は 大きな値となっている. F20に比べてF40の  $c_{vt}$  の方が 大きい. F20では  $u_w$ ,  $u_a$  は圧密開始とほとんど同時に 0となり, 圧縮ひずみのみが増加し, 圧密 曲線に類似 した e~lot t 曲線になったので  $c_{vt}$  を求めてみた. これ



図-14 二次圧密速度と締固め含水比の関



に対して F40では 圧密開始と同時に  $u_w$ ,  $u_a$  の50%が消散し, その後は他の供試体と同様の消散過程をとった. さらに F40では他の供試体と異なって, 圧密開始と同時 に  $e_{100}$  の25%のひずみが生じた. このため, F40の  $c_{v_t}$ が非常に大きくなった.

 $\varepsilon \sim \log t$  曲線の二次圧密部分のこう配  $d\varepsilon/d\log t$  と締 固め含水比の関係を図-14に、 $d\varepsilon/d\log t$  と礫率の関係 を図-15に示す。かなりの変動があるが、標準圧密装置 を用いて行った 各種の土の二次圧密速度  $d\varepsilon/d\log t$  の 708 大部分が  $0.5\sim3.0\times10^{-3}$ であったの と比較 するとほぼ 等しい値となっており、二次圧密速度への供試体高さの 影響は無いものと推定される。

# 5. あとがき

締固め土の大型圧密実験を行い,次のような結果を得 た.

1. 締固め含水比の増加とともに非排水状態で生じる間 隙圧 uw, ua は大きくなる. wopt の湿潤側では載荷重 の50%以上が間隙圧となる.

2. 圧縮応力  $p=10 \text{ kgf/cm}^2$  で圧密後,再度,非排水 状態で圧縮すると, $w_{opt}$ の乾燥側では以前より大きな 間隙圧が, $w_{opt}$ の湿潤側では小さな間隙圧が生じる.

3. 体積圧縮係数  $m_v$  は有効応力  $\sigma'$  が 3 kgf/cm<sup>2</sup> 以下では  $\sigma'$  の増加とともに減少するが、3 kgf/cm<sup>2</sup> 以上ではほぼ一定値となり、  $5\sim7\times10^{-3}$  cm<sup>2</sup>/kgf 程度 であり、 これは等方圧密で求めた  $m_v \rightleftharpoons 1 \times 10^{-2}$  cm<sup>2</sup>/kgf に比べて小さい.

4. 圧密後,再度,非排水状態で圧縮応力を増加する と,圧縮応力の増加による体積の減少が非常に小さくな るが応力範囲が存在する。

圧密過程では圧縮ひずみ ε と log t の関係は正規圧密

粘土と類似した形状をし、一次、二次圧密に分離できる.しかし、間隙圧 uw と uaは一次圧密終了後に大きな値が残留する場合がある.

6. 圧密係数  $c_v$  はひずみ,間隙水圧,間隙空気圧から 求めた値  $c_{ve}$ ,  $c_{vw}$ ,  $c_{va}$  がそれぞれ異なる.  $c_{ve}$  は圧密中 にやや大きくなり,  $c_{vw}$ ,  $c_{va}$  は圧密の進行とともに減少 するが,  $c_{ve}$  は  $c_{vw}$  や  $c_{va}$  より小さい.

7. 二次圧密速度 *dε/d* log *t* は 1~3×10<sup>-3</sup> で,小型の 標準圧密装置での他の試料土の値とほぼ等しい.

8. 礫の混入により,間隙比 e は 減少し,非排水状態 で生じる間隙圧は低下した.また圧密の進行も速くなった.

なお、本実験を行うにあたりましては農業施設工学研 究室の専攻生の今岡幸男君、多久和泰正君、福島真二君 に多大の協力を賜わりました。ここに記して、深く感謝 の意を表します。また本実験装置は昭和58年度科学研究 費(一般(c) 58560230)によって購入しました。

# 参考文献

- 1. 鳥山晄司:島大農研報, 16:125-129, 1982.
- 2. 鳥山晄司:島大農研報, 18:150-158, 1984.
- Bishop, A. W. : Pore Pressure and Suction in Soils, 38-46, 1960 (Butterworths)
- Jennings, J. E. B. and J. B. Burland : Geotechnique, 12 : 125-144, 1962.
- 5. 福田 護・中沢重一:土質工学会論文報告集, 17-2 :65-73, 1977.
- Dakshanamurthy, V.: Geotech. Testing Jour., 2-1: 57-60, 1979.
- 7. 鳥山晄司·沢田敏男:農土論集, 25:15-20, 1968.
- 8. 鳥山晄司·沢田敏男:農土論集, 30:34-39, 1969.