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and administrators, mathematics curricula were being 

identified as “constructivist,” or “traditional”. The 

“constructivist” curricula were assimilated to “a visual 

thinking approach curriculum,” often associated with 

an emphasis on mathematical modeling and a heavy 

use of computer technology in math classrooms. At the 

other end of the spectrum, a “traditional approach” was 

associated with an emphasis on writing “two-column 

proofs”.iii In this context, visualization in mathematics is 

regarded by the “constructivists” as an essential tool 

for learning mathematics by exploring, conjecturing, 

modeling and problem solving. Those who oppose the 

technology-minded radical constructivists, subscribed to 

relegating visualization to a desirable, even necessary, 

yet lower, intuitive stage in the process of reasoning 

and proof. At superior stages of learning they place 

deductive proof framed by adequate levels of formalism, 

and possibly the rigor of the axiomatic method, at least 

in spirit, if not in language. It is well known that the 

fundamental difference between these two positions is 

epistemological.iv The two pedagogies were based on 

different perspectives on the nature of mathematical 

knowledge and on the nature of learning, hence their 

differences in the nature of validation, the role of 

validation in generating new knowledge and on what 

mathematical skills and abilities should be emphasized 

in school.

　　More severely, at the peak of Math Wars, this 

perceived dichotomy tended to polarize classroom 

practices of teaching mathematics in USA, whether 

the curricula actually intended such radicalization or 

　　In the last one hundred years or so of modern 

public schooling, mathematics has seen a very 

interesting map of tendencies, radicalized and often 

opposing positions over the nature of mathematical 

knowledge and, subsequently, over the pedagogy of 

school mathematics. Some milestones of this map are 

the development of the axiomatic method and high 

degree of abstract logic to frame deductive reasoning, 

the Bourbaki movement attempting to implement 

new standards of rigor and formalization in Western 

curriculum of the 60
,
s, a set theoretical approach of 

school curriculum in the 70
,
s and early 80

,
s, and in the 

last two decades, a rise of constructivist positions on 

both the philosophy of mathematics and its pedagogy. 

The past decade saw a turmoil in Western schools of 

mathematics education (turmoil known in USA as the 

Math Wars), due to harsh criticisms that claim, amongst 

other things, that extreme constructivist approaches 

attempted to deny deductive reasoning its historical central 

role in mathematics curricula.i With respect to reasoning 

and validation of math knowledge, constructivist 

curricula were accused of advocating an unwarranted 

emphasis on visual thinking and intuition at the expense 

of mathematical rigor and a loss in knowledge.ii With 

respect to the use of visual representations in school 

mathematics, at the peak of Math Wars in the USA, 

the most radicalized positions on the development 

of mathematics education inadvertently promoted a 

false dichotomy in curricular choice: “constructivist 

reasoning” versus “deductive/ formal reasoning.” Thus, 

at that time, in educational parlay of schoolteachers 
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not. Thus, what actually happened in many classrooms 

was an “either/or” choice between a “constructivist 

approach” that overemphasized the reliance on the 

visual evidence and deemphasized the symbolic and 

“rigorous” mathematical language, or the opposite 

choice of focusing on traditional math skills supported 

by some appropriate degree of mathematical formalism 

and rigor, that limit (but not eliminate) the role of 

visual representations in proving. Traditional curricula 

have been criticized for (over)emphasize the two 

column proof, whilst their some of their most radical 

opponents attempted to replace the “two-column proof” 
writing with visual reasoning and even to rename the 

process with the weaker alternative of “reasoning and 

demonstration”.v

　　Nonetheless, regardless of epistemological positions 

of the curricula, classrooms tend to use heavily 

visualization and visual reasoning. How these visual 

aids are used will make a great difference in classroom 

routines of proof and reasoning. Most geometry 

classrooms teach deductive reasoning and proof.vi In 

these lessons there must be always a message (explicit 

or implicit) about what counts as evidence (including 

visual representations and whether or not we can 

rely on them for proving). The teachings about what 

is a correct proof inevitably hint at the axiomatic 

construction. Research on classroom discourse 

found that geometry teachers may promote in some 

elementary form the underlining principles of the 

axiomatic method as ideals of rigor in proof. Yet, in 

geometry classrooms, it can be very challenging to “talk 

the talk” of axiomatic method ideals for a correct proof, 

when the process of reasoning itself relies so heavily 

on visuals.vii But can one correct this pitfall by teaching 

students to follow their deductive reasoning with 

writing a proof that becomes independent of the visuals 

they used?

　　The purpose of this paper is threefold:  First, I 

invite in particular teachers of mathematics to reflect 

upon some epistemological distinctions between 

the axiomatic method and the deductive method of 

reasoning, and how these two are reflected in school 

approaches to proof and reasoning. Both these methods 

entail an axiomatic system frame, and both entail 

deductive processes of reasoning. Research indicates 

that these apparent communalities between the two 

methods may cause teachers and students to collapse 

the two methods and thus, to carry into the classroom 

practices some principles of rigor from the axiomatic 

method.viii Since the axiomatic method in fact changes 

fundamentally the rules of the game with respect 

to what constitutes evidence in a proof, classroom 

discourse would see tensions between the proof 

practices (which even in the two-column proof curricula 

rely on visual evidence) and the principles by which 

discourse about mathematics is organized in classroom.

　　Second, it is of interest for future teachers 

in particular, to understand the place that visual 

representations play in the classical deductive method 

canonically used in classrooms. This paper argues that 

visual representations play a much more fundamental 

role than just helping students understand the content 

easier.

　　Third, it is important to reflect on some important 

principles of the axiomatic method itself. Although 

the axiomatic method is not directly applied in school 

curricula, however, some principles are reflected in 

the ways we promote in classrooms an idea of rigor in 

mathematics. Research suggests that classroom routines 

of reasoning and proof are influenced to teachers
,
 beliefs 

about mathematical reasoning and mathematical rigor.ix

　　This paper is organized as follows: First it offers 

a brief overview of the development of the axiomatic 

method and its epistemological underpinnings 

regarding visual representations. Second, it presents 

the role that visualization and visual reasoning played 

historically in deductive reasoning. Finally, it presents 

some implications of the above for the process of 

argumentation in school geometry.

Reason without Image: 
The Quiet Colors of the Axiomatic Method

　　Logical reasoning, often wrongly equated to 

deductive reasoning, may well develop without 

undergoing the experience of being schooled, of 

organized education. On the other hand, school in 

some form is needed to introduce us to deduction 
as a process of reasoning. Deduction is a disciplined 

process that supposes a more educated specificity in its
,
 

practices than the mere association of propositions by 

some accepted rules of inference. The latter practices 

at large constitute “logical reasoning.” Deduction is 

indeed a process of the Logic type in the sense that it 

include associating propositional knowledge by rules 

of inference in its
,
 practice except that deduction also 

presumes two important structural elements that do 

not necessarily bear with priority in the general “logical 

reasoning” processes:

　　One is that the deductive reasoning harbors strictly 

defined vertical hierarchies̶parents-children type of 

relationships that develop from a well defined starting 

point̶of texts associated by established conventions. 

In these hierarchies, we start the process from a base 
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level consisting of primary texts called axioms and build 

up levels by derivative associations so that knowledge 

is organized on levels of inference counted as a second, 

third, . . . nth . . . degree of inferences down from the 

axioms. Secondary texts are the ones that derive 

directly from axioms, tertiary texts from secondary 

texts or from a combination between secondary texts 

and axioms, etc.

　　The second important presumption of a deductive 

system is that there exists a “starting level” in the 

reasoning system-that is, we admit and define a family 

of axioms from which all results within a system 

may be derived by inference. Both the vertical/

hierarchical nature of the deductive structure and 

the necessity of identifying the family of axioms that 

makes the foundations of all deductive results suggest 

that deduction requires knowing some articulations 

conventionally signified (like the choice of specific axioms 

that frame a system, or the specificity of the rules of 

inference). 

　　As such, deduction depends upon specific cultural 

artifacts (like formal language) that require a form 

of explicit education to make it accessible. Moreover 

and perhaps most importantly, in order for deduction 

to instrument the thinking process, a particular 

environment is required that withstands the specificity 

of structure and of language.

　　Deduction developed as a particular practice in 

argumentation. Western cultures place the origins of 

deductive reasoning in ancient Greece, as a process 

that started by coalescing even more ancient logical 

inferences and physical representations of space and 

then organized these in a system of relationships for 

the first time articulated as the method of geometry by 

Euclid and his disciples. It was not until the 19th century 

that the deductive system underwent any major 

development. At the beginning of the 20th century the 

deductive system was formalized under the school 

of Hilbert: all the geometrical texts of Euclid were 

reformulated on the basis of rigorously defined systems 

of axioms that made explicit all the assumptions left un-

specified by Euclid.x

　　The project of Hilbert
,
s axiomatic mathematics 

was to infer any result by formal logical associations 

from axioms, with a particular care to obtain consistent 

geometries (that is, all important results were obtained 

exclusively on the basis of elements of the system 

within which they are formulated). We say that 

geometric axiomatic systems of geometries are closed, 

that is, any result may be obtained within them based 

solely on inference relationships amongst texts. A 

complete axiomatic system stays by itself, and may be 

taught in the regime of “ tabula rasa” that is, one need 

not know any prior mathematics or any mathematics 

outside of these axiomatic systems in order to learn 

them.xi “Closed systems” means they are sufficient in 

themselves, their elements are self-explanatory, and 

therefore the formal axiomatic process of deduction 

requires no visual representations, in the sense that 

comprehension and reasoning do not depend on visual 

(diagrammatic) representations of the objects on which 

we work.

　　Canonical discourses in mathematics consider 

Hilbert
,
s formal axiomatic systems to be the culmination 

of the deductive process and the foundation of 

rigorous reasoning:xii The fact that visual and intuitive 

elements were not determinant factors in the process 

of validation represented for many mathematicians the 

very substance of mathematical argument.xiii In fact, 

historically, axiomatic systems were not a product of 

mathematical practices̶for mathematicians
,
 everyday 

work was not going by the axiomatic method. Instead, 

the axiomatic method was a meta-mathematics 

discourse, a “modus ponens.”xiv Axiomatic discourse 

came as a response to the quest for a method to 

access objective truths of the World and avoid relying 

on one
,
s senses for reaching “the truth.” The old 

historical struggle of Rationality and Enlightenment 

to make “the truth” objective, finally received a solid 

theoretical foundation when Axiomatic eliminated 

from argumentation any legitimacy of visual evidence 

and eliminated, with formal language, the “natural 

intuition.”xv Establishing a system free of these two 

“shortcomings” intended to shift the basis of reasoning 

from the “ tyranny of senses to the safe reliability on 

the rational”.xvi

　　Let us note here that an important difference 

between the Greek “deduction” and Hilbert
,
s “axiomatic 

method” is the relevance and the place of the visual 

representations in the deductive argument. The school 

established by Euclid in geometry is widely considered 

the parent of the deductive method. However, 

unlike the axiomatic method, the Greeks placed a 

major emphasis on the visual representation of the 

mathematical discussions (particularly by diagrams and 

3-D constructions). The dia,grammon̶“the method 

using lines”̶ was the predominant way of approaching 

problems in Greek mathematics, even arithmetical 

problems.xvii

　　The “method using lines” consisted in developing 

logical inferences on the basis of a graphical 

representation obtained by combining three basic 

elements of space: the point, the line and the circle. 

Both the power and the limitations of diagrams came 
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axiomatic construction of geometry. 

　　In fact, the basic assumption on which the problem 

above relies is what is today known as the “Axiom 

of Pash”: A line touching a triangle and passing inside it, 
touches that triangle in two points (Diagram 2). Considered 

by Greeks diagrammatically obvious, this axiom and all 

her derivatives never were spelled out by Greeks.xviii

　　Axiomatics comes to challenge the “taken for 

granted” status of these implicit assumptions imbedded 

in the visual diagrams. In this respect, Hilbert used 

formal language to spell out all those assumptions 

hidden in the diagrams in order to replace the “natural 

(sense)” with the “(product of) conceptual articulations.” 
But how is this “conceptual articulation” working 

differently than the diagram?

　　Let us take a look at how the Pash axioms, not 

articulated at all by Greeks as diagrammatically obvious, 

but well articulated in the axiomatic system of Hilbert: 

Let A,B and C be three points non co-linear. We call a 
triangle the set 

{A,B,C}U{BC}U{CA}U{AC} where BC,CA and AC are 
the subsets of all points co-linear situated between A,B, 
and C.  

Let ABC be a triangle set and let d be a line that does not 
go through any vertex A,B or C. If the line d has a common 
point with one side of the triangles, then it will have one 
common point with at least another side. That is:

d∩ /AB/≠∅⇒ (d∩ /AC/=∅)∨(d∩ /BC/≠∅)

　　Note that in the axiomatic formulation above 

in fact there is no need for any visual representation. The 

definitions and theorem are based on sets of points 

related to each other by logical operators (in the case 

above∩represents intersection, and∨represents the 

logical operator “AND”) which are formally defined. 

We do know what choices we make when we operate 

on sets because the operation itself is formally defined:  

we know for example that the intersection of two 

sets will be either a set of points common to both 

initial sets, or the Empty set; but this definition of 

from the fact that they were exclusively the product 

of construction by the straight-edge and the compass, 

which meant they imbedded in their identity and 

structure the geometrical properties coming from lines 

and circles. These properties of lines and circles had the 

same influence in shaping the dia
,
grammon that genetic 

markers have in shaping the bodies that carry them.

　　Reasoning by dia
,
grammon, framed by the rules 

that govern straight lines and circles, enabled some 

powerful inferences and mathematical constructs, yet 

limited the possible conjecturing and conceiving of 

space and time to the universe of straight line and 

circle. Objects were being conceived of in relation 

to constructions with rule and compass. The basic 

geometrical features and properties of lines and circles, 

accepted by visual evidence, were constituted in basic 

axioms on which the deductive reasoning was then 

built.

　　It is important to mention that the formal axiomatics 

of Hilbert turns away from the Greek tradition at the 

point where axioms were accepted by visual evidence. 

Axiomatic system comes to eliminate the visual identity 

of axioms by spelling out conceptually the basic features 

of point, line, circle and space. Some of these basic 

features were compressed in the diagram and taken 

for granted at an intuitive level by the ancient Greeks. 

These hidden assumptions evaded articulation in the 

times of dia
,
grammon.

　　Consider this diagram (Diagram 1) representing 

the following problem formulated by the Greek 

mathematician Menelaus: 

　　Note that the problem has a subdued assumption 

that line {BAC
,
} in fact cuts the triangle A

, 
B

, 
C in two 

points and furthermore, it must cut the third side (A
,
B,) 

in a point as well, and that point (C
,
) is outside of the 

triangle A
, B

, C. In fact, this composite assumption, not 

spelled out by Greeks and taken as diagrammatically 

obvious, is decomposed and proven later on in the 

Diagram 1

Diagram 2
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intersection formalized as an operation (just like Sum) 

in symbolic language circumvents the need for any 

visual representation in order to resolve any problem 

that requires intersection of sets because we can apply 

the formal operation and generate the result without 

making a diagram.

　　However, I suggest that operating on formalized 

texts as the above is much more difficult and less 

natural, since it requires particular cognitive abilities 

together with knowledge of concepts and procedures. 

Thus this kind of text may not be readily available to 

everyone as it takes us out of regular language and 

“natural” intuitions.

　　Why, then, would anybody endeavor to replace the 

Greek dia
,
grammon, apparently accessible to everyone 

through naked eye, with formalization so complex that 

it requires complex cognitive abilities to access it?  

The answer to this is important for understanding the 

role of the visual in mathematical argumentation: The 

dia
,
grammons were limiting the objects of geometry 

to the particulars of the Euclidian space that fell short 

of being a closed system (postulate 5 was not proven 

and in fact proved to be non-universal). Moreover, the 

Euclidian space was found to be only one possibility of 
interpreting space in general (and non-Euclidian geometries 

started from here). On the other hand, the axiomatic 

method of Hilbert served as an instrument to expand 

exploration of space in a disciplined manner-note the 

emphasis on disciplined, which is meant to maintain the 

frames of reference within the domain of mathematics. 

Whilst the axiomatic method stressed the specificity 

of the results and their dependence on the choice 

of foundational axioms, it also liberated concepts 

from the constraints of uncritically accepted visual 

representations. Diagrams themselves were readjusted 

to represent objects of geometry in other than Euclidian 

spaces: 

　　For example, to Greeks a line was an object with 

length but no width̶embodied by a diagram that 

obviated any need to change its shape (Diagram 3):

. . .whilst for Hilbert
,
s axiomatics, a line is a 1-dimensional 

infinite subset of a defined space with defined 

parameters and properties. Hilbert
,
s approach keeps the 

concept of “line” as an object determined by 2 points 

in any space, but eliminates the straightness imbedded 

in the Greek line. The axiomatic formulation of the line 

concept allows a circle drawn on the surface of a sphere 

and going through the poles to satisfy the definition of a 
line. So we may have circles as lines (Diagram 4). 

　　The triangle that the Greek Menelaus talks about 

in the theorem presented above̶that to him was 

accessible in the Euclidian space as shown in the 

Diagram 1̶the Pash axiom mentioned above, might 

now both be applied onto the surface of the sphere for 

example, using axiomatic formulations. Lines are now 

the big circles of the sphere. Can you stretch your 

imagination to see how the Menelaus theorem may look 

like on the sphere and beyond, in spaces that may not 

even have a graphical representation accessible to us? 

Putting the Visual Back into the Argument

　　In the section above I pointed out an important 

distinction between Greek dia
,
grammon and the 

axiomatic method with respect to the use of visual 

representations: The Greek visual representations of 

constructible objects were legitimate objects on which 

one reasoned, whilst for Hilbert
,
s system the objects 

on which one reasoned shifted to eliminate visual 

representations and replace them with propositional 

knowledge, where the objects were formalized by 

symbols and connecting operators.

　　Let us now examine how diagrams constituted for 

Greeks an essential tool in reasoning: 

　　First of all, the elements of the diagrams are 

geometrical constructions that have been obtained with 

basic tools of drawing like the straightedge and the 

compass (for example, points appear as intersections 

of lines or arcs). As such, a diagram is a finite and discrete 
representation̶and hence mentally graspable̶ of a 

structure meant to represent geometric objects that 

in fact are continuous in nature and have an infinite 

number of points which makes them not graspable 

or manipulable in their entire essence by our minds. 

The functional role of the diagram in geometry is not 

that of a picture of the geometrical object on which 

a problem is formulated, but instead the diagram is 

a picture of the problem itself. That is, the elements 

emphasized to the eye and mind in the diagram 

are physical representations of the givens in the 

Diagram 3

Diagram 4
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hypothesis of a problem: a diagram “at work” appeals 

to deductive reasoning through the special points 

defined as intersection of particular lines. Measures 

of angles and properties of congruence, parallelism 

and perpendicularity reveal particular properties of 

shapes in one eye-grasp. The number of givens in the 

hypothesis being finite, so is the diagram. Thus the 

diagram in fact is a text illustrating a finite number 

of givens and their spatial relationships. The diagram 

is relied upon as a finite and manageable system of 

relations because it emphasizes a finite number of 

intersection points and segments to which a problem 

refers, which makes it a lucrative instrument for 

exploring and organizing structures and models in an 

infinite universe.xix

　　Second, the diagram encodes the text in a certain 
manner.xx For example, since assumptions are encoded 

implicitly in the diagram, they will constitute the 

background for reasoning without having too many 

explicit elements in our way. The advantage to 

encoding these assumptions implicitly in the schema 

that a diagram represents is that all these assumptions, 

all these characteristics may be grasped together by our 

minds as one system of issues that do not need specification 
of identity, shape and role, done for each of them one by 
one. Consider for example the very first proposition 

of Euclid
,
s Elements. This proposition, based on the 

diagram that represents it in the Elements, contains the 

assumption that the circles intersect (Diagram 5). 

This diagram contains a series of assumptions on the 

basis of Pash axioms: for example that circles intersect 

in two points to begin with. Pash axioms allows us to 

establish that in an intersection of certain figures we 

do have a determined number of points, which helps 

reasoning because we know we deal only with these 

many points and we can grasp them in sight all at the 

same time.

　　The diagram organized the text: One important feature 

of the diagram is that the cases for discussion are set 

by the choice of references fixed in the diagram.

　　Let us consider for example this problem of 

Archimedes. Let (BAC) and (DPE) be two similar 

sections (Diagram 6). K and M are their gravity centers.

Prove that A K: KO:PM:MQ

The proof is by reductio ad absurdum, assuming there 

exists a point L so that PL:LQ:: AK:KO

　　The problem presents two cases for discussion, 

depending on where you place point L̶above or below 

M. The cases are asymmetrical therefore they are 

distinct. 

　　A diagram was a metonym of a proposition, the core of 
the proposition itself.  In Greek geometry the diagrams 

were intrinsic part of the problem text: they actually 

constituted the language by which the problem and the 

solution were formulated and communicated. Moreover, 

the text and the diagram are interdependent: assertions 

derive from a combination of text and diagram.xxi

Argumentation in School Geometry

　　Today the discourses about mathematics like to 

present a dichotomy between rigorous and intuitive 

mathematics, where visualization and visual reasoning 

is associated with intuitive phases of thinking and 

with imagination, with the exploring and conjecturing 

phase, but also with imprecision.xxii Whilst the deductive 

and axiomatic methods are associated with (more) 

rigorous mathematics, namely with the rigor of proof, 

it is important to note that, although the axiomatic 

method endeavors to circumvent the subjectivity of 

visual representations, it does not replace the visual 

representations at the core of mathematical thinking.xxiii

　　On the basis of this dichotomy, critics of traditional 

curricula, hold visualization and visual reasoning as a 

flagship of constructivist pedagogy. In their critique of 

traditional pedagogy they emphasize the pursuit two-

column proof as the opposite element to progressive 

constructivism.xxiv As Schoenfeld points out, school 

geometry more often than not looses its appealing to 

Diagram 5

Diagram 6
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students because lessons are organized as processes 

of establishing two-column proofs for problems, that is, 

putting problems in a formalized form with emphasis on 

inferences and connections of the text.xxv

　　However, in most modern schools in this world, 

the canonical approach to proof is a modernized 

version of the classic Greek dia
,
grammon.xxvi Moreover, 

school mathematics has a tendency to represent the 

diagrammatic method of deductive reasoning as the sole 
embodiment of logical reasoning.xxvii

　　Deductive arguments are special types of 

arguments, because they are framed in well-defined 

axiomatic systems (even if the frame behind the rules 

is not made explicit in school mathematics for example). 

When a family of axioms is assumed at the basis of a 

mathematical discussion, the mathematical knowledge 

involved in discussion carries a certain specificity 

defined and bounded by those axioms. Thus, in 

everyday speech, it is easy to make confusion between 

deductive method and axiomatic method.

　　As seen in the previous section, visual reasoning 

is organically imbedded in this dia
,
grammon method. 

Thus, the canonical approaches to proof in school should 

not be regarded as opposite to visual reasoning. They 

are in fact fundamentally relying on visual reasoning 

in the same subtle way that the dia
,
grammon does. On 

the other hand, the axiomatic method has a complex 

role in construction of knowledge. In this respect, whilst 

never directly incorporated in school curricula, the 

axiomatic method has an important role in curricular 

thinking because it does inform what are the standards 

of rigor in validation of knowledge, it supports and 

frames abstractization, formalization and generalization 

of mathematical knowledge.xxviii The latter three are 

fundamental processes of knowledge construction 

in mathematics and as such are reflected, albeit to a 

primitive degree, in school mathematics as well. To 

be precise, we do not apply the axiomatic method per 

se, and tedious elements of the axiomatic method are 

not incorporated in school curricula.  However, we go 

by some of the fundamental tenets in the spirit of the 

axiomatic method when we extend a reasoning from 

concrete to abstract, when we do work with some 

formalized language and rigorous formal definitions 

and when we go through the process of generalizing 

a result. One important example, in this respect, is 

the fact that whilst we avoid the process of axiomatic 

reasoning and its formalized language in schools, 

however, we do use formal and abstract definitions for 

mathematical objects, definitions that tend to settle the 

object outside its visual representation. Moreover, whilst 

in a Geometry class the dia,grammon method is used 

for the actual process of reasoning and explicating one
,
s 

reasoning, however, we use formal language to write 

the reasoning and the result. As we do so, we undergo a 

process of abstractization and/or generalizing the result 

to the extend possible at that level of knowledge. For 

generalizing and abstractization, the procedures and the 

language are those of the Axiomatic method. Writing 

mathematics, after doing the reasoning, is the final 

phase of the process of solving a problem. It is in this 

phase that the spirit of the Axiomatic method is visible 

and the influence of it may grow. Thus, the canonical 

process of learning in school usually undergoes two 

phases: a phase of reasoning and explaining, in which 

there has to be a fundamental reliance on visual 

representations (cf. the dia
,
grammon used in school), 

and a phase of writing the solution/proof. The latter is 

framed by principles of the axiomatic method (stated 

in schools in a more or less elementary form). These 

principles support the use of formal language. The use 

of formal language supports the struggle to eliminate 

the dependence on visual representations in the process 

of proof writing and to attain the highest degree of 

rigor possible. School mathematics incorporates both 

these processes in proof construction: one process relies 

on visual representations to explore, scaffold reasoning 

and explain, the other strives to not rely on visuals 

for conceptualizing and presenting a final form of 

knowledge. Incorporating both these processes, school 

mathematics reflects closely the process of knowledge 

production established today in the discipline.

　　Given the degree of abstraction to which 

axiomatics is being formulated, in school curricula the 

axiomatic constructions are rarely encouraged. Only 

rudiments of the axiomatic process may be present 

in the form of noting the axioms at the origins of a 

particular result. However, this is not true of the spirit 

of axiomatic deduction and the prevalence of deductive 

argumentation viewed as the hinge of geometry. Thus 

it is important for teachers to understand what kind of 

reasoning process is that which they engage students 

in, and the differences between the stages of this 

process with respect to visual representations. 

　　The process of mathematisation is an organic 

syncretism of visual representations and logical 

articulations in which a dividing line between the 

former and the latter, practicing mathematicians find 

much more difficult to draw nowadays in the post-

Hilbert era.xxix Although the uses of dia
,
grammon 

change depending on the method engaged, however, the 

usability of visuals bridge between different approaches 

to geometry, thus making geometry, as Hilbert himself 

admits, distinctive as a domain of mathematics.
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論文要旨
　本論は、ユークリッドの演繹法と公理的方法との根本的な違いを指摘し、幾何学において証明を用いた数学教育の
指導法にその違いが与えた影響について論じる。特に、ユークリッドの演繹法と公理的方法との間で図式化や描画モ
デルを用いた方法が担う役割について考察した。また、学校教育に於いて数学的証明がどのように指導されているの
かを検討した結果、数学教育に於いて用いられる描画モデルが単なるモデル以上の意味を持つことを論じる。本論は、
数学教育に可視化したイメージを用いることが、特に幾何学分野の指導において欠かすことのできない一段階である
ことを示し、ユークリッドの演繹法を用いた指導で可視化したイメージを用いることに否定的な数学教育の指導法を
批判的に検討する。




