FOSS Governance and Collaboration: From
A Good Idea To Coherent Market
Approach

Shane Coughlan'

1 Visiting Researcher, Shimane University, and Founder, Opendawn
Takamatsu-shi, Kagawa-Ken, Japan
shane@opendawn.com
WWW home page: http://www.opendawn.com

Abstract. Free and Open Source Software (sometimes called Open Source or
FLOSS, and referred to in this paper by the commonly used term FOSS) is an
approach to software that emphasizes the freedoms provided to end users.
Originally formulated in 1983 by a computer scientist concerned with access
to technology, it has become a central component of mainstream IT. The
popularity of FOSS has produced a wealth of related terminology and
perspectives which occasionally lead to confusion about what it actually is and
what are the best ways to engage with the field. This paper will address such
confusion by providing a clear overview of FOSS, how it works, and why it is
successful. It will go back to first principles in defining FOSS, explaining the
concept of licensing that underpins it, and examining how this paradigm
facilitates multiple development and business models. The key assertion is that
the productive application of FOSS relies on good govemance and active
collaboration. While it is difficult to determine which precise governance
model (or models) may be best suited to the long-term sustenance of FOSS as
an approach to developing knowledge products, the indicators provided by the
previous two decades suggest that FOSS governance will continue to be
effectively refined by its stakeholders.

1 Defining And Understanding FOSS

Free and Open Source Software (FOSS) is an approach to software that facilitates
multiple development and business models. It is best characterised as a software
paradigm. A software paradigm (also referred to as a software model) helps
contextualise how stakeholders will create, distribute and/or use the software on
computers. There are different software paradigms that compete for attention,
investment and market-share in the modern business environment. The two
predominant software paradigms are termed proprietary and FOSS, with the criteria
for differentiation being based on the level of control over software that each
facilitates. With proprietary software, control tends to lie primarily with the vendor,
while with FOSS control tends to be weighted towards the end user.



70 Shane Coughlan

1.1  The origin of FOSS

FOSS originated in the USA during the early 1980s. While in the early years of
computer science it was common for people to share software relatively freely, the
concept of selling software untied to physical hardware had begun to change this
practice. What 1s termed the 'Software Industry' started in the early 1960s, and by the
late 1970s it had grown significantly, due in no small part to the development of the
personal computer in the mid-1970s and the rise of companies such as Microsoft.'
The tension between those who wanted to share software technology and those who
wanted to charge for access to software is illustrated by a letter Bill Gates wrote to
the Homebrew Computer Club in 1976.> Entitled 'An Open Letter to Hobbyists', it
charged that the practice of sharing code damaged the ability of people to produce
good software.’

In 1983 Richard Stallman, an employee at MIT's Artificial Intelligence laboratory,
decided to formalise the concepts behind the sharing of software technology. He
founded a project to create a complete FOSS operating system that was compatible
with Unix called the GNU Project. This project also necessitated the development
of terminology to describe how and why the FOSS paradigm worked.” In 1985 this
emerging 'Free Software Movement' consolidated with Mr Stallman's establishment
of the Free Software Foundation, the formal publisher and maintainer of the first and
the most popular FOSS licences.’

1.2 The definition of FOSS

FOSS is not simply an aspiration to share software. It is a formally defined set of
attributes applied to compliant software. The full definition of FOSS is hosted on the
GNU Project website.” A concise overview is provided by Richard Stallman in his
2002 book, 'Free Software, Free Society":
"The term “Free Software” is sometimes misunderstood—it has nothing to
do with price. It is about freedom. Here, therefore, is the definition of Free
Software: a program is Free Software, for you, a particular user, if:
* You have the freedom to run the program, for any purpose.
* You have the freedom to modify the program to suit your needs. (To
make this freedom effective in practice, you must have access to the source

http://en.wikipedia.org/wiki/Software industry

1

2 http://en.wikipedia.org/wiki/Open_Letter to Hobbyists
 Ibid.

4 http://www.gnu.org/

> http://en.wikipedia.org/wiki/Free software

j http://www.fsf.org/

http://www.gnu.org/philosophy/free-sw.html



FOSS Governance and Collaboration 71

code, since making changes in a program without having the source code is
exceedingly difficult.)

* You have the freedom to redistribute copies, either gratis or for a fee.

* You have the freedom to distribute modified versions of the program, so
that the community can benefit from your improvements." ®

These four freedoms have been simplified in certain ways to illustrated the benefits

of the approach. On the front page of the GNU Project website it suggests that “To

understand the concept, you should think of “free” as in “free speech”, not as in “free
b ”9

beer”.”” Another is to shorten the four freedoms themselves into the form of 'use,
study, share and improve."’

1.3 Challenges to FOSS from incumbent market interests

In 2000, Steve Ballmer, Chief Executive Office of Microsoft, famously likened
FOSS to Communism."" Its advocates would counter that the FOSS movement is not
and has never been a movement against the principles of financial gain nor is it
inherently anti-corporate. Rather the opposite, in the sense that FOSS explicitly and
purposefully allows commercial exploitation.'?

This being said, Richard Stallman contends that key stakeholders in early software
production were acting a way that he found unethical. He felt they were abusing their
position and by doing so abusing the users of computers. But this assertion is less of
an anti-market stance than an observation regarding inefficiency and control (given,
of course, that we assume markets are intended to serve the majority participating
rather than a narrow group who control supply and demand):

"The modern computers of the era, such as the VAX or the 68020, had their

own operating systems, but none of them were Free Software: you had to

sign a non-disclosure agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to
help your neighbour. A cooperating community was forbidden. The rule
made by the owners of proprietary software was, “If you share with your
neighbour, you are a pirate. If you want any changes, beg us to make them.”

The idea that the proprietary-software social system—the system that says
you are not allowed to share or change software—is antisocial, that it is
unethical, that it is simply wrong, may come as a surprise to some readers.
But what else could we say about a system based on dividing the public and

http://www.gnu.org/philosophy/fsfs/rms-essays.pdf (page 26)
http://www.gnu.org/

' http:/lwn.net/Articles/308594/

"' http://www.theregister.co.uk/2000/07/31/ms_ballmer linux is communism/
12 http://www.fsf.org/licensing/essays/selling.html



72 Shane Coughlan

keeping users helpless? Readers who find the idea surprising may have
taken this proprietary-software social system as given, or judged it on the
terms suggested by proprietary software businesses. Software publishers
have worked long and hard to convince people that there is only one way to
look at the issue."

Stallman's issue could be described as what people now may term 'lock-in' and
'market distortion.' His perspective has since been validated in two critical ways, one
being the recent spate of anti-trust cases and the other being the wholesale
commercial adoption of FOSS precisely because it facilitates competition, market
growth and the maximisation of investment.

Those involved in FOSS did not historically perceive it to be an extreme movement
but rather to be a different to software from what an incumbent group of self-
interested parties wished. Professor Laurence Lessig sums it up well with his
mtroduction to 'FOSS, Free Society":
"there are those who call Stallman’s message too extreme. But extreme it is
not. Indeed, in an obvious sense, Stallman’s work is a simple translation of
the freedoms that our tradition crafted in the world before code. “Free
Software” would assure that the world governed by code is as “free” as our
tradition that built the world before code." '

It 1s reasonable to suggest that some parties who were extremely worried about
FOSS invested a lot of money and time trying to challenge its rise in the technology
market. One reason for this is that FOSS as a paradigm presents a significant
challenge to proprietary software as a paradigm. Proprietary software depends on
charging per-copy licence fees to derive the majority of its profit while FOSS
1mposes no per-copy licence fees. The difference between the models can be worth
millions of dollars in upfront fees.

Those working to challenge FOSS's credibility during its ascendancy to a market-
leading position ultimately failed for a simple reason. FOSS is an approach to
software that allows people to do a great deal with code. Some people - usually
computer scientists like Richard Stallman - understood that FOSS was a good idea in
its early days. Some people - perhaps those from portfolio management or sales
backgrounds - took longer to understand the benefit. Nowadays all types of parties in
all types of segments tend to see and derive some value from FOSS.

B http://www.gnu.org/philosophy/fsfs/rms-essays.pdf, page 24.
" http://www.gnu.org/philosophy/fsfs/rms-essays.pdf, page 18.



FOSS Governance and Collaboration 73

1.4 Understanding FOSS means understanding FOSS licenses

The concept of FOSS describes a way to use, study, share and improve software,
though this alone does not equate to providing the formal structure required for its
potential to be realised. Stakeholders need to derive and maintain value regardless of
their status of collaborators or competitors, and this leads us inevitably to the
common rules - rather than general concept - by which FOSS transactions are
managed. These rules provide a framework that underpins the realisation of
expectations in the field.

The goals of FOSS are realised through licences governed by copyright law. These
licences take a different form compared to traditional proprietary documents. Instead
of providing a narrow grant of use with a long list of exceptions and restrictions, they
tend to provide a broad grant of use with few restrictions. But each license differers
slightly in the grants it provides, and a common challenge for adopters of FOSS
relates to what licence is beneficial for their situation.

FOSS licences are often divided into three categories by its advocates and users;
non-Copyleft, weak-Copyleft and strong-Copyleft. Therefore Copyleft - while not
inherent to Free Software - is perhaps the most important distinguishing features to
categorise FOSS, and is one of the best places to start when one seeks to understand
how such licenses work.

As with the definition of Free Software, Copyleft was first defined by Richard
Stallman. He wanted to ensure that the GNU Operating System would be available
to people with the four freedoms he had identified as being important, and he wanted
to ensure this availability would continue in the mid-to-long-term.
"The goal of GNU was to give users freedom, not just to be popular. So we
needed to use distribution terms that would prevent GNU software from
being turned mnto proprietary software. The method we use 1s called copyleft.
Copyleft uses copyright law, but flips it over to serve the opposite of its
usual purpose: instead of a means of privatizing software, it becomes a
means of keeping software free." °

Copyleft says that the freedoms provided with the software apply to all subsequent
users of the software as well. Copyleft is not an inherent characteristic of FOSS, but
rather a way of maintaining a set of grants applied to the software in question. This is
a distinction sometimes overlooked by people new to FOSS, leading to confusion
when encountering FOSS licences that provide the ability to use, study, share and
improve code according to the formal definition of the Free Software Foundation,
yet not containing Copyleft provisions.

5 http://www.gnu.org/philosophy/fsfs/rms-essays.pdf, page 28.



74 Shane Coughlan

Some would suggest that non-Copyleft licences are best because the cooperative
model does not require formal statements of subsequent sharing.'® Some maintain
that they want an explicit Copyleft requirement applied to their code.!” Some parties
like the Free Software Foundation advocate the use of strong-Copyleft whenever
possible.'® Perhaps the most useful guide for adopters with a pragmatic perspective
is popularity. The form of licence is used by over 50% of FOSS are strong-Copyleft
licences such as the GNU GPL." It is most notably used on the Linux kernel,” most
of the GNU Project,?’ and other critical technologies like SAMBA.?** This is
probably because strong-Copyleft provides a very predictable and stable grant for the
technology, allowing multiple parties to cooperate in using and developing it over
prolonged periods.

1.5 Understanding the most popular FOSS license

The GNU GPL is a very popular FOSS licence, accounting for over half of the total
FOSS licence use according to BlackDuck Software research.”> The most widely
used variant of the GPL is version 2 of the licence, though version 3 — released in
2007 — is becoming increasingly popular and has been adopted by major code
projects like SAMBA.** It was created to encapsulate the four freedoms applied to
FOSS as effectively as possible for current and future users, and for this reason it is
also a strong-Copyleft FOSS licence. Its purpose has never been otherwise, as
Stallman's description of its origin attests:

"The specific implementation of copyleft that we use for most GNU

software is the GNU General Public License, or GNU GPL for short." 2

Some parties have taken issue with the way that the GPL contains a preamble that
explains its originals and purpose, and that this makes it a political manifesto as well
as a legal document.”® But one could equally argue the preamble is measured and

http://www.onlamp.com/pub/a/onlamp/2005/06/30/esr _interview.html
http://www.freesoftwaremagazine.com/columns/why 1 choose copyleft fo
r_my_projects
http://www.fsf.org/licensing/licenses/why-not-1gpl.html

" http://www.BlackDucksoftware.com/oss

" http://en.wikipedia.org/wiki/Linux

2L http://en.wikipedia.org/wiki/GNU

2 http://us6.samba.org/samba/docs/GPL.html

2 http://www.BlackDucksoftware.com/oss

% http://news.samba.org/announcements/samba_gplv3/

2 http://www.gnu.org/philosophy/fsfs/rms-essays.pdf, page 29.

2 http://www.netc.org/openoptions/background/history.html

17

18



FOSS Governance and Collaboration 75

makes clear what the document is, as evidenced by - for instance — its first paragraph

in version two of the licence:
"The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change FOSS--to make
sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation's software and to any other
program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Lesser General Public License
instead.) You can apply it to your programs, t00."*’

While there is little doubt that organisations such as the Free Software Foundation
have a political agenda, FOSS licences such as the GPL are no more impacted by this
then the licences of proprietary companies are impacted by those parties having a
financial interest in the market. The aims of issuing entities and the inherent validity
of the licenses they issue are two different matters.

As FOSS grew into a mainstream approach in IT, questions were raised about
whether the primary licence used, the GNU GPL, was actually valid.?® These
questions suggested that the model applied by FOSS was not something that worked
in copyright law, and were immediately contested by essays produced by figures
central to FOSS development.” Later they were contested more substantially
through court cases against parties infringing the GPL licence in Europe.”” These
cases resulted in court victories, and were followed by events in the USA that further
validated the licensing approach®' and its effectiveness in being applied to
commercial transactions.*?

Today there is little doubt the GPL is a valid legal document. Version 2 is well-
entrenched in the market, and the growing use of version 3 has occurred despite
some criticism of the document while it was being drafted.”® This may be indicative
that such criticism, as with criticism directed at earlier versions of the GPL or at

27
28

http://www.gnu.org/licenses/gpl-2.0.html

See for example Andrés Guadamuz (2004) 'Viral Contracts or Unenforceable
Documents? Contractual Validity of Copyleft Licenses', E.P.R. Vol. 26, Issue 8,
pp-331-339. Also online at
http://papers.ssrn.com/sol3/papers.cfm?abstract 1d=569101
http://www.gnu.org/philosophy/enforcing-gpl.html

3% http://gpl-violations.org/mnews/200405 19-iptables-sitecom. html

31 http://www.fsf.org/mews/wallace-vs-fsf

2 http://www.softwarefreedom.org/news/2007/oct/30/busybox-monsoon-
settlement/
http://www.eweek.com/c/a/Linux-and-Open-Source/Latest-Draft-of-GPL-3-
Comes-Under-Fire/

29

33



76 Shane Coughlan

FOSS itself, was largely unfounded. It is also possible to suggest that criticism of the
GPL provoked responses, elaboration and clarification that contributed to maturing
the licence, and perhaps the paradigm as a whole.

2 The Governance Of FOSS

The Internet has allowed people to communicate and to work together across great
distances at a lower cost and at a higher speed than ever before. It has been a
powerful driver i reducing barriers to working with partners and customers to
accomplish goals, what is sometimes referred to as co-innovation.’* In the software
field it is difficult for a single vendor to meet all the requirements of multiple
customers, and it is more effective for several parties to cooperate on developing and
enhancing a shared platform. This is what increasingly happens, and it has lead to the
commercial sustainability of FOSS projects such as the Linux kernel.”> This is
because FOSS, a software paradigm built on the inherent assumption of cooperation
and sharing, is a natural beneficiary of the global trend towards increased
cooperation.

One good example is the Linux kernel, which started as a student project,’® and has
grown into the core of an operating system used in a wide variety of fields with
financial backing from companies like Fujitsu, Hitachi, HP, IBM, Intel, NEC, Novell,
and Oracle.’” Linux is GPL software designed to run on many types of computer,
and it is developed through a world-wide cooperative project on the Internet.*®
Given its scale and success, it provides an excellent example of co-innovative
development inside the FOSS paradigm. It is structured into teams with leaders who
consolidate work, and a handful of key developers that then combine the components
mto the final product. There i1s a relatively low barrier to entry regarding
participation in development, and each individual stakeholder will have their own
reasons for investing in the project. What 1s noticeable is that the collective output of
the parties collaborating is stable, reliable and widely used in critical industries.

" http://theotherthomasotter. wordpress.com/2007/05/03/co-innovation-is-a-

strength-not-a-weakness/

http://linuxfoundation.org/en/Members
http://www.linux.org/people/linus_post.html

37 http://linuxfoundation.org/en/FAQ#Who are members of the Linux Fou
ndation.3F

http://www.kernel.org/

35
36

38



FOSS Governance and Collaboration 77

2.1 Cooperation as a lasting mechanism for change

Cooperation in creating software has profound implications for development models
and the management of processes, and has expanded far beyond the concept of
working with a small, select group of similar companies. That was a template of
iteraction tied to the Industrial Revolution, and appears archaic in a world where
instant communication allows an individual in Shenyang, China to work as
effectively as one in London. Modern cooperation requires the broad sharing of
information and tools without delay between multiple parties and even legal entities,
with an emphasis on reducing access time further to optimise the benefit of
cooperation. An increasing number of formal models have been emerging to
facilitate this, with one example being 'Agile software development,’ which places
emphasis on the feedback provided by creative participants to guide further
development.*

Such cooperative development is arguably permanent for two reasons, one systemic
and one market-based. From the systemic perspective, the reduction of barriers and
costs to cooperation have lead to a self-sustaining cycle where new development
models have emerged that increase the efficiency of cooperation, and in turn foster
further optimisation and investment in such activity. From a market perspective,
users are requiring more complex and interconnected software, and without
unlimited engineering resources, the most efficient way to produce such software is
through building shared platforms with other market participants.

The dynamics of the software industry have altered in the last two decades. Twenty
years ago the dominant proprietary paradigm resulted in a small number of providers
controlling innovation and serving a large number of users in a fairly static
relationship. However, the emerging FOSS paradigm encouraged new development
models and new software development processes that moved the decision-making
emphasis to users. Since the FOSS paradigm gained mainstream traction this has had
a profound effect on the market as a whole. Increased user involvement in
consultation, design, testing and improvement is noticeable in every approach to
software today. One consequence of this has been to blur the distinction between
what constitutes a user and what constitutes a provider. FOSS notably empowers all
users to become providers at any time of their choosing.

2.2 The many development and business models of FOSS

The proprietary software and FOSS paradigms facilitate the establishment and
improvement of various software development models and processes. These
development models may be hierarchical, loosely managed or unstructured

3 http://en.wikipedia.org/wiki/Agile software development



78 Shane Coughlan

depending on the given software paradigm and the requirements of the individuals or
organisations working on a project. It would be incorrect to associate FOSS
exclusively with one development or business model, though new observers or
entrants to the FOSS market occasionally do so. This is perhaps a result of limiting
their research to a narrow range of case-studies or usage models.

Such misconceptions are partly attributable to an essay by Eric Raymond circulated
in 1997 entitled “The Cathedral and the Bazaar,”*’ and extended into a book
published by O'Reilly Media in 1999.*! The proposition that "given enough eyeballs,
all bugs are shallow" appeared to suggest that the limited, hierarchical and restricted
world of proprietary commercial software ultimately could not compete with the
broad, dynamic and more bazaar-like world of FOSS. However, it should be
understood that Mr. Raymond's paper was not originally a comparison of the FOSS
development methodology versus a proprietary development methodology. It was a
criticism of hierarchical structures applied by the GNU Project (a FOSS project)
versus the more flat management structure of the Linux Project (a FOSS project).*?

Misunderstandings regarding the organisation and management of FOSS are not
1solated to development models. From the perspective of the traditional proprietary
software world it can be difficult to understand the approach taken with FOSS, and
some parties have questioned its validity as a commercial approach.” However,
concern with regards viable business models and FOSS tend to arise when parties
have a preconception that per-unit licence costs are an inherent requirement to
qualify as commercial software. While FOSS allows a wealth of business models to
be applied, per-unit licensing costs is not one of them.

Per-unit revenue models would either have to prevent sharing of code to maximise
their market and thus undermine one of the four freedoms defined by the Free
Software Foundation, or they would be circumvented by users who would have a
choice of paying the originator for a copy of the software or getting one from a third-
party without cost.

There are many business models applicable to FOSS for the same reason that FOSS
facilitates multiple development models; this paradigm provides a broad range of
parameters that participants operate inside. Examples of FOSS business models
mclude:

« Development-related services to produce specialised products, such as bespoke

10" http://www.catb.org/~esr/writings/cathedral-bazaar/

*I http://oreilly.com/catalog/97805960013 15/

2 http://www.alamut.com/subj/economics/misc/cathedral html

> http://business.timesonline.co.uk/tol/business/industry _sectors/technology/a
rticle733264.ece



FOSS Governance and Collaboration 79

product customisation for enterprises.

« Integration-related services to ensure that products work with existing systems,
such as in Enterprise intranets, SME office networks and banking communication
systems.

 Support-related services to maintain deployed solutions, particularly in the SME,
governmental and enterprises sphere.

« Software as a Service to deliver application functionality over a network, such as
m Web 2.0 companies or search companies like Google.

+ Cloud computing to deliver processing functionality over a network, such as those
provided by companies like Sun Microsystems.

+ Mixed-models combining FOSS and proprietary software, such as the product
offerings from Oracle with GNU/Linux and their proprietary enterprise database
running on top.

 Dual-licensing models where code is released under both a FOSS and a proprietary
licence.

The most common FOSS business models in the server and workstation market
segment tend to be support provision across multiple products (i.e. like IBM)* or
support provision for a branded family of products (i.e. like Red Hat).*> While dual-
licensing used to be relatively common, the best known companies such as MySQL
and Trolltech did not scale beyond being multi-million dollar enterprises and were
instead acquired by multi-billion dollar corporations. Since then the visible side of
their business has tended to be focused on the FOSS element of the product offering
rather than the proprietary.

Embedded companies (those that make telephones, routers and other small
computing devices) now frequently make use of FOSS. The business models applied
tend towards mixed-model, with a FOSS platform being used to provide basic
services, and perhaps a proprietary series of components to provide a differentiator.
The LiMo Foundation's work in the mobile sphere*® or MontaVista's products in the
embedded networking sphere provide examples of this.*’

In network services there are a great variety of companies using FOSS. Most notable
is perhaps Google, which uses FOSS-based technologies to power its infrastructure,
and makes a modified FOSS operating system available for its employees
workstations.*® Because Google primarily provides network services, rather than
focusing on the distribution of software, the use of FOSS has very little impact on
their business model except to reduce costs, and their modifications to FOSS code do

' http://www-03.ibm.com/linux/

> http://www.redhat.com/

** http://www.limofoundation.org/

47" http://www.mvista.com/

8 http://en.wikipedia.org/wiki/Google platform



80 Shane Coughlan

not generally have to be distributed. This has come under some criticism as
effectively using FOSS without fully participating in the paradigm.® However,
regardless of what one thinks of their use of the code, Google's business model has
proven highly successful. In essence, they used FOSS to facilitate infrastructure that
would have cost billions to build as proprietary software for a far smaller sum, and
they leveraged this advantage to provide services above the traditional limits of their
corporate scale and funding.

Ultimately the number of possible business models applicable to FOSS make it
impossible to pick out any one as a clear favourite. As with any field of business, the
correct model depends on market segment analysis, an understanding of skills, and a
prudent balance between maximisation of profit and sustainability. There is no
'FOSS business model' in the singular sense; the licences used in the field provide
broad grants that foster a wide range of approaches.

2.3 Understanding the governance of FOSS

The early governance of FOSS was understandably centred on the licenses that
govern FOSS transactions. There was a narrow focus on compliance because it was
regarded as the critical issue for minimising risk in adoption and deployment, and
that was the critical issue facing early users. However, as the stakeholders in the
field became more sophisticated, so too did their approach to governance, and this
lead to a shift in perspective towards understanding governance as a tool to
maximise value while honouring obligations. This is a related but wider concept than
reducing risk.

For early adopters of FOSS the most common problems encountered can be
summarised as having their roots in two key issues; people didn’t read the licenses
properly, or they read them but didn’t follow the terms. The solution to these
problems were equally simple; people had to read the licenses in question and follow
their terms. Nevertheless, new adopters frequently encountered issues, with some
notable cases being GPL-violations.org versus Sitecom,” GPL-violations.org versus
D-Link”" and SFLC versus 14 companies.”®> A lack of understanding or a lack of
process maturity can generally be proposed as a reasonable explanation for these
occurrences.

As FOSS stakeholders became more understanding of how FOSS provides value -

4" http://ostatic.com/blog/google-touts-open-source-cred

> http://gpl-violations.org/news/200404 15-iptables.html

' http://www.jbb.de/judgment_dc_frankfurt gpl.pdf

> http://www.linux-magazine.com/Online/News/SFLC-Files-Lawsuit-Against- 14-
Companies-for-GPL-Violations



FOSS Governance and Collaboration 81

namely through collaboration between an ever-changing pool of third parties - they
also became more nuanced in their understanding of the governance necessary to
provide maximum benefit. This resulted in a shift from policy in the form of lists of
accepted or rejected licenses, code or deployment approaches towards more nuanced
processes that provided the flexibility to adopt new technology and adapt to changes
in licensing or market demands. This tended to be intertwined with the evolution of
participants in how they approach the field as a whole. If one understands the value
of FOSS to be found in the collaborative energy centred around common
frameworks, then stakeholder maturity will see an increasing shift from relative
1solation as an entity to collaboration as a participant in a community.

While early FOSS governance used to be focused on understanding licenses as
obligations, the mature governance of FOSS is about the questions that lifecycle
management raises, namely “what type of code do you use and why?”, “how do you
manage change to ensure continual improvement?”, “how do you ensure your
obligations are met?” and “how is this applied through the supply chain from
mception to end-of-life for each product or solution involved?” Stakeholders become
more active buying or developing the processes to manage code, training people
internally to obtain value while minimising risk, and doing the same for the supply
chain on which they depend. This is a natural consequence of seeking to maximise
potential through shared rules to improve collaboration.

2.4 The emergence of market solutions

There are many services, products and collaborative platforms that contribute to
governance in the FOSS marketplace. None solves every challenge that the paradigm
can raise, but many deliver utility to new entrants and experienced stakeholders alike,
providing avenues for minimising risk, improving efficiency and dealing with
suppliers or customers. One example is FOSSBazaar, a community for sharing
governance data that was initiated by HP via the Linux Foundation, and which
continues to over a broad range of general material and commentary today.” Others
include comprehensive commercial solutions that have appeared from companies
like BlackDuck Software™ and OpenLogic™ that deliver lifecycle management, the
non-profit Linux Foundation compliance programme,’® and independent FOSS
projects like the Binary Analysis Tool.”’

Collaboration 1s key to deriving value from FOSS and sustaining it through the

53
54
55
56
57

http://www.fossbazaar.org/
http://www.blackducksoftware.com/
http://www.openlogic.com/index2.php
http://www.linuxfoundation.org/programs/legal/compliance
http://www.binaryanalysis.org/en/home



82 Shane Coughlan

development, deployment and support of products or solutions. This is not about
code; the collaboration that provides value is not limited to software, but is instead
applicable to the approach required to obtain value in the modern market. It
translates into platform management, and requires managers, programmers and legal
experts to collaborate across organisational boundaries and nation borders.

Interaction and cooperation around stakeholders is far more than an aspiration or ad
hoc arrangement in the increasingly mature FOSS-related economy. One example is
that the Linux Foundation helps stakeholders collaborate around Linux in the US,
Europe and Asia by organising meetings, working groups and conferences to
encourage shared understanding and knowledge sharing.”® Another is the European
Legal Network, an invitation-based effort facilitated by Free Software Foundation
Europe that helps 280 stakeholders collaborate across 4 continents, and which runs
private mailing lists, special interest groups and conferences to share knowledge.>

It is impractical to attempt to list the degree to which collaboration - or crowd-
sourcing - has permeated the global FOSS economy, but a cursory examination of
the Asia-Pacific region is illustrative of how initiatives like the Linux Foundation
and the European Legal Network are far from isolated. In Japan collaborative
activities are organised by the government via the IPA® and the industry via Linux
Foundation Japan,”' while regional organisations like Ruby City Matsue®* have also
fostered enough momentum to host international conferences.®’ In Taiwan, the
Open Source Software Foundry gives support and legal advice to help companies use
FOSS.** and a new legal network modelled on the European Legal Network is also
being prepared for launch.> In Korea, NIPA is collaborating with KOSS Law Center
and FSFE to develop governance activities,”® with tangible outcomes including the
creation of a national legal network and the launch of a new international conference
to share knowledge.’’

58
59
60
61
62

http://www.linuxfoundation.org/
http://fsfe.org/projects/ftf/network.en.html
http://www.ipa.go.jp/software/open/ossc/index.html
http://www.linuxfoundation.jp/

http://www 1.city.matsue.shimane.jp/sangy oushinkou/open/rubycitymatsue/r
uby city projecting.html

http://www.rubyworld-conf.org/en/
http://www.openfoundry.org/
http://osIn.tw/doku.php?id=open_source legal network taiwan
% http://www.0ss.kr/7065

7" http://www.kosslaw.or.kr/conference/conference01.php

63
64
65



FOSS Governance and Collaboration 83

2.5 Increased governance and collaboration is driven by the market

Software 1s a knowledge product and FOSS is a management approach for this
product. FOSS requires effective governance and collaboration to create maximum
value for every stakeholder regardless of their individual product range or market
segment. The required degree of cooperation is appearing in national, regional and
global markets with a growing amount of shared structure visible due to the
interconnected nature of the industry. The outstanding question is probably whether
this trend will continue or some form of market pressure - be it litigation or
alternative methods of deriving value from software proving more attractive - will
lead to a lack of long-term coherent governance for the field.

This is more than an idle question. Research by Gartner previously suggested that
85% of enterprises are already using FOSS in one capacity or another, and the
remaining 15% expect to use it within twelve months of the survey.®® These figures
the type of market penetration figures previously suggested by UNU Merit, when in
their 2007 report for the European Commission they suggested that “FLOSS-related
services could reach a 32% share of all IT services by 2010, and the FLOSS-related
share of the economy could reach 4% of European GDP by 2010.”* Research shows
no indication that the growth of FOSS will slow at any point in the near future, given
fair market access.

This last point may prove to be crucially important. If competition drives innovation
and provides an impartial method of determining the success or failure of product or
business models, then it is important for fair and equitable competition to be fostered
in markets regardless of the particular approach chosen by participants. It follows
that access to information regarding interoperability and interaction between
software components is therefore a key requirement in the modern IT market to
foster such competition. Conversely, if fair access is not provided, then competitive
paradigms like FOSS may be hindered in terms of future market penetration and
opportunities despite their potential utility.

2.6 FOSS and standardization

FOSS and standardisation is an area that has drawn increased interest in recent years,
not least due to the challenges FOSS faces with regards market access and the ability
to compete fairly (for a given value of fairly) against older and more established
approaches to organising the creation, distribution and support of software
knowledge products. This is best exemplified by the public debate over what became
known as MS-OOXML, a next generation document format. It was suggested that

% http://www.gartner.com/it/page.jsp?id=801412
" http://flossimpact.eu/



84 Shane Coughlan

the process was biased’® and that the grants provided for the proposed standard were
insufficient for FOSS."

A great deal of the discussion surrounding standardisation and FOSS centred on
patents. The reason for this are the are fundamentally different goals for patents and
standards, as illustrated by Mr Karsten Meinhold, chairman of the ETSI IPR Special
Committee, when he stated that "IPRs and Standards serve different purposes: IPRs
are destined for private exclusive use, standards are intended for public, collective
use."”? FOSS, being also designed for public, collective use, tends not to fall into the
normal categorisation of how IPR is positioned.

Patents in standards had previously been managed by grants such as RAND, and
these were considered sufficient for proprietary software. However, that did not
mean that such conditions facilitated fair market access and competition for all
software paradigms competing in the market. For example, per-unit royalty
payments would compromise the freedom of people to share the code, as would
terms that did not permit sub-licensing.

Indeed, several FOSS licences have provisions regarding issues like patents to ensure
that the four freedoms defined by the copyright licence continue in full to all
subsequent users. The GPL is an example of such a licence, and others with the same
or similar provisions actually make up the majority of the FOSS paradigm. For
example, according to BlackDuck Software research 66.57% of projects use GPL
family licences that explicitly prohibit the application of patent restrictions on
covered software.”” Excluding these licences from a standard would mean excluding
2/3 of the FOSS model participants from accessing that standard. That is quite a
challenge for FOSS and for markets that seek to be open, competitive and genuinely
mnovative, though debate still continues regarding the best way to address the matter.

2.7 Globalization and FOSS

Globalisation refers to the process of national economies becoming more open,
economics becoming more ‘global’ than ‘national’, and to the reduction of national
controls over economic matters.”* In effect, changing the world from a loose

0 http://www.linuxjournal.com/node/1000294

I http://arstechnica.com/software/news/2008/03/sflc-ooxml-could-poses-patent-
threat-to-gpl-licensed-software.ars
http://ec.europa.eu/enterprise/ict/policy/standards/wsO8ipr/presentations/2 1
meinhold en.pdf

http://www.BlackDucksoftware.com/oss

™ Ramesh Mishra, Globalization and the Welfare State, (Cheltenham: Edward

72

73



FOSS Governance and Collaboration 85

organisation of states into a single giant canvas, and providing new opportunities for
people to work together. This concept has profound implications for cooperative
models of innovation and production, though it is not without its detractors.

The proposition of emerging Globalisation is contested by ‘globalisation scepticism’,
a view summed up by Hirst and Thompson’s comment that “the closer we looked the
shallower and more unfounded became the claims of the more radical advocates of
economic globalization.””> For these sceptics there are international economies but
there is no evidence for a truly ‘global’ economy’®. This is a valid criticism within
the constraints of their definition, but it can equally be contested as relevant only in
the context of purely economic, rather than cultural or communicative Globalisation.

Whether one defines Globalisation as an example of increasing global capitalism or
as a deeper and more complex mix of political, cultural and financial connections, it
suggests that the world is not merely a collection of states with limited
communication and sharing potential. From that perspective, and therefore from the
perspective of technology and business, it does not matter whether globalisation is a
trend towards a global economy or a collection of increasingly interlinked
international economies. Knowledge, goods and people are far more mobile now
than ever before. Software, a technology that can be easily transferred through
communication networks, is one of the greatest beneficiaries of this development. It
follows that the current success of FOSS may therefore be partly explicable as a
product of such Globalisation, and that it will inevitably continue to expand as long
as the trend towards increased human interaction continues.

In this context it is worth noting that the concepts behind FOSS have blazed a trail in
developing the norms required for massively distributed collaboration, and they have
proven to be influential beyond the field of technology. A key example is that when
Professor Laurence Lessig established the Creative Commons, and in doing so
formalised an approach to foster increased engagement and exchange around cultural
artefacts, he drew heavily on the concepts behind FOSS licenses. In the introduction
to Lessig's primary book on cultural sharing, 'Free Culture,' he acknowledges that his
insights do not exist in isolation, and states:
"The inspiration for the title and for much of the argument of this book
comes from the work of Richard Stallman and the Free Software
Foundation. Indeed, as I reread Stallman’s own work, especially the essays
in Free Software, Free Society, I realize that all of the theoretical insights I

Elgar, 1999), 3-4.

Paul Hirst and Grahame Thompson, Globalization in Question: The
International Economy and the Possibilities, 2nd ed. (Cambridge: Polity Press,
1999), p2.

° Tbid, p16.

75



86 Shane Coughlan

develop here are insights Stallman described decades ago."”’

3 Conclusion

FOSS i1s an approach to software that emphasizes the freedoms provided to end users,
with a particular focus on the ability of participants to use, study, share and improve
technology. While occasionally misunderstood as being non-commercial, FOSS has
always been conceptualised as something that allows commercial activity. It is
framed by its licences, which range from providing a simple, non-perpetual grant of
the receiving user freedom (as with the Modified BSD licence) through to providing
such freedom in perpetuity via Copyleft and addressing issues such as patents (as
with the GPL). While still relatively new, most concerns related to this approach to
licensing have been substantially addressed in courts of law, in industry usage and in
common understanding over the licence terms and their intent. Today FOSS has
become a central component of mainstream IT.

The popularity of FOSS has produced a wealth of related terminology and
perspectives, and this occasionally leads to some degree of confusion or
misunderstanding. To address this it is necessary to go back to first principles in
defining FOSS, understanding the concept of licensing that underpins it, and
examining how it facilitates multiple development and business models. This leads
to a number of useful observations. The first 1s that FOSS is a paradigm that
facilitates a multitude of development and business models, barring only those
inherently tied to the concept of per-unit software licence fees. The second is that
FOSS benefits from globalisation, especially in the context of increasing long-
distance cooperation facilitated by the Internet. This applies equally whether one is
concerned with cooperation between like-minded professionals or with blurring the
distinction between a developer and a user of technology. The third is that the
licences that appear to best support this diversity of choice are those that provide
both common rules for interaction (i.e. terms of using, studying, sharing and
improving) while also delivering a mechanism for sustaining these rules for
subsequent users (i.e. strong-Copyleft licences such as the GNU GPL).

Once FOSS is understood as a method of deriving value from knowledge products
with an emphasis on collaboration, it naturally follows that its productive application
depends on good governance and active collaboration. This type of management
structure has been gradually developed by stakeholders using the same methods
applied to the creation of creation of FOSS knowledge products. though it is worth
noting that the current mechanisms does not fully explain how FOSS potential can
be continually realised by an increasingly diverse eco-system of stakeholders. While

7 http://www.free-culture.cc/freecontent/, page 14.



FOSS Governance and Collaboration 87

it is evident that FOSS governance is increasingly sophisticated, it is equally evident
that understanding which model is best suited to the long-term management of
software 1s far from trivial in a world with complex supply chains, products deployed
across a multitude of legal jurisdictions, and a vast array of stakeholders with a
multitude of development, deployment and business models.

However, despite such difficulty in determining which precise governance model (or
models) may be best suited to the long-term sustenance of FOSS, the indicators
provided by the previous two decades suggest that its management will continue to
be effectively refined by stakeholders. FOSS is well positioned because it facilitates
sharing and cooperation in a world where such activities tend to easier, cheaper and
more effective than ever before. It is therefore reasonable to assert that FOSS will
continue to benefit from and drive increased openness and interoperability in the
technology market for pragmatic reasons.

In conclusion, as the concepts underlying FOSS are applied to other creative works
such as text, music or images, mainstream acceptance of this approach to developing
and maintaining knowledge products will increase. Its governance - and therefore
sustainability - will be refined as it scales, and any issues will gradually be worked
out due to stakeholder requirements and market dynamics.



